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Abstract

Since the multigranulation rough sets (MGRS) can be considered as the compositions of multi–
independent Pawlak’s rough sets, the multigranulation rough set rules (MGRS rules) are then the com-
positions of decision rules, which are supported by multi–independent Pawlak’s rough sets. To measure
MGRS rules, both the local and global views are employed in this paper. In local view, the support,
certainty and coverage factors are proposed to measure MGRS rules, which are support by an object;
while in global view, these three factors are proposed to measure MGRS rules, which are coexisting in a
decision system. The necessary conditions for these factors to achieve maximal and minimal values are
also addressed. Some numerical examples are employed to substantiate the conceptual arguments.

Keywords: Certainty factor, coverage factor, decision rule, multigranulation rough set, support factor.

1. Introduction

Rough set theory 1,2,3,4, proposed by Pawlak, has
been demonstrated to be useful in pattern recogni-
tion, knowledge discovery 5,6, decision support 7,8,
data mining, feature selection, medical diagnosis
and so on. Pawlak’s rough set, is constructed on the
basis of an indiscernibility relation, which is an e-
quivalence relation and then such model can be used
to unravel decision rules from the information sys-

tem with decision attributes, such system can also
be referred to as decision system in many rough set
literatures. It is well–known that the decision rules,
which are supported by the objects in the lower ap-
proximation of the decision classes, may be referred
to as certain rules; while the decision rules, which
are supported by the objects in the boundary regions
of the decision classes, may be referred to as possi-
ble rules.

Presently, with the rapid development of granular
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computing 9,10,11, Yao 12 pointed out that Pawlak’s
rough set does not reflect the depth, width and u-
niversality of granular computing in essence. With
respect to Yao’s triarchic theory of granular comput-
ing 12, multiview, hierarchy and granular comput-
ing triangle are keys to be addressed. Multiview
provides a unified framework for integrating mul-
tiple views of intelligent data analysis 13. Hierar-
chy can not only show the relationships among dif-
ferent granulation structures but also reorganize the
granulation structures into a multihierarchy system.
Granular computing triangle summarizes pictorially
the three mutually supporting perspectives on view-
ing, constructing and working with granular struc-
tures 12.

Fortunately, to reflect the multiview of granular
computing in rough set data processing, the multi-
granulation rough sets (MGRS) approach has been
proposed by Qian et al. 14. In Qian et al.’s classical
MGRS, a family of the binary relations instead of a
single one are used to construct the target approx-
imations. Presently, the multigranulation approach
progressing rapidly. For example, in Qian et al.’s M-
GRS theory, there are two different models: one is
the optimistic MGRS 15,16 and the other is the pes-
simistic MGRS 17. Following Qian et al.’s work,
Yang et al. generalized the MGRS into fuzzy and
incomplete environments in Ref. 18 and Ref. 19, re-
spectively. Xu et al. 20 introduced MGRS into fuzzy
tolerance approximation space. Abu–Donia 21 stud-
ied the rough approximations through multi knowl-
edge base, and then obtain the similar results to Qian
et al.’s MGRS. Khan and Banerjee 22 investigated
the reasoning approach in multiple–source approxi-
mation systems, in which information arrives from
multiple sources. Wu and Leung 23 investigated the
multi–scale information system, which reflects the
explanation of the same problem at different scales
(levels of granulations). In Refs. 24,25, Qian et al.
also proposed a positive approximation, which can
be used to accelerate a heuristic process of attribute
reduction. Since the positive approximation uses a
preference ordering, which can make the granula-
tion structure finer step by step, i.e. a finer granu-
lation structure can be obtained by last granulation
structure, then the positive approximation also re-

flects the thinking of multigranulation.
It should be noticed that Qian et al.’s MGRS

may be considered as the compositions of multi–
independent Pawlak’s rough sets. For instance, op-
timistic multigranulation lower approximation is the
union of multi–independent Pawlak’s lower approx-
imations, pessimistic multigranulation lower ap-
proximation is the intersection of multi–independent
Pawlak’s lower approximations, etc. For such rea-
son, the decision rules in terms of MGRS, i.e. M-
GRS rules may be regarded as the composition-
s of decision rules, which are derived from multi–
independent Pawlak’s rough sets.

The purpose of this paper is to measure MGRS
rules. To facilitate our discussion, we first present
the basic notions, which are related to rough set and
MGRS in Section 2. In Section 3, by the logical con-
nections used in MGRS, two types of MGRS rules
are investigated. One is “OR” MGRS rule, while the
other is “AND” MGRS rule. Three different factors
are proposed to measure such two MGRS rules from
the local and global views, respectively. Results are
summarized in Section 4.

2. Preliminary knowledge on rough sets

In this section, we will review some basic concepts
such as information system, Pawlak’s rough set and
multigranulation rough set.

2.1. Pawlak’s rough set

Formally, an information system can be considered
as a pair I =<U,AT >, where

• U is a non–empty finite set of objects, it is called
the universe;

• AT is a non–empty finite set of attributes, such
that ∀a ∈ AT , Va is the domain of attribute a.

∀x ∈ U , let us denote by a(x) the value that x
holds on a(a ∈ AT ). For an information system I,
one then can describe the relationship between ob-
jects through their attributes values. With respect
to a subset of attributes such that A ⊆ AT , an indis-
cernibility relation IND(A) may be defined as

IND(A) = {(x,y) ∈U2 : a(x) = a(y),∀a ∈ A}.
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The relation IND(A) is reflexive, symmetric and
transitive, then IND(A) is an equivalence relation.
By the indiscernibility relation IND(A), one can de-
rive the lower and upper approximations of an arbi-
trary subset X of U . They are defined as

A(X) = {x ∈U : [x]A ⊆ X},
A(X) = {x ∈U : [x]A ∩X ̸= /0};

where [x]A = {y ∈ U : (x,y) ∈ IND(A)} is the
A–equivalence class containing x. The pair
[A(X),A(X)] is referred to as the Pawlak’s rough set
of X with respect to the set of attributes A.

Through lower and upper approximations, the
boundary region of X is

BNA(X) = A(X)−A(X).

2.2. MGRS

The MGRS is different from Pawlak’s rough set
model because the former is constructed on the basis
of a family of indiscernibility relations instead of a
single one.

In Qian et al.’s MGRS theory, two different mod-
els have been defined. The first one is optimistic M-
GRS, the second one is pessimistic MGRS.

2.2.1. Optimistic MGRS

In Qian et al.’s optimistic MGRS, the target is ap-
proximated through a family of the indiscernibility
relations. In lower approximation, the word “opti-
mistic” is used to express the idea that in multi in-
dependent indiscernibility relations, we need only
at least one of the indiscernibility relations to satis-
fy with the inclusion condition between equivalence
class and target. The upper approximation of opti-
mistic MGRS is defined by the complement of the
lower approximation.

Definition 1. 15,16 Let I be an information system, in
which A1,A2, · · · ,Am ⊆ AT , then ∀X ⊆ U , the opti-
mistic multigranulation lower and upper approxima-
tions are denoted by ∑m

i=1 Ai
O(X) and ∑m

i=1 Ai
O
(X),

respectively,

m

∑
i=1

Ai

O

(X) = {x ∈U : [x]A1 ⊆ X ∨·· ·∨ [x]Am ⊆ X};

m

∑
i=1

Ai

O

(X) =∼
m

∑
i=1

Ai

O

(∼ X);

where [x]Ai (1 6 i 6 m) is the equivalence class of x
in terms of set of attributes Ai, ∼ X is the comple-
ment of set X .

By the lower and upper approximations
∑m

i=1 Ai
O(X) and ∑m

i=1 Ai
O
(X), the optimistic multi-

granulation boundary region of X is

BNO
∑m

i=1 Ai
(X) =

m

∑
i=1

Ai

O

(X)−
m

∑
i=1

Ai

O

(X).

Theorem 1. Let I be an information system, in
which A1,A2, · · · ,Am ⊆ AT , then ∀X ⊆U, we have

m

∑
i=1

Ai

O

(X)= {x∈U : [x]A1 ∩X ̸= /0∧·· ·∧[x]Am ∩X ̸= /0}.

Proof. By Definition 1, we have

x ∈
m

∑
i=1

Ai

O

(X) ⇔ x /∈
m

∑
i=1

Ai

O

(∼ X)

⇔ [x]A1 * (∼ X)∧·· ·∧ [x]Am * (∼ X)

⇔ [x]A1 ∩X ̸= /0∧·· ·∧ [x]Am ∩X ̸= /0.

By Theorem 1, we can see that though the opti-
mistic multigranulation upper approximation is de-
fined by the complement of the optimistic multigran-
ulation lower approximation, it can also be consid-
ered as a set, in which objects have non–empty in-
tersection with the target in terms of each indiscerni-
bility relation.

2.2.2. Pessimistic MGRS

In Qian et al.’s pessimistic MGRS, the target is still
approximated through a family of the indiscernibil-
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ity relations. However, it is different from the opti-
mistic case. In lower approximation, the word “pes-
simistic” is used to express the idea that in multi in-
dependent indiscernibility relations, we need all of
the indiscernibility relations to satisfy with the inclu-
sion condition between equivalence class and target.
The upper approximation of pessimistic multigran-
ulation rough set is also defined by the complement
of the pessimistic multigranulation lower approxi-
mation.

Definition 2. 17 Let I be an information sys-
tem, in which A1,A2, · · · ,Am ⊆ AT , then ∀X ⊆
U , the pessimistic multigranulation lower and up-
per approximations are denoted by ∑m

i=1 Ai
P(X) and

∑m
i=1 Ai

P
(X), respectively,

m

∑
i=1

Ai

P

(X) = {x ∈U : [x]A1 ⊆ X ∧·· ·∧ [x]Am ⊆ X};

m

∑
i=1

Ai

P

(X) =∼
m

∑
i=1

Ai

P

(∼ X).

By the lower and upper approximations
∑m

i=1 Ai
P(X) and ∑m

i=1 Ai
P
(X), the pessimistic multi-

granulation boundary region of X is

BNP
∑m

i=1 Ai
(X) =

m

∑
i=1

Ai

P

(X)−
m

∑
i=1

Ai

P

(X).

Theorem 2. Let I be an information system, in
which A1,A2, · · · ,Am ⊆ AT , then ∀X ⊆U, we have

m

∑
i=1

Ai

P

(X)= {x∈U : [x]A1 ∩X ̸= /0∨·· ·∨ [x]Am ∩X ̸= /0}.

Proof. The proof of Theorem 2 is similar to the
proof of Theorem 1.

Different from the upper approximation of op-
timistic MGRS, the upper approximation of pes-
simistic MGRS is represented as a set, in which ob-
jects have non–empty intersection with the target in
terms of at least one of the indiscernibility relations.

Theorem 3. Let I be an information system, in
which A1,A2, · · · ,Am ⊆ AT , then we have

m

∑
i=1

Ai

O

(X) =
m∪

i=1

Ai(X);

m

∑
i=1

Ai

O

(X) =
m∩

i=1

Ai(X);

m

∑
i=1

Ai

P

(X) =
m∩

i=1

Ai(X);

m

∑
i=1

Ai

P

(X) =
m∪

i=1

Ai(X).

Proof. It can be derived directly from Definition 1,
Theorem 1, Definition 2 and Theorem 2.

2.3. Multigranulation rough memberships

In Pawlak’s rough set model, there is a direct re-
lationship between rough approximation and the
membership such that

µA
X (x) = 1 ⇔ x ∈ A(X);

0 < µA
X (x)6 1 ⇔ x ∈ A(X).

where µA
X (x) =

|µA(x)∩X |
|µA(x)|

, |X | denotes the cardinal

number of set X .
It should be noticed that since more than one e-

quivalence relations are used in MGRS approach,
the re–definition of the rough membership has be-
come a necessity.

Definition 3. Let I be an information system, in
which A1,A2, · · · ,Am ⊆ AT , ∀X ⊆ U , the maximal
and minimal rough memberships of x in X are denot-
ed by µ∑m

i=1 Ai
XMAX

(x) and µ∑m
i=1 Ai

XMIN
(x), respectively, where

µ∑m
i=1 Ai

XMAX
(x) =

m
max
i=1

µAi
X (x);

µ∑m
i=1 Ai

XMIN
(x) =

m
min
i=1

µAi
X (x).

Theorem 4. Let I be an information system, in
which A1,A2, · · · ,Am ⊆ AT , ∀X ⊆U, we have
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1. µ∑m
i=1 Ai

XMAX
(x) = 1 ⇔ x ∈

m

∑
i=1

Ai

O

(X);

2. 0 < µ∑m
i=1 Ai

XMIN
(x)6 1 ⇔ x ∈

m

∑
i=1

Ai

O

(X);

3. µ∑m
i=1 Ai

XMIN
(x) = 1 ⇔ x ∈

m

∑
i=1

Ai

P

(X);

4. 0 < µ∑m
i=1 Ai

XMAX
(x)6 1 ⇔ x ∈

m

∑
i=1

Ai

P

(X).

Proof. We only prove 1, others can be proved anal-
ogously.

µ∑m
i=1 Ai

XMAX
(x) = 1 ⇔ m

max
i=1

µAi
X (x) = 1

⇔ ∃i ∈ {1,2, · · · ,m} s.t. [x]Ai ⊆ X

⇔ x ∈
m

∑
i=1

Ai

O

(X).

3. MGRS rules

3.1. Compositions of rules

The end result of rough set model is a representa-
tion of the information contained in the data sys-
tem considered in terms of “if· · · then· · ·” decision
rules. The decision rules can be generated from the
decision system in the rough set approach. A deci-
sion system is an information system such that I =
(U,AT ∪D), in which AT is the set of conditional at-
tributes, while D is the set of decisional attributes. In
this paper, to simplify our discussion, we only con-
sider one decision attribute d and then the decision
system can be represented by I = (U,AT ∪ {d}).
Generally speaking, we may assume that such deci-
sion attribute determines a partition on the universe
of discourse, i.e U/IND({d}) = {X1,X2, · · · ,Xk}.

Following Pawlak’s rough set model, it is well–
known that the decision rules can be derived such
that

a1(y) = v1 ∧a2(y) = v2 ∧·· ·∧as(y) = vs → y ∈ X j,

in which {a1,a2, · · · ,as}= AT , X j ∈U/IND({d}).
Given an object x ∈ U , if a1(x) = v1,a2(x) =

v2, · · · ,as(x) = vs, then the above decision rule is
said to be supported by object x, thus, such rule can
be denoted by

y ∈ [x]AT → y ∈ X j.

Moreover, if x ∈ AT (X j), then y ∈ [x]AT → y ∈ X j
is a certain rule; if x ∈ BNAT (X j), then y ∈ [x]AT →
y ∈ X j is a possible rule.

Through Theorem 3, it is not difficult to ob-
serve that MGRS can be considered as the com-
positions of multi–independent Pawlak’s rough set-
s. For instance, the optimistic multigranulation low-
er approximation is the union of m Pawlak’s low-
er approximations. Therefore, the MGRS rules
derived may be regarded as the compositions of
multi–independent rules, which are generated from
Pawlak’s rough sets. By the logical connectives used
in MGRS, i.e. ∨ and ∧, the multi–independent rules
can be fused through the words “OR” and “AND”,
respectively.

For instance, take for instance x ∈ ∑m
i=1 Ai

O(X),
by Theorem 3, we know that x ∈ A1(X) or x ∈
A2(X), · · · , or x ∈ Am(X). Therefore, we can derive
the following MGRS rules:

y ∈ [x]A1 → y ∈ X or
y ∈ [x]A2 → y ∈ X or
...
y ∈ [x]Am → y ∈ X

The above MGRS rules is denoted by∨m
i=1[x]Ai → X in this paper.

Similarity, if the word “AND” is considered, the
MGRS rules

∧m
i=1[x]Ai → X is

y ∈ [x]A1 → y ∈ X and
y ∈ [x]A2 → y ∈ X and
...
y ∈ [x]Am → y ∈ X
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3.2. Local measuring of MGRS rules

In recent years, how to evaluate the decision perfor-
mance of a decision rule has become a very impor-
tant issue in rough set theory. With respect to d-
ifferent requirements, many different measurements
have been proposed. In this section, we will gener-
alize three widely used measurements, i.e. support,
certainty and coverage factors into MGRS rules we
mentioned in the last subsection.

Definition 4. Let I be a decision system, in
which A1,A2, · · · ,Am ⊆ AT , ∀x ∈ U and ∀X j ∈
U/IND({d}),

1. the support factor of
∨m

i=1[x]Ai → X j is

Supp(
m∨

i=1

[x]Ai →Xk)=max{
|[x]Ai ∩X j|

|U |
: i= 1, · · · ,m};

2. the support factor of
∧m

i=1[x]Ai → X j is

Supp(
m∧

i=1

[x]Ai →Xk)=min{
|[x]Ai ∩X j|

|U |
: i= 1, · · · ,m};

3. the certainty factor of
∨m

i=1[x]Ai → X j is

Cer(
m∨

i=1

[x]Ai →Xk)=max{
|[x]Ai ∩X j|
|[x]Ai |

: i= 1, · · · ,m};

4. the certainty factor of
∧m

i=1[x]Ai → X j is

Cer(
m∧

i=1

[x]Ai →Xk)=min{
|[x]Ai ∩X j|
|[x]Ai |

: i= 1, · · · ,m};

5. the coverage factor of
∨m

i=1[x]Ai → X j is

Cov(
m∨

i=1

[x]Ai →Xk)=max{
|[x]Ai ∩X j|

|X j|
: i= 1, · · · ,m};

6. the coverage factor of
∧m

i=1[x]Ai → X j is

Cov(
m∧

i=1

[x]Ai →Xk)=min{
|[x]Ai ∩X j|

|X j|
: i= 1, · · · ,m}.

Obviously,
|[x]Ai ∩X j|

|U |
,

|[x]Ai ∩X j|
|[x]Ai |

and

|[x]Ai ∩X j|
|X j|

are support, certainty and coverage fac-

tors, which have been used to measure the decision
rule y ∈ [x]Ai → y ∈ X j.

In Definition 4, since families of these factors
are considered, then the “max” and “min” operators
are defined to measure the compositions of decision
rules. Obviously, if only one subset of the attributes,
e.g. Ai, is considered, then these factors will degen-
erate into the factors to measure the single decision
rule y ∈ [x]Ai → y ∈ X j.

By Definition 4, it is not difficult to observe that

Supp(
m∨

i=1

[x]Ai → X j) ∈ [0,1],

Supp(
m∧

i=1

[x]Ai → X j) ∈ [0,1],

Cer(
m∨

i=1

[x]Ai → X j) ∈ [0,1],

Cer(
m∧

i=1

[x]Ai → X j) ∈ [0,1],

Cov(
m∨

i=1

[x]Ai → X j) ∈ [0,1],

Cov(
m∧

i=1

[x]Ai → X j) ∈ [0,1].

Moreover, since 0 6 Cer(
∨m

i=1[x]Ai → X j) 6
1 and 0 6 Cer(

∧m
i=1[x]Ai → X j) 6 1, then M-

GRS rules
∨m

i=1[x]Ai → X j is referred to as cer-
tain (possible) if and only if Cer(

∨m
i=1[x]Ai →

X j) = 1(Cer(
∨m

i=1[x]Ai → X j) > 0), the MGRS
rules

∧m
i=1[x]Ai → X j is referred to as certain

(possible) if and only if Cer(
∧m

i=1[x]Ai → X j) =
1(Cer(

∧m
i=1[x]Ai → X j)> 0).

Theorem 5. Let I be a decision system, in
which A1,A2, · · · ,Am ⊆ AT , ∀x ∈ U and ∀X j ∈
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U/IND({d}), we have

Supp(
m∨

i=1

[x]Ai → Xk)> 0 ⇔ x ∈
m

∑
i=1

Ai

P

(X j); (1)

Supp(
m∧

i=1

[x]Ai → Xk)> 0 ⇔ x ∈
m

∑
i=1

Ai

O

(X j). (2)

Proof. We only prove (1), the proof of (2) is similar
to the proof of (1).

Supp(
m∨

i=1

[x]Ai → X j)> 0

⇔ max{
|[x]Ai ∩X j|

|U |
: i = 1,2, · · · ,m}> 0

⇔ ∃i ∈ {1,2, · · · ,m}, [x]Ai ∩X j ̸= /0

⇔ x ∈
m

∑
i=1

Ai

P

(X j).

Theorem 5 shows the relationships between sup-
port factors of MGRS rules and multigranulation up-
per approximations.

Theorem 6. Let I be a decision system, in
which A1,A2, · · · ,Am ⊆ AT , ∀x ∈ U and ∀X j ∈
U/IND({d}), we have

Cer(
m∨

i=1

[x]Ai → X j) = 1 ⇔ x ∈
m

∑
i=1

Ai

O

(X j); (3)

Cer(
m∧

i=1

[x]Ai → X j) = 1 ⇔ x ∈
m

∑
i=1

Ai

P

(X j); (4)

Cer(
m∨

i=1

[x]Ai → X j)> 0 ⇔ x ∈
m

∑
i=1

Ai

P

(X j); (5)

Cer(
m∧

i=1

[x]Ai → X j)> 0 ⇔ x ∈
m

∑
i=1

Ai

O

(X j). (6)

Proof. We only prove (3), the proof of (4), (5) and
(6) are similar to the proof of (3).

∀i ∈ {1,2, · · · ,m}, we know that 0 6
|[x]Ai ∩X j|
|[x]Ai |

6 1 holds. Therefore,

Cer(
m∨

i=1

[x]Ai → X j) = 1

⇔ ∃i ∈ {1,2, · · · ,m},
|[x]Ai ∩X j|
|[x]Ai |

= 1

⇔ ∃i ∈ {1,2, · · · ,m}, [x]Ai ⊆ X j

⇔ x ∈
m

∑
i=1

Ai

O

(X j).

Theorem 6 shows the relationships between cer-
tainty factors of MGRS rules and multigranulation
approximations. The details are:

∨m
i=1[x]Ai → X j is

certain if and only if it is supported by the object
in optimistic multigranulation lower approximation
of X j;

∧m
i=1[x]Ai → X j is certain if and only if it is

supported by the object in pessimistic multigranula-
tion lower approximation of X j;

∨m
i=1[x]Ai → X j is

possible if and only if it is supported by the object
in pessimistic multigranulation upper approximation
of X j;

∧m
i=1[x]Ai → X j is possible if and only if it is

supported by the object in optimistic multigranula-
tion upper approximation of X j.

Theorem 7. Let I be a decision system, in
which A1,A2, · · · ,Am ⊆ AT , ∀x ∈ U and ∀X j ∈
U/IND({d}), we have

Cov(
m∨

i=1

[x]Ai → X j)> 0 ⇔ x ∈
m

∑
i=1

Ai

P

(X j); (7)

Cov(
m∧

i=1

[x]Ai → X j)> 0 ⇔ x ∈
m

∑
i=1

Ai

O

(X j). (8)

Proof. The proof of Theorem 7 is similar to the
proof of Theorem 5.

Theorem 7 shows the relationships between cov-
erage factors of MGRS rules and multigranulation
upper approximations.
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3.3. Illustrative example

Let us use an illustrative example to explain MGRS
rules we mentioned above. Suppose that the director
of the school must give a global evaluation to some
students. This evaluation should be based on the
level in Mathematics, Physics and Literature. The
director gave the examples of evaluation as shown
in Table 1. The example contains eight students de-
scribed by means of four attributes:

• a1 ⇒ level in Mathematics (conditional attribute),
• a2 ⇒ level in Physics (conditional attribute),
• a3 ⇒ level of Literature (conditional attribute),
• d ⇒ global evaluation (decisional attribute).

Table 1. An example of students’ evaluations.

U a1 a2 a3 d
x1 2 3 2 Bad
x2 5 1 3 Medium
x3 5 2 4 Bad
x4 3 5 3 Good
x5 1 3 4 Bad
x6 2 5 3 Medium
x7 3 1 2 Bad
x8 2 1 2 Medium

By the decision attribute, the uni-
verse is partitioned into subsets such
that U/IND({d}) = {Bad,Medium,Good} =
{{x1,x3,x5,x7},{x2,x6,x8},{x4}}. If each attribute
is employed to construct an equivalence relation, we
then obtain the following multigranulation approxi-
mations:

∑3
i=1 ai

O
(Bad) = {x1,x3,x5};

∑3
i=1 ai

O
(Medium) = /0;

∑3
i=1 ai

O
(Good) = /0;

∑3
i=1 ai

O
(Bad) = {x1,x3,x5,x7,x8};

∑3
i=1 ai

O
(Medium) = {x2,x6,x8};

∑3
i=1 ai

O
(Good) = {x4};

∑3
i=1 ai

P
(Bad) = {x5};

∑3
i=1 ai

P
(Medium) = /0;

∑3
i=1 ai

P
(Good) = /0;

∑3
i=1 ai

P
(Bad) =U ;

∑3
i=1 ai

P
(Medium) = {x1,x2,x3,x4,x6,x7,x8};

∑3
i=1 ai

P
(Good) = {x2,x4,x6,x7}.

By Theorem 6, we know that the MGRS rules
with certainty factors greater than 0, are support-
ed by objects in multigranulation approximations.
Therefore, it is not difficult to derive the following
MGRS rules:

“OR” MGRS rules:

1.
∨3

i=1[x1]ai → Bad: a1(x) = 2 → d(x) = Bad
or a2(x) = 3 → d(x) = Bad or a3(x) =
2 → d(x) = Bad // supported by x1 ∈
∑3

i=1 ai
O
(Bad),∑3

i=1 ai
P
(Bad)

2.
∨3

i=1[x2]ai → Bad: a1(x) = 5 → d(x) = Bad
or a2(x) = 1 → d(x) = Bad or a3(x) = 3 →
d(x)=Bad // supported by x2 ∈∑3

i=1 ai
P
(Bad)

3.
∨3

i=1[x3]ai → Bad: a1(x) = 5 → d(x) = Bad
or a2(x) = 2 → d(x) = Bad or a3(x) =
4 → d(x) = Bad // supported by x3 ∈
∑3

i=1 ai
O
(Bad),∑3

i=1 ai
P
(Bad)

4.
∨3

i=1[x4]ai → Bad: a1(x) = 3 → d(x) = Bad
or a2(x) = 5 → d(x) = Bad or a3(x) = 3 →
d(x)=Bad // supported by x4 ∈∑3

i=1 ai
P
(Bad)

5.
∨3

i=1[x5]ai → Bad: a1(x) = 1 → d(x) = Bad
or a2(x) = 3 → d(x) = Bad or a3(x) =
4 → d(x) = Bad // supported by x5 ∈
∑3

i=1 ai
O
(Bad),∑3

i=1 ai
P
(Bad)

6.
∨3

i=1[x6]ai → Bad: a1(x) = 2 → d(x) = Bad
or a2(x) = 5 → d(x) = Bad or a3(x) = 3 →
d(x)=Bad // supported by x6 ∈∑3

i=1 ai
P
(Bad)

7.
∨3

i=1[x7]ai → Bad: a1(x) = 3 → d(x) = Bad
or a2(x) = 1 → d(x) = Bad or a3(x) = 2 →
d(x)=Bad // supported by x7 ∈∑3

i=1 ai
P
(Bad)

8.
∨3

i=1[x8]ai → Bad: a1(x) = 2 → d(x) = Bad
or a2(x) = 1 → d(x) = Bad or a3(x) = 2 →
d(x)=Bad // supported by x8 ∈∑3

i=1 ai
P
(Bad)

9.
∨3

i=1[x1]ai → Medium: a1(x) = 2 → d(x) =
Medium or a2(x) = 3 → d(x) = Medium or
a3(x) = 2 → d(x) = Meidum // supported by

x1 ∈ ∑3
i=1 ai

P
(Medium)
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10.
∨3

i=1[x2]ai → Medium: a1(x) = 5 → d(x) =
Medium or a2(x) = 1 → d(x) = Medium or
a3(x) = 3 → d(x) = Meidum // supported by

x2 ∈ ∑3
i=1 ai

P
(Medium)

11.
∨3

i=1[x3]ai → Medium: a1(x) = 5 → d(x) =
Medium or a2(x) = 2 → d(x) = Medium or
a3(x) = 4 → d(x) = Meidum // supported by

x3 ∈ ∑3
i=1 ai

P
(Medium)

12.
∨3

i=1[x4]ai → Medium: a1(x) = 3 → d(x) =
Medium or a2(x) = 5 → d(x) = Medium or
a3(x) = 3 → d(x) = Meidum // supported by

x4 ∈ ∑3
i=1 ai

P
(Medium)

13.
∨3

i=1[x6]ai → Medium: a1(x) = 2 → d(x) =
Medium or a2(x) = 5 → d(x) = Medium or
a3(x) = 3 → d(x) = Medium // supported by

x6 ∈ ∑3
i=1 ai

P
(Medium)

14.
∨3

i=1[x7]ai → Medium: a1(x) = 3 → d(x) =
Medium or a2(x) = 1 → d(x) = Medium or
a3(x) = 2 → d(x) = Meidum // supported by

x7 ∈ ∑3
i=1 ai

P
(Medium)

15.
∨3

i=1[x8]ai → Medium: a1(x) = 2 → d(x) =
Medium or a2(x) = 1 → d(x) = Medium or
a3(x) = 2 → d(x) = Meidum // supported by

x8 ∈ ∑3
i=1 ai

P
(Medium)

16.
∨3

i=1[x2]ai →Good: a1(x)= 5→ d(x)=Good
or a2(x) = 1 → d(x) = Good or a3(x) =
3 → d(x) = Good // supported by x2 ∈
∑3

i=1 ai
P
(Good)

17.
∨3

i=1[x4]ai →Good: a1(x)= 3→ d(x)=Good
or a2(x) = 5 → d(x) = Good or a3(x) =
3 → d(x) = Good // supported by x4 ∈
∑3

i=1 ai
P
(Good)

18.
∨3

i=1[x6]ai →Good: a1(x)= 2→ d(x)=Good
or a2(x) = 5 → d(x) = Good or a3(x) =
3 → d(x) = Good // supported by x6 ∈
∑3

i=1 ai
P
(Good)

19.
∨3

i=1[x7]ai →Good: a1(x)= 3→ d(x)=Good
or a2(x) = 1 → d(x) = Good or a3(x) =
2 → d(x) = Good // supported by x7 ∈
∑3

i=1 ai
P
(Good)

“AND” MGRS rules:

1.
∧3

i=1[x1]ai → Bad: a1(x) = 2 → d(x) = Bad
and a2(x) = 3 → d(x) = Bad and a3(x) =
2 → d(x) = Bad // supported by x1 ∈

∑3
i=1 ai

O
(Bad)

2.
∧3

i=1[x3]ai → Bad: a1(x) = 5 → d(x) = Bad
and a2(x) = 2 → d(x) = Bad and a3(x) =
4 → d(x) = Bad // supported by x3 ∈

∑3
i=1 ai

O
(Bad)

3.
∧3

i=1[x5]ai → Bad: a1(x) = 1 → d(x) = Bad
and a2(x) = 3 → d(x) = Bad and a3(x) =
4 → d(x) = Bad // supported by x5 ∈

∑3
i=1 ai

P
(Bad),∑3

i=1 ai
O
(Bad)

4.
∧3

i=1[x7]ai → Bad: a1(x) = 3 → d(x) = Bad
and a2(x) = 1 → d(x) = Bad and a3(x) =
2 → d(x) = Bad // supported by x7 ∈

∑3
i=1 ai

O
(Bad)

5.
∧3

i=1[x8]ai → Bad: a1(x) = 2 → d(x) = Bad
and a2(x) = 1 → d(x) = Bad and a3(x) =
2 → d(x) = Bad // supported by x8 ∈

∑3
i=1 ai

O
(Bad)

6.
∧3

i=1[x2]ai → Medium: a1(x) = 5 → d(x) =
Medium and a2(x)= 1→ d(x)=Medium and
a3(x) = 3 → d(x) = Medium // supported by

x2 ∈ ∑3
i=1 ai

O
(Medium)

7.
∧3

i=1[x6]ai → Medium: a1(x) = 2 → d(x) =
Medium and a2(x)= 5→ d(x)=Medium and
a3(x) = 3 → d(x) = Medium // supported by

x6 ∈ ∑3
i=1 ai

O
(Medium)

8.
∧3

i=1[x8]ai → Medium: a1(x) = 2 → d(x) =
Medium and a2(x)= 1→ d(x)=Medium and
a3(x) = 2 → d(x) = Medium // supported by

x8 ∈ ∑3
i=1 ai

O
(Medium)
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9.
∧3

i=1[x4]ai → Good: a1(x) = 3 → d(x) =
Good and a2(x) = 5 → d(x) = Good and
a3(x) = 3 → d(x) = Good // supported by

x4 ∈ ∑3
i=1 ai

O
(Good)

Table 2. Three local factors for MGRS rules in Table 1.

MGRS rules Supports Certainty Coverage∨3
i=1[x1]ai → Bad 0.25 1 0.5∨3
i=1[x2]ai → Bad 0.125 0.5 0.25∨3
i=1[x3]ai → Bad 0.25 1 0.5∨3
i=1[x4]ai → Bad 0.125 0.5 0.25∨3
i=1[x5]ai → Bad 0.25 1 0.5∨3
i=1[x6]ai → Bad 0.125 0.33 0.25∨3
i=1[x7]ai → Bad 0.25 0.67 0.5∨3
i=1[x8]ai → Bad 0.25 0.67 0.5∨3
i=1[x1]ai → Medium 0.25 0.67 0.67∨3
i=1[x2]ai → Medium 0.25 0.67 0.67∨3
i=1[x3]ai → Medium 0.125 0.5 0.33∨3
i=1[x4]ai → Medium 0.25 0.67 0.67∨3
i=1[x6]ai → Medium 0.25 0.67 0.67∨3
i=1[x7]ai → Medium 0.25 0.67 0.67∨3
i=1[x8]ai → Medium 0.25 0.67 0.67∨3
i=1[x2]ai → Good 0.125 0.33 1∨3
i=1[x4]ai → Good 0.125 0.5 1∨3
i=1[x6]ai → Good 0.125 0.5 1∨3
i=1[x7]ai → Good 0.125 0.5 1∧3
i=1[x1]ai → Bad 0.125 0.33 0.25∧3
i=1[x3]ai → Bad 0.125 0.5 0.25∧3
i=1[x5]ai → Bad 0.125 1 0.25∧3
i=1[x7]ai → Bad 0.125 0.33 0.25∧3
i=1[x8]ai → Bad 0.125 0.33 0.25∧3
i=1[x2]ai → Medium 0.125 0.5 0.33∧3
i=1[x6]ai → Medium 0.125 0.5 0.33∧3
i=1[x8]ai → Medium 0.125 0.33 0.33∧3
i=1[x4]ai → Good 0.125 0.33 1

Table 2 shows the support, certainty and cover-
age factors of the MGRS rules in Table 1.

3.4. Global measuring of MGRS rules

Obviously, the three factors defined in Definition 4
can only be used to measure a single MGRS rules.
Through the example shown in the last subsection,
we can see that given a decision system, a family of
the MGRS rules may be unraveled. Therefore, how
to measure these MGRS rules from a global view
has become a necessity. This is what will be dis-
cussed in the following.

Definition 5. Let I be a decision system, in
which A1,A2, · · · ,Am ⊆ AT and U/IND({d}) =
{X1,X2, · · · ,Xk}, then

1. the global support factor of “OR” MGRS rules
in I is

α∨=
1
|U | ∑

x∈U

1
k ∑

X j∈U/IND({d})
Supp(

m∨
i=1

[x]Ai →X j),

2. the global support factor of “AND” MGRS
rules in I is

α∧=
1
|U | ∑

x∈U

1
k ∑

X j∈U/IND({d})
Supp(

m∧
i=1

[x]Ai →X j),

3. the global certainty factor of “OR” MGRS
rules in I is

β∨=
1
|U | ∑

x∈U

1
k ∑

X j∈U/IND({d})
Cer(

m∨
i=1

[x]Ai →X j),

4. the global certainty factor of “AND” MGRS
rules in I is

β∧=
1
|U | ∑

x∈U

1
k ∑

X j∈U/IND({d})
Cer(

m∧
i=1

[x]Ai →X j),

5. the global coverage factor of “OR” MGRS
rules in I is

γ∨=
1
|U | ∑

x∈U

1
k ∑

X j∈U/IND({d})
Cov(

m∨
i=1

[x]Ai →X j),

6. the global coverage factor of “AND” MGRS
rules in I is

γ∧=
1
|U | ∑

x∈U

1
k ∑

X j∈U/IND({d})
Cov(

m∧
i=1

[x]Ai →X j).

Theorem 8. Let I be a decision system, in
which A1,A2, · · · ,Am ⊆ AT and U/IND({d}) =
{X1,X2, · · · ,Xk}, then

1. α∨ ∈ [ 1
k|U | ,1];

2. α∧ ∈ [ 1
k|U | ,1].
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Proof. We only prove 1, the proof of 2 is similar to
the proof of 1.

If ∀x ∈ U and ∀X j ∈ U/IND({d}),
Supp(

∨m
i=1[x]Ai → X j) achieves its minimal value,

then α∨ will achieve its minimal value. By Defini-
tion 4, we know that Supp(

∨m
i=1[x]Ai → X j) ∈ [0,1],

i.e. the minimal value of Supp(
∨m

i=1[x]Ai → X j)
is 0. However, it should be noticed that since the
decision attribute determine a partition on the u-
niverse of discourse, then ∀x ∈ U , there must be
Xl ∈U/IND({d}) such that x ∈ Xl . In such case, the
minimal value is Supp(

∨m
i=1[x]Ai → Xl) =

1
|U | . From

discussions above, if ∀ j ̸= l, Supp(
∨m

i=1[x]Ai → X j)
achieves its minimal value 0, then α∨ will achieves
its minimal value 1

k|U | .
On the other hand, if ∀x ∈ U and ∀X j ∈

U/IND({d}), Supp(
∨m

i=1[x]Ai → X j) achieves it-
s maximal value, then α∨ will achieve its max-
imal value. By Definition 4, we know that
Supp(

∨m
i=1[x]Ai → X j) ∈ [0,1], i.e. the maximal val-

ue of Supp(
∨m

i=1[x]Ai → X j) is 1. Therefore, the
maximal value of α∨ is 1.

Theorem 8 shows that the global support factors
of “OR” and “AND” MGRS rules are between the
interval [ 1

k|U | ,1].

Theorem 9. Let I be a decision system, in
which A1,A2, · · · ,Am ⊆ AT and U/IND({d}) =
{X1,X2, · · · ,Xk},

1. if ∀i ∈ {1,2, · · · ,m}, U/IND(Ai) =
{{x1},{x2}, · · · ,{x|U |}}, then α∨ achieves its
minimal value 1

k|U | ;

2. if ∃i ∈ {1,2, · · · ,m}, U/IND(Ai) = U and
U/IND({d}) =U, then α∨ achieves its max-
imal value 1;

3. if ∃i ∈ {1,2, · · · ,m}, U/IND(Ai) =
{{x1},{x2}, · · · ,{x|U |}}, then α∧ achieves its
minimal value 1

k|U | ;

4. if ∀i ∈ {1,2, · · · ,m}, U/IND(Ai) = U and
U/IND({d}) =U, then α∧ achieves its max-
imal value 1.

Proof. We only prove 1, others can be proved anal-
ogously.

By condition, ∀i ∈ {1,2, · · · ,m}, U/IND(Ai) =
{{x1},{x2}, · · · ,{x|U |}}, then we know that [x]Ai =
{x} for each x and i ∈ {1,2, · · · ,m}, thus, ∀X j ∈
U/IND({d}), if x ∈ X j, then Supp(

∨m
i=1[x]Ai →

X j) =
1
|U | ; if x /∈ X j, then Supp(

∨m
i=1[x]Ai → X j) = 0;

it follows that 1
k ∑X j∈U/IND({d}) Supp(

∨m
i=1[x]Ai →

X j) =
1

k|U | for each x ∈ U and then α∨ achieves its

minimal value 1
k|U | .

Theorem 9 provides the necessary conditions for
the global support factors of “OR” and “AND” M-
GRS rules to achieve their maximal and minimal
values.

Theorem 10. Let I be a decision system, in
which A1,A2, · · · ,Am ⊆ AT and U/IND({d}) =
{X1,X2, · · · ,Xk}, then

1. β∨ ∈ [ 1
|U | ,1];

2. β∧ ∈ [ 1
|U | ,1].

Proof. We only prove 1, the proof of 2 is similar to
the proof of 1.

If ∀x ∈ U and ∀X j ∈ U/IND({d}),
Cer(

∨m
i=1[x]Ai → X j) achieves its minimal value,

then β∨ will achieve its minimal value. By Defini-
tion 4, we know that Cer(

∨m
i=1[x]Ai → X j) ∈ [0,1],

i.e. the minimal value of Cer(
∨m

i=1[x]Ai → X j) is
0. However, it should be noticed that since the
decision attribute determine a partition on the u-
niverse of discourse, then ∀x ∈ U , there must be
Xl ∈ U/IND({d}) such that x ∈ Xl . In such case,
the minimal value is Cer(

∨m
i=1[x]Ai → Xl) =

1
|U | .

Moreover, since Cer(
∨m

i=1[x]Ai → Xl) =
1
|U | , then

by Definition 4, we know that ∀i ∈ {1,2, · · · ,m},
we have [x]Ai = |U |, thus, ∀ j ̸= l, the minimal val-
ue of Cer(

∨m
i=1[x]Ai → X j) is also 1

|U | , then β∨ will

achieves its minimal value 1
|U | .

On the other hand, if ∀x ∈ U and ∀X j ∈
U/IND({d}), Cer(

∨m
i=1[x]Ai → X j) achieves it-

s maximal value, then β∨ will achieve its max-
imal value. By Definition 4, we know that
Cer(

∨m
i=1[x]Ai → X j) ∈ [0,1], i.e. the maximal value

of Cer(
∨m

i=1[x]Ai → X j) is 1. Therefore, the maximal
value of β∨ is 1.
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Theorem 10 shows that the global certainty fac-
tors of “OR” and “AND” MGRS rules are between
the interval [ 1

|U | ,1].

Theorem 11. Let I be a decision system, in
which A1,A2, · · · ,Am ⊆ AT and U/IND({d}) =
{X1,X2, · · · ,Xk},

1. if ∀i ∈ {1,2, · · · ,m}, U/IND(Ai) = U and
U/IND({d}) = {{x1},{x2}, · · · ,{x|U |}},
then β∨ achieves its minimal value 1

|U | ;

2. if ∃i ∈ {1,2, · · · ,m}, U/IND(Ai) =
{{x1},{x2}, · · · ,{x|U |}} and U/IND({d}) =
U, then β∨ achieves its maximal value 1;

3. if ∃i ∈ {1,2, · · · ,m}, U/IND(Ai) = U and
U/IND({d}) = {{x1},{x2}, · · · ,{x|U |}, then
β∧ achieves its minimal value 1

|U | ;

4. if ∀i ∈ {1,2, · · · ,m}, U/IND(Ai) =
{{x1},{x2}, · · · ,{x|U |}} and U/IND({d}) =
U, then β∧ achieves its maximal value 1.

Proof. We only prove 1, others can be proved anal-
ogously.

By condition, ∀i ∈ {1,2, · · · ,m}, U/IND(Ai) =
U , then we know that [x]Ai = U for each x and
∀i ∈ {1,2, · · · ,m}. Moreover, since U/IND({d}) =
{{x1},{x2}, · · · ,{x|U |}}, then ∀X j ∈ U/IND({d}),
X j is the subset of U with single object. There-
fore, Cer(

∨m
i=1[x]Ai → X j) = 1

|U | ; it follows that
1
k ∑X j∈U/IND({d})Cer(

∨m
i=1[x]Ai → X j) =

1
|U | for each

x ∈U and then β∨ achieves its minimal value 1
|U | .

Theorem 11 provides the necessary conditions
for the global certainty factors of “OR” and “AND”
MGRS rules to achieve its maximal and minimal
values.

Theorem 12. Let I be a decision system, in
which A1,A2, · · · ,Am ⊆ AT and U/IND({d}) =
{X1,X2, · · · ,Xk}, then

1. γ∨ ∈ [ 1
|U | ,1];

2. γ∧ ∈ [ 1
|U | ,1].

Proof. We only prove 1, the proof of 2 is similar to
the proof of 1.

If ∀x ∈ U and ∀X j ∈ U/IND({d}),
Cov(

∨m
i=1[x]Ai → X j) achieves its minimal value,

then γ∨ will achieve its minimal value. By Defini-
tion 4, we know that Cov(

∨m
i=1[x]Ai → X j) ∈ [0,1],

i.e. the minimal value of Cov(
∨m

i=1[x]Ai → X j) is
0. However, it should be noticed that since the de-
cision attribute determine a partition on the uni-
verse of discourse, then ∀x ∈ U , there must be Xl ∈
U/IND({d}) such that x∈Xl . In such case, the min-
imal value is Cov(

∨m
i=1[x]Ai → Xl) =

1
|U | . Moreover,

since Cov(
∨m

i=1[x]Ai → Xl) =
1
|U | , then by Definition

4, we know that U/IND({d}) = U = {Xl}, thus,
γ∨ = 1

|U | ∑x∈U
1
k ∑X j∈U/IND({d})Cov(

∨m
i=1[x]Ai →

X j) = 1
|U | ∑x∈U Cov(

∨m
i=1[x]Ai → U). If ∀x ∈ U ,

Cov(
∨m

i=1[x]Ai → U) achieve its minimal value 1
|U | ,

then γ∨ will achieve its minimal value 1
|U | .

On the other hand, if ∀x ∈ U and ∀X j ∈
U/IND({d}), Cov(

∨m
i=1[x]Ai → X j) achieves it-

s maximal value, then γ∨ will achieve its max-
imal value. By Definition 4, we know that
Cov(

∨m
i=1[x]Ai → X j) ∈ [0,1], i.e. the maximal value

of Cov(
∨m

i=1[x]Ai →X j) is 1. Therefore, the maximal
value of γ∨ is 1.

Theorem 12 shows that the global coverage fac-
tors of “OR” and “AND” MGRS rules are between
the interval [ 1

|U | ,1].

Theorem 13. Let I be a decision system, in
which A1,A2, · · · ,Am ⊆ AT and U/IND({d}) =
{X1,X2, · · · ,Xk},

1. if ∀i ∈ {1,2, · · · ,m}, U/IND(Ai) =
{{x1},{x2}, · · · ,{x|U |}} and U/IND({d}) =
U, then γ∨ achieves its minimal value 1

|U | ;

2. if ∃i ∈ {1,2, · · · ,m}, U/IND(Ai) = U and
U/IND({d}) =U, then γ∨ achieves its maxi-
mal value 1;

3. if ∃i ∈ {1,2, · · · ,m}, U/IND(Ai) =
{{x1},{x2}, · · · ,{x|U |}} and U/IND({d}) =
U, then γ∧ achieves its minimal value 1

|U | ;

4. if ∀i ∈ {1,2, · · · ,m}, U/IND(Ai) = U and

Published by Atlantis Press 
      Copyright: the authors 
                   1021



Local and Global Measurements of MGRS Rules

U/IND({d}) =U, then γ∧ achieves its maxi-
mal value 1.

Proof. We only prove 1, others can be proved anal-
ogously.

By condition, ∀i ∈ {1,2, · · · ,m}, U/IND(Ai) =
{{x1},{x2}, · · · ,{x|U |}}, then we know that [x]Ai =
{x} for each x and i∈ {1,2, · · · ,m}. Moreover, since
U/IND({d}) = U , then ∀Xk ∈ U/IND({d}), Xk =
U . Therefore, Cov(

∨m
i=1[x]Ai →U) = 1

|U | ; it follows

that 1
k ∑Xk∈U/IND({d})Cov(

∨m
i=1[x]Ai → Xk) =

1
|U | for

each x ∈ U and then γ∨ achieves its minimal value
1
|U | .

Theorem 13 provides the necessary conditions
for the global coverage factors of “OR” and “AND”
MGRS rules to achieve its maximal and minimal
values.

Example 1. Take for instance Table 1, compute the
global support factors, global certainty factors and
global coverage factors for the “OR” and “AND” M-
GRS rules in Table 1.

Obviously, if different sets of attributes are em-
ployed, then different “OR” and “AND” MGRS
rules can be derived, it follows that the different fac-
tors may be obtained.

For example, if the used sets of attributes are
A1 = {a1}, A2 = {a2}, A3 = {a3}, then by Defini-
tion 5, following the computing results of Table 2,
we have

α∨ =
1
|U | ∑

x∈U

1
k ∑

X j∈U/IND({d})
Supp(

m∨
i=1

[x]Ai → X j)

=
1
8
∗ 1

3
∗3.75

≈ 0.16.

Similarity, it is not difficult to obtain that α∧ =
0.05, β∨ = 0.5, β∧ = 0.17, γ∨ = 0.49, γ∧ = 0.14.

If the used sets of attributes are A1 = {a1,a2,a3},
then α∨ = 0.04, α∧ = 0.04, β∨ = 0.44, β∧ = 0.44,
γ∨ = 0.125, γ∧ = 0.125.

If the used sets of attributes are A1 =
{a1,a2},A2 = {a3}, then α∨ = 0.11, α∧ = 0.04,
β∨ = 0.44, β∧ = 0.33, γ∨ = 0.35, γ∧ = 0.125.

If the used sets of attributes are A1 = {a1},A2 =
{a2,a3}, then α∨ = 0.11, α∧ = 0.05, β∨ = 0.47,
β∧ = 0.19, γ∨ = 0.35, γ∧ = 0.14.

If the used sets of attributes are A1 =
{a1,a3},A2 = {a2}, then α∨ = 0.10, α∧ = 0.05,
β∨ = 0.44, β∧ = 0.22, γ∨ = 0.29, γ∧ = 0.14.

Example 2. Venture capital has become an in-
creasingly important source of financing for new
companies, particularly when such companies are
operating on the frontier of emerging technologies
and markets. It plays an essential role in the en-
trepreneurial process. In the following, we will use
a venture investment issue which was showed in Re-
f. 16, to illustrate the three global measurements.

Let us consider a real investment issue of a
venture investment company (Here we conceal the
company’s name and the details of investmen-
t projects). There are fifty investment projects xi
(i = 1,2, · · · ,50) to be considered, which are evalu-
ated by five evaluation experts. Venture level is clas-
sified to three classes 1, 2 and 3. The bigger the val-
ue of venture level is, and the higher the venture of
investment project is. Table 3 is an evaluation table
about venture investment given by these five experts.
The decision attribute d determines a partition on the
universe such that U/IND(d) = {d1,d2} =

{
{x ∈

U : f (x,d) = Low},{x ∈U : f (x,d) = High}
}

.
Similar to Example 1, if each expert is corre-

sponding to an equivalence relation, we obtain the
global support factors, global certainty factors and
global coverage factors for the “OR” and “AND” M-
GRS rules in Table 3 such that α∨ = α∧ = 0.0168,
β∨ = β∧ = 0.5, γ∨ = γ∧ = 0.0336.

Following such computing results, we can see
that

1. global support factor of “OR” MGRS rules =
global support factor of “AND” MGRS rules;

2. global certainty factor of “OR” MGRS rules
= global certainty factor of “AND” MGRS
rules;

3. global coverage factor of “OR” MGRS rules
= global coverage factor of “AND” MGRS
rules.
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This is mainly because in Table 3, the compu-
tation of optimistic MGRS is same to that of pes-
simistic MGRS.

Table 3. An evaluation table about venture investment.

U E1 E2 E3 E4 E5 d
x1 2 3 3 2 3 High
x2 1 3 3 2 2 High
x3 1 1 1 1 1 Low
x4 1 1 1 1 1 Low
x5 1 1 1 1 1 Low
x6 2 2 1 2 2 High
x7 2 2 2 2 2 Low
x8 3 2 2 3 3 High
x9 2 3 2 3 1 High
x10 1 1 1 1 2 Low
x11 3 2 3 3 3 High
x12 2 3 3 2 3 High
x13 1 2 3 1 2 Low
x14 3 3 1 3 3 High
x15 2 1 1 1 1 Low
x16 2 2 2 2 1 Low
x17 2 1 2 2 2 Low
x18 1 1 3 1 2 Low
x19 3 3 3 3 3 High
x20 2 2 1 1 2 High
x21 2 2 2 1 1 Low
x22 1 3 1 1 2 High
x23 1 2 2 2 2 High
x24 1 1 2 2 1 Low
x25 1 1 2 2 2 Low
x26 1 3 1 2 2 High
x27 1 2 3 1 2 Low
x28 2 3 3 1 1 High
x29 2 3 3 2 1 High
x30 2 2 1 1 1 High
x31 2 3 1 1 1 High
x32 2 1 3 2 2 Low
x33 3 2 3 3 2 High
x34 1 1 3 1 1 Low
x35 2 2 2 1 1 Low
x36 2 2 2 1 1 Low
x37 2 3 2 2 2 High
x38 3 3 1 3 3 High
x39 1 1 1 1 2 Low
x40 3 3 1 3 3 High
x41 1 2 2 1 1 Low
x42 1 1 2 2 2 Low
x43 1 2 3 2 2 Low
x44 2 3 3 2 2 High
x45 3 3 2 3 3 High
x46 3 2 2 3 3 High
x47 2 1 1 1 1 Low
x48 2 1 1 1 2 Low
x49 3 3 2 3 3 High
x50 1 1 2 1 2 Low

4. Conclusions

Measuring of decision rules play a crucial role in
rough set based knowledge discovery. In this pa-
per, the rules’ measurements are firstly explored in
terms of MGRS. Since MGRS may be considered
as the compositions of multi–independent Pawlak’s
rough sets, the rules associated with MGRS are com-
positions of decision rules, which are derived from
Pawlak’s rough sets. In our approach, the sup-
port factors, certainty factors and coverage factors
are proposed, respectively, to measure those MGRS
rules. It should be noticed that such three factors
are proposed in local and global views, respectively,
which can be used to measure single MGRS rule and
all of the MGRS rules in a decision system.

Since the measurements of MGRS rules have
been proposed in this paper, then in our further re-
searching, the multigranulation based decision per-
formances in different decision systems are interest-
ing topics to be addressed. For instance, the pro-
posed local and global measurements can be gener-
alized into incomplete decision systems 26. In such
case, a family of the binary relations instead of the
equivalence relations will be used to constructed M-
GRS for analyzing MGRS rules.

Moreover, it should be noticed that since knowl-
edge or attribute reduction is one of the key prob-
lems in rough set theory, then reducts of MGRS will
help us to simplify the MGRS rules. The defined lo-
cal and global measurements provide us theoretical
basis for the definitions of reducts of MGRS.
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