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Abstract

The theory of soft sets was introduced by Molodtsov in 1999 in order to deal with uncertainties. In this
paper, the notion of fuzzy soft lattice is defined and some related properties are derived, which extends
the notion of a fuzzy lattice to include the algebraic structures of soft sets. Then the lattice structure of
fuzzy soft lattices are discussed. At last, the concept of fuzzy soft ideal over a lattice is presented and the
lattice structures of fuzzy soft ideal over a lattice are discussed.
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1. Introduction

Most of the problems in engineering, medical sci-
ence, economics, environments etc. have vari-
ous uncertainties. To overcome these uncertainties,
some kinds of theories were given which we can use
as mathematical tools for dealing with uncertainties.
However, these theories have their own difficulties.
In 1999, Molodtsov1 introduced the notion of soft
set to deal with uncertainty.

From then on, works on the soft set theory are
progressing rapidly. Soft set theory has a rich po-
tential for applications in several directions, few of
which had been shown by Molodtsov1. Maji et al.2

described the application of soft set theory to a deci-
sion making problem. Chen et al.3 presented a new
definition of soft set parametrization reduction, and
compared this definition to the related concept of at-
tributes reduction in rough set theory . In theoret-
ical aspects, Maji et al.4 defined several operations
on soft sets and made a theoretical study on the the-
ory of soft sets. Qin and Hong5 constructed the lat-

tice structures of soft sets and introduced the con-
cept of soft equality. H.Aktas and N.Cağman6 pro-
posed a definition of soft groups and derived their
basic properties. Feng et al.7 initiated the study of
soft semirings, soft ideals on soft semirings and ide-
alistic soft semirings. Sun et al. 8 defined the con-
cept of soft modules and studied their basic proper-
ties. Furthermore, Ali et al.9 introduced some new
operations on soft sets and improved the notion of
complement of soft set. Jun10 applied the notion of
soft sets to the theory of BCK/BCI-algebras and in-
troduced the notions of soft BCK/BCI-algebras and
soft subalgebras and derived their basic properties.
By means of ∈-soft and q-soft sets, Zhan and Jun11

investigated some characterizations of (implicative,
positive implicative and fantastic) filteristic soft BL-
algebras and proved that a soft set is an implicative
filteristic soft BL-algebra if and only if it is both a
positive implicative filteristic soft BL-algebra and a
fantastic filteristic soft BL-algebra.

Fuzzy set theory was initiated by Zadeh12 in
1965. Maji et al.4 and Majudar 13 introduced the
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concept of fuzzy soft set, a more generalised con-
cept, which is a combination of fuzzy set and stud-
ied its properties, respectively. Roy and Maji14 pre-
sented some applications of this notion to decision
making problems. Later on, Kong et al. 15,16 ap-
plied the soft set theoretic approach in decision mak-
ing problems. Majumdar and Samanta 17,18 studied
the problem of similarity measurement between soft
sets and fuzzy soft sets. Yang 19 presented the no-
tions of fuzzy soft semigroup and fuzzy soft ideal
and discussed fuzzy soft image and fuzzy soft in-
verse image of fuzzy soft semigroup. Aygünoǧlu
and Aygün 20 introduced the concept of fuzzy soft
group and discussed and studied some of their prop-
erties and structural characteristics.

In the first half of the nineteenth century,
G.Boole’attempt to formalize propositional logic led
to the concept of Boolean algebras. G. Birkhoff’s
work in 1930s started the general development of
lattice theory21. The lattice theory has been applied
to many kinds od fields. Recently, the work intro-
ducing the soft set theory to the lattice theory and
the fuzzy set theory have been initiated. Fu22 pre-
sented the notion of the soft lattice and derived the
properties of the soft lattices and discussed the rela-
tionship between the soft lattices and the fuzzy soft
sets. Marudai and Rajendran23 studied the notion of
soft set and fuzzy soft set considering the fact that
the parameters are mostly fuzzy hedges or fuzzy pa-
rameters. They introduced the notion of fuzzy soft
lattice on groups, homomorphic image, pre-image of
fuzzy soft lattices, arbitrary family of fuzzy soft lat-
tices and fuzzy normal soft lattices using T-norms.
They also investigated the notion of sensible fuzzy
soft lattices in groups and some related properties
on it. In this paper, we apply the notion of fuzzy soft
sets introduced by Maji et al.4 to the lattice theory
and present the notion of fuzzy soft lattice, which
is different from that presented by Marudai et al.23,
then derive their basic properties and investigate the
algebraic structure of the fuzzy soft lattices. The or-
ganization of this paper is as follows: In Section 2,
some basic concepts and results of the lattice theory,
the soft set theory and the fuzzy lattices are intro-
duced. In Section 3, the notion of fuzzy soft lattice
is presented and some related properties are derived,

then the lattice structure of fuzzy soft lattices is dis-
cussed. In Section 4 the notion of fuzzy soft ideal
over a lattice is presented and some related proper-
ties are derived, then the lattice structures of fuzzy
soft ideal over a lattice are discussed. Section 5 con-
cludes the paper.

2. Preliminaries

In this section, we recall some basic concepts of the
lattice theory , the soft set theory and the fuzzy lat-
tices.

2.1. Some relative concepts of lattice theory

The general theory of partially ordered sets
(posets) is based on a single undefined relationship.
That of lattices is also based indirectly on this rela-
tionship, but directly on two dual binary operations
which are analogous in many ways to ordinary ad-
dition and multiplication. It is this analogy which
makes lattice theory a branch of algebra. By an up-
per bound to subset X of a partially ordered set P is
meant an element a ∈ P which is greater than every
x ∈ X. A least upper bound is an upper bound lesser
than every other upper bound of x. The notions of a
lower bound and a greatest lower bound are defined
dually. It is clear that a subset of a partially ordered
set can have at most one l.u.b.(least upper bound)
and one g.l.b. (greatest lower bound).24

Definition 1 24 A lattice is a partially ordered set L
such that any two of whose elements x and y have a
g.l.b. or ”meet” x∧ y and a l.u.b. or ”join” x∨ y.

In other words, the lattice theory singles out a spe-
cial type of poset for detailed investigation. How-
ever, we can also want such a characterization be-
cause if we can treat lattices as algebras, then all
concepts and methods of universal algebra will be-
come applicable. The usefulness of treating lattices
as algebras will soon become clear.

Definition 2 21 An algebra (L;∧,∨) is called a lat-
tice if L is a nonempty set, ∧ and ∨ are binary op-
erations on L, both ∧ and ∨ are idempotent, com-
mutative and associative, and they satisfy the two
absorption identities, that is, for all a,b,c ∈ L
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1. a∧a = a,a∨a = a,

2. a∧b = b∧a,a∨b = b∨a,

3. (a∧b)∧c = a∧ (b∧c), (a∨b)∨c = a∨ (b∨c),

4. a∧ (a∨b) = a,a∨ (a∧b) = a.

In fact, a lattice as an algebra and a lattice as a poset
are ”equivalent” concepts.

Throughout this paper, let (L,∨,∧) be a lat-
tice(for short, L ) unless otherwise specified.

A subset L1 of L is a sublattice of a lattice L if
and only if it satisfies: x∧ y ∈ L1, x∨ y ∈ L1, for all
x ∈ L1,y ∈ L1.
Definition 3 24,27 A homomorphism of a lattice A
into a lattice B is a mapping ϕ : A→ B such that
ϕ(x∧ y) = ϕ(x)∧ϕ(y) and ϕ(x∨ y) = ϕ(x)∨ϕ(y) for
all x,y ∈ A.

A non-empty subset I of L is called an ideal of
L if x∨ y ∈ I and ↓ x ⊆ I, for all x,y ∈ I. Dually,
a non-empty subset F of L is called a filter of L
if x∧ y ∈ F and ↑ x ⊆ F), for all x,y ∈ F, where,
↓ x = {y ∈ L|y 6 x},↑ x = {y ∈ L|y > x}. 26

Theorem 1 24 Let Ii be an ideal of L for all i ∈ K,
where K is an index set. Then

⋂
i∈K Ii is an ideal of

L.
Dually, we have the followings:
Theorem 2 24 Let Ji be a filter of L for all i ∈ K,
where K is an index set. Then

⋂
i∈K Ji is a filter of L.

Proposition 1 24 Let (L1;∨,∧), (L2;∨,∧) be two
sublattices of L, then, (L1 ∩ L2;∨,∧) is a sublattice
of L.

The following example shows that Proposition 1
doesn’t hold in general with respect to the operation
∪.
Example 1 Let L be a lattice as in Figure 1. It is
clear that L1 = {0,a,d,1} and L2 = {0,a,c,1} are both
sublattices of L. It is easily verified that L1 ∩ L2 =

{0,a,1} is a sublattice and L1 ∪ L2 = {0,a,c,d,1}
isn’t a sublattice of L because c,d ∈ L1 ∪ L2 and
c∧d = b < L1∪L2.

Fig. 1. Lattice L

Definition 4 24,21 A lattice L is said to be modular if
M(a,b) holds for all a,b ∈ L, where, M(a,b) : (∀x ∈
L)x 6 b⇒ x∨ (a∧b) = (x∨a)∧b.

Lemma 1 21 Consider the following two identities
and inequality (∀x,y,z ∈ L):

1. (x∧ y)∨ (x∧ z) = x∧ (y∨ z).

2. (x∨ y)∧ (x∨ z) = x∨ (y∧ z).

3. (x∨ y)∧ z 6 x∨ (y∧ z).

Then (1)(2) and (3) are equivalent in any lattice L.

Remark 1 21,27 A lattice satisfying identities (1) or
(2) is called distributive.

Note that (1) and (2) are not equivalent for fixed
elements, that is, (1) can hold for three elements
a,b,c ∈ L, whereas (2) does not.

2.2. Some relative concepts of soft set theory

In what follows, Let U and E be an initial uni-
verse set and a set of parameters, respectively. Let
P(U) denote the power set of U and A ⊆ E unless
otherwise specified. Molodtsov defined the notion
of a soft set in the following way,

A pair (F,A) is called a soft set over U, where F
is a mapping given by F : A→ P(U).

In other words, a soft set over U is a parameter-
ized family of subsets of the universe U. For ε ∈ A,
F(ε) may be considered as the set of ε-approximate
elements of the soft set (F,A).
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Definition 5 9,5 The extended intersection of two
soft sets (F,A) and (G,B) over a common universe
U, denoted by (F,A)ũ(G,B), is the soft set (H,C),
where, C = A∪B, and for all e ∈C:

H(e) =



F(e), i f e ∈ A−B,
G(e), i f e ∈ B−A,
F(e)∩G(e), i f e ∈ A∩B.

Definition 6 4,5 The union of two soft sets (F,A)
and (G,B) over a common universe U, denoted by
(F,A)t̃(G,B), is the soft set (H,C), where C = A∪B,
and ∀e ∈C, if e ∈ A−B, then H(e) = F(e); if e ∈ B−A
then H(e) = G(e); if e ∈ A∩ B, then H(e) = F(e)∪
G(e), that is, for all e ∈C:

H(e) =



F(e), i f e ∈ A−B,
G(e), i f e ∈ B−A,
F(e)∪G(e), i f e ∈ A∩B.

Definition 7 9,5 The restricted intersection of two
soft sets (F,A) and (G,B) over a common universe
U, denoted by (F,A)e (G,B), is the soft set (H,C),
where C = A∩B, and ∀e ∈C,H(e) = F(e)∩G(e).
Definition 8 9,5 The restricted union of two soft sets
(F,A) and (G,B) over a common universe U, de-
noted by (F,A)d (G,B), is the soft set (H,C), where
C = A∩B, and ∀e ∈C,H(e) = F(e)∪G(e).
Definition 9 9,5 (F,A) is called a relative null soft
set (with respect to the parameter set A), denoted by
ØA, if F(A) = Ø for all e ∈ A.
(F,A) is called a relative whole soft set (with respect
to the parameter set A), denoted by UA, if F(e) = U
for all e ∈ A.

2.3. Some relative concepts of fuzzy lattice

Definition 10 13,2 Let U be an initial universal set
and let E be a set of parameters. Let IU denote the
set of all fuzzy subsets of U, A ⊆ E, A pair (F,A) is
called a fuzzy soft set over U, where, F is a mapping
given by F : A→ IU .
Definition 11 26 A fuzzy subset of L is a function
µ : L→ [0,1]. A fuzzy subset µ of L is called a fuzzy
sublattice of L if µ(x∧ y)∧µ(x∨ y) > µ(x)∧µ(y) for
all x,y ∈ L. Let µ be a fuzzy sublattice of L. Then

1. µ is a fuzzy ideal of L, if µ(x∨y) = µ(x)∧µ(y),
for all x,y ∈ L.

2. µ is a fuzzy filter of L, if µ(x∧y) = µ(x)∧µ(y),
for all x,y ∈ L.

Let us illustrate this definition using the following
example.
Example 2 Let L = {0,a,b,c,d,1} and define ∧ and
∨ by the following Cayley tables:

Table 1. the definition of the operator ∧ on L

∧ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a a a a a
b 0 a b a b b
c 0 a a c c c
d 0 a b c d d
1 0 a b c d 1

Table 2. the definition of the operator ∨ on L

∨ 0 a b c d 1
0 0 a b c d 1
a a a b c d 1
b b b b d d 1
c c c d c d 1
d d d d d d 1
1 1 1 1 1 1 1

It is clear that L is a lattice. Let µ =

{0/0.3,a/0.8,b/0.6,c/0.4,d/0.4,1/0}, then routine
verification reveals that µ is a fuzzy sublattice of L.

Proposition 2 25,26 Let µ be a fuzzy sublattice of L.
Then

1. µ is a fuzzy ideal of L if and only if x 6 y im-
plies that µ(x) > µ(y), for all x,y ∈ L.

2. µ is a fuzzy filter of L if and only if x 6 y im-
plies that µ(x) 6 µ(y), for all x,y ∈ L.

It is clear that if α1 > α2, then µα1 ⊆ µα2 . µ is a fuzzy
sublattice if and only if µα is a sublattice of L for all
α ∈ [0,1], where, µα = {x ∈ L|µ(x) > α}.

By means of the above concepts and operations
of soft sets, we can propose the concepts of fuzzy
soft lattices and study some related properties.
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3. Fuzzy soft lattices and the lattice structure
of fuzzy soft lattices

Algebraic structures play a fundamental role in
many fields of mathematics. In this section, we dis-
cuss the lattice structure of fuzzy soft lattices. For
this, we present the notions of fuzzy soft lattices and
discuss the properties of lattices and fuzzy lattices at
first.
Definition 12 Let S ⊆ L. If there exists a sublattice
of L, denoted by L (S ), such that if S ⊆ S ′, then
L (S ) ⊆ S ′, where, S ′ is an arbitrary sublattice of
L, then the sublattice L (S ) is called the sublattice
generated by S .
Lemma 2 Let S ⊆ L, then L (S ) must be exist.

Proof. Let
S̃ = {S 1|S 1 is a sublattice containing S o f L}. We
prove that L (S ) =

⋂
S i∈S̃

S i.

1. It is clear that
⋂

S i∈S̃
S i is a sublattice of L.

2. If S ′ is an arbitrary sublattice containing S of
L, then S ′ ∈ S̃ , so we have

⋂
S i∈S̃

S i ⊆ S ′. By

Definition 12, we can get that
⋂

S i∈S̃
S i is the

sublattice generated by S .

Corollary 1 Let S ⊆ L, then L (S ) must be unique.
Lemma 3 1. If S is a subset of L, then S ⊆

L (S ).

2. If S is a subset of L, then S = L (S ) iff S is a
sublattice of L.

3. If S 1 ⊆ S 2, then L (S 1) ⊆L (S 2).

4. If L1 is a sublattice of L, S 1 ⊆ L1,S 2 ⊆ L1, then
L (S 1∪S 2) ⊆ L1.

5. Let S 1,S 2 be subsets of L, then L (S 1∪S 2) =

L (L (S 1)∪L (S 2)).

Proof.
(1)(2)(3)(4) are trivial. We only prove (5).

(5) (i)Since S 1 ⊆ L (S 1),S 2 ⊆ L (S 2), we can get

that S 1 ∪ S 2 ⊆ L (S 1) ∪L (S 2) and then L (S 1 ∪
S 2) ⊆L (L (S 1)∪L (S 2)).
(ii) Let L (S 1) =

⋂
S 1i∈S̃ 1

S 1i, L (S 2) =
⋂

S 2i∈S̃ 2

S 2i,

where S̃ 1 = {S 1i|S 1i is a sublattice containing S 1 o f L},
S̃ 2 = {S 2i|S 2i is a sublattice containing S 2 o f L}.
L (L (S 1) ∪L (S 2)) = L (

⋂
S 1i∈S̃ 1

S 1i ∪ ⋂
S 2 j∈S̃ 2

S 2 j) =

L (
⋂

S 1i∈S̃ 1

⋂
S 2 j∈S̃ 2

(S 1i∪S 2 j)) ⊆L (S 1∪S 2).

Let L be a lattice defined in Figure 1 in Example
1. Suppose that A = {0,a,b},B = {b,c,d,1}, then
routine verification reveals that (5) doesn’t hold in
general with respective to ∩, that is, L (S 1 ∩ S 2) ,
L (L (S 1)∩L (S 2)), that is, L (S 1∩S 2),L (S 1)∩
L (S 2) .
Definition 13 Let L1,L2 be two sublattices of L, the
operator u is defined by L1uL2 = L1∩L2; the oper-
ator t is defined by L1tL2 = L (L1∪L2).
Lemma 4 Let L1,L2 and L3 be sublattices of L.
Then

1. L1uL1 = L1,

2. L1uL2 = L2uL1,

3. (L1uL2)uL3 = L1u (L2uL3).

4. (L1uL2)tL1 = L1.

Proof. Straightforward.

Lemma 5 Let L1,L2 and L3 be sublattices of L.
Then

1. L1tL1 = L1,

2. L1tL2 = L2tL1,

3. (L1tL2)tL3 = L1t (L2tL3).

4. (L1tL2)uL1 = L1.

Proof. Straightforward.

Theorem 3 (2L,t,u) forms a lattice, where, 2L

denotes the set of all sublattices of L, i.e., 2L =

{L1|L1 is a sublattice o f L}.
Proof. It is immediate by Lemma 4 and Lemma 5.

Published by Atlantis Press 
      Copyright: the authors 
                  1139



Y.Shao, K.Qin

Example 3 Let L be a defined in Figure 1 in Ex-
ample 1. Suppose that L1 = {a,c},L2 = {0,d},L3 =

{0,a,b,c}, routine verification reveals that L1,L2 and
L3 are sublattices of L and L1 ⊆ L3, but (L1 t
L2)u L3 = L3,L1t (L2u L3) = {a,c,0}, so, (2L,t,u)
doesn’t form a modular lattice in general.
Definition 14 Let µ1,µ2 be two fuzzy sublattices of
L, their intersection, denoted by µ1 u µ2, is defined
by (µ1uµ2)(x) = µ1(x)∧µ2(x), for all x ∈ L.
Lemma 6 Let µ1,µ2 be two fuzzy sublattices of L,
then their intersection µ1uµ2 is a fuzzy sublattice of
L.

Proof. For all x ∈ L,y ∈ L, by Definition 14, we
have that
(µ1uµ2)(x∧ y)∧ (µ1uµ2)(x∨ y)
= µ1(x∧ y)∧µ2(x∧ y)∧µ1(x∨ y)∧µ2(x∨ y)
> µ1(x)∧µ1(y)∧µ2(x)∧µ2(y)
= (µ1uµ2)(x)∧ (µ1uµ2)(y).
By Definition 8, we can get that µ1 u µ2 is a fuzzy
sublattice of L.

Lemma 7 Let µ1,µ2 and µ3 be fuzzy sublattices of
L. Then

1. µ1uµ1 = µ1,

2. µ1uµ2 = µ2uµ1,

3. (µ1uµ2)uµ3 = µ1u (µ2uµ3).

Proof. It is immediate by Definition 14 and Lemma
6.

Lemma 8 Let µ1 be a fuzzy subset of L, then µ is the
least fuzzy sublattice of L containing µ1, that is, if µ′
is an arbitrary fuzzy sublattice of L and µ1 ⊆ µ, then
µ ⊆ µ′. Where, µ is defined by µ(x) = in f S (µ(x)) =

in f {µ(x)|µ(x∧ y)∧ µ(x∨ y) > µ(x)∧ µ(y) > µ1(x)∨
µ1(y),∀y ∈ L}. µ is called the fuzzy sublattice of L
generated by µ1, denoted by L (µ1).

Proof. It is clear that µ is a fuzzy sublattice of
L containing µ1, so we only prove that an arbi-
trary fuzzy sublattice µ′ of L containing µ1 must
contain µ. For all x ∈ L, since µ′(x) > µ1(x) and
µ′(x∧ y)∧µ′(x∨ y) > µ′(x)∧µ′(y), so µ′(x) ⊆ S (µ),
so µ′(x) > µ(x), thus, µ ⊆ µ′, that is, µ is the least
fuzzy sublattice of L.

Corollary 2 µ = L (µ1 ∪ µ2) is the least fuzzy lat-
tice containing µ1 and µ2, where, (µ1 ∪ µ2)(x) =

max{µ1(x),µ2(x)} .

Proof. It is immediate by Lemma 8.

Based on Lemma 8 and Corollary 2, µ = L (µ1∪µ2)
can be called the fuzzy sublattice of L generated by
µ1,µ2, denoted by µ1tµ2.
Lemma 9 1. If µ is a fuzzy subset of L, then

µ ⊆L (µ),

2. If µ is a subset of L, then µ = L (µ) iff µ is a
fuzzy sublattice of L.

3. If µ1 ⊆ µ2, then L (µ1) ⊆L (µ2).

4. If µ1,µ2 are fuzzy subsets of L, µ1 ⊆ µ,µ2 ⊆ µ,
and µ is a fuzzy sublattice of L, then L (µ1 ∪
µ2) ⊆ µ.

Proof. Straightforward.

Lemma 10 Let µ1,µ2 be fuzzy subsets of L, then
L (µ1)tL (µ2) = L (µ1∪µ2).

Proof.
1. Since µ1 ⊆ µ1 ∪ µ2, we can get that L (µ1) ⊆

L (µ1∪µ2). Similarly, we have that L (µ2) ⊆
L (µ1 ∪ µ2). So, by Lemma 9, L (µ1) t
L (µ2) ⊆L (µ1∪µ2).

2. Since µ1 ⊆ L (µ1),µ2 ⊆ L (µ2), so µ1 ∪ µ2 ⊆
L (µ1) ∪ L (µ2), moreover, L (µ1 ∪ µ2) ⊆
L (L (µ1) ∪L (µ2)), that is, L (µ1 ∪ µ2) ⊆
L (µ1)tL (µ2).

Sum up above, we can get the result as required.

Lemma 11 Let µ1,µ2 and µ3 be fuzzy sublattices of
L. Then

1. µ1tµ1 = µ1,

2. µ1tµ2 = µ2tµ1,

3. (µ1tµ2)tµ3 = µ1t (µ2tµ3),

Proof. It is immediate by Lemma 8.

Lemma 12 Let µ1 and µ2 be fuzzy sublattices of L.
Then

1. (µ1tµ2)uµ1 = µ1,

2. (µ1uµ2)tµ1 = µ1.
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Proof. We only prove (1).
For all x ∈ L, since (µ1 t µ2)(x) = in f {µ(x)|µ(x ∧
y) ∧ µ(x ∨ y) > µ(x) ∧ µ(y) > µ1(x) ∨ µ2(y)} >
in f {µ(x)|µ(x) > µ1(x)} = µ1(x), so we can get that
(µ1tµ2)(x)∧µ1(x) = µ1(x), that is, (µ1tµ2)uµ1 =

µ1.

Lemma 13 Let µ1,µ2 and µ3 be fuzzy sublattices of
L. Then,

1. (µ1tµ2)uµ3 = (µ1uµ3)t (µ2uµ3).

2. (µ1uµ2)tµ3 = (µ1tµ3)u (µ2tµ3).

Proof. (1)We only prove (µ1tµ2)uµ3 6 (µ1uµ3)t
(µ2uµ3).
For all x ∈ L, without loss of generality, we suppose
µ1(x) 6 µ2(x).
(i) If µ3(x) > µ2(x) > µ1(x), then
((µ1uµ3)t (µ2uµ3))(x) = (µ1(x)uµ3(x))t (µ2(x)u
µ3(x))
= µ1(x)tµ2(x) > ((µ1tµ2)uµ3)(x);
(ii)If µ2(x) > µ3(x) > µ1(x), then
((µ1uµ3)t (µ2uµ3))(x) = (µ1(x)uµ3(x))t (µ2(x)u
µ3(x))
= µ1(x)tµ3(x) > ((µ1tµ2)uµ3)(x);
(iii) If µ2(x) > µ1(x) > µ3(x), then
((µ1uµ3)t (µ2uµ3))(x) = (µ1(x)uµ3(x))t (µ2(x)u
µ3(x)) =

µ3(x)tµ3(x) > ((µ1tµ2)uµ3)(x);
Therefore, we conclude that (µ1tµ2)uµ3 = (µ1u

µ3)t (µ2uµ3).
(2) For all x ∈ L, without loss of generality, we sup-
pose µ1(x) 6 µ2(x).
(i) If µ3(x) > µ2(x) > µ1(x), then
((µ1tµ3)u (µ2tµ3))(x) = (µ1tµ3)(x)∧ (µ2tµ3)(x)
= µ3(x) = ((µ1uµ2)tµ3)(x);
(ii)If µ2(x) > µ3(x) > µ1(x), then
((µ1tµ3)u (µ2tµ3))(x) = (µ1tµ3)(x)u (µ2tµ3)(x)
= µ3(x) = ((µ1uµ2)tµ3)(x);
(iii) If µ2(x) > µ1(x) > µ3(x), then
((µ1 t µ3) u (µ2 t µ3))(x) = (µ1 t µ3)(x) u (µ2(x) t
µ3)(x)
= µ1(x)uµ2(x) = ((µ1uµ2)tµ3))(x);

Therefore, we conclude that (µ1tµ2)uµ3 = (µ1u
µ3)t (µ2uµ3).

Theorem 4 Let F (L) denotes the set of all fuzzy
sublattices of L. Then (F (L);t,u) forms a distribu-
tive lattice.

Proof. It is immediate by the proof of Lemma 7,
Lemma 11, Lemma 12 and Lemma 13.

Definition 15 Let (F,A) be a fuzzy soft set over L,
(F,A) is called a fuzzy soft lattice if F(ε) is a fuzzy
sublattice of L for each ε ∈ A.

Definition 16 Let (F,A) and (E,B) be fuzzy soft lat-
tices over L. We define (F,A)t̃(E,B) = (H,C) as fol-
lows: C = A∪B and for all e ∈C

H(e) =



F(e), i f e ∈ A−B,
E(e), i f e ∈ B−A,
F(e)tG(e), i f e ∈ A∩B.

Proposition 3 Let (F,A) and (E,B) be fuzzy soft lat-
tices over L. Then (H,C) = (F,A)t̃(E,B) is a fuzzy
soft lattice over L.

Proof. It is immediate by Definition 16.

Proposition 4 Let (F,A), (G,B) and (H,C) be fuzzy
soft lattices over L. Then

1. (F,A)t̃(F,A) = (F,A),

2. (F,A)t̃(G,B) = (G,B)t̃(F,A),

3. ((F,A)t̃(G,B))t̃(H,C) = (F,A)t̃((G,B)t̃(H,C)).

Proof. (1) and (2) are trivial. We only prove (3).
Suppose that
((F,A)t̃(G,B))t̃(H,C) = (K,A ∪ B ∪ C),
(F,A)t̃((G,B)t̃(H,C)) = (M,A∪B∪C)).
For all ε ∈ A∪ B∪C, it follows that ε ∈ A or ε ∈ B
or ε ∈C. Without loss of generality, we can suppose
that ε ∈C,
(a) If ε < A and ε < B, then K(ε) = H(ε) = M(ε).
(b) If ε ∈ A and ε < B, then K(ε) = F(ε)tH(ε) =

M(ε).
(c) If ε < A and ε ∈ B, then K(ε) = G(ε)tH(ε) =

M(ε).
(d) If ε ∈ A and ε ∈ B, then K(ε) = (F(ε)tG(ε))t
H(ε) = F(ε)t (G(ε)tH(ε)) = M(ε).
Since K and M are indeed the same set-valued map-
pings, we conclude that
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((F,A)t̃(G,B))t̃(H,C) = (F,A)t̃((G,B)t̃(H,C)) as
required.

Similarly, we have the followings:
Definition 17 Let (F,A) and (G,B) be fuzzy soft lat-
tices over L. We define (F,A)ũ(G,B) = (H,C) as fol-
lows:

H(ε) =



F(ε), i f ε ∈ A−B,
G(ε), i f ε ∈ B−A,
F(ε)uG(ε), i f ε ∈ A∩B.

Proposition 5 If (F,A) and (G,B) be fuzzy soft lat-
tices over L, then (H,C) = (F,A)ũ(G,B) is a fuzzy
soft lattice over L.

Proof. Straightforward.

Proposition 6 Let (F,A), (G,B) and (H,C) be fuzzy
soft lattices over L. Then

1. (F,A)ũ(F,A) = (F,A),

2. (F,A)ũ(G,B) = (G,B)ũ(F,A),

3. ((F,A)ũ(G,B))ũ(H,C) = (F,A)ũ((G,B)ũ(H,C)).

Proof. It is similar to the proof of Proposition 4.

Proposition 7 Let (F,A), (G,B) be fuzzy soft lattices
over L. Then

1. ((F,A)t̃(G,B))ũ(F,A) = (F,A),

2. ((F,A)ũ(G,B))t̃(F,A) = (F,A).

Proof.

1. Suppose that (F,A)t̃(G,B) = (H,A ∪ B) and
((F,A)t̃(G,B))ũ(F,A) = (K, (A ∪ B) ∪ A) =

(K,A). For all ε ∈ A,
(a) if ε ∈ B, then ε ∈ A∪ B, so K(ε) = H(ε)∩
F(ε) = (F(ε)tG(ε))∩F(ε) = F(ε);
(b)if ε < B, then ε ∈ A∪ B, so K(ε) = H(ε)u
F(ε) = F(ε)uF(ε) = F(ε).
Hence ((F,A)t̃(G,B))ũ(F,A) = (F,A).

2. Suppose that (F,A)ũ(G,B) = (H,A ∪ B) and
((F,A)ũ(G,B))t̃(F,A) = (K, (A ∪ B) ∪ A) =

(K,A). For all ε ∈ A,
(a) if ε ∈ B, then ε ∈ A∪ B, so we have that

K(ε) = H(ε)t F(ε) = (F(ε)uG(ε))t F(ε) =

F(ε);
(b)if ε < B, then, since ε ∈ A, so ε ∈ A∪B and
ε < A∩ B, thus we have that K(ε) = H(ε)t
F(ε) = F(ε)tF(ε) = F(ε).
Hence ((F,A)ũ(G,B))t̃(F,A) = (F,A).

Definition 18 Let
S (L,E) = {(F,A)|A ⊆ E, and (F,A) is a f uzzy so f t
lattice over L},
then S (L,E) is called a fuzzy soft class.

Definition 19 Suppose that S (L1,E) and S (L2,E′)
are fuzzy soft classes. Let µ : L1 → L2 and p :
E → E′ be mappings. If (Λ,Σ) ∈ S (L1,E), the im-
age of (Λ,Σ) under the function f = (µ, p), denoted
by f (Λ,Σ), is the fuzzy soft set over L2 defined by
f (Λ,Σ) = (µ(Λ), p(Σ)) as the followings, where, for
all β ∈ p(Σ),y ∈ L2.

µ(Λ)(β)(y) =



∨

x∈µ−1(y)

∨

α∈p−1(β)∩Σ

Λ(α)(x), if µ−1(y) , φ,

0, otherwise.

Definition 20 Let S (L1,E) and S (L2,E′) be fuzzy
soft classes. Let µ : L1 → L2 and p : E → E′ be
mappings, (∆,Ω) ∈ S (L2,E′). The inverse image
of (∆,Ω) under the function f = (µ, p), denoted by
f −1(∆,Ω), is the fuzzy soft set over L1 defined by
f −1(∆,Ω) = (µ−1(∆), p−1(Ω)), where µ−1(∆)(α)(x) =

∆(p(α))(µ(x)),∀α ∈ p−1(Ω),∀x ∈ L1.

Theorem 5 Let S (L1,E) and S (L2,E′) be fuzzy soft
classes, p : E → E′ be a mapping and µ be a ho-
momorphic mapping from L1 to L2. If (∆,Ω) ∈
S (L2,E′), then f −1(∆,Ω) is a fuzzy soft lattice over
L1.

Proof. For all ε ∈ p−1(Ω), x1, x2 ∈ L,
µ−1(∆)(ε)(x1∧ x2)∧µ−1(∆)(ε)(x1∨ x2)
= ∆(p(ε))(µ(x1∧ x2))∧∆(p(ε))(µ(x1∨ x2))
= ∆(p(ε))(µ(x1)∧µ(x2)∧∆(p(ε))(µ(x1)∨µ(x2))
> ∆(p(ε))µ(x1)∧∆(p(ε))µ(x2)
> µ−1(∆)(ε)(x1)∧µ−1(∆)(ε)(x2).
So, f −1(∆,Ω) is a fuzzy soft lattice over L1.
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Theorem 6 Let S (L1,E) and S (L2,E′) be fuzzy soft
classes over lattices L1 and L2, respectively, p :
E → E′ be an injection and µ be a homomorphic
mapping from L1 to L2. If (∆,Ω) ∈ S (L1,E), then
f (∆,Ω) ∈ S (L2,E′).

Proof. For all β ∈ p(E),y1,y2 ∈ µ(L1), since µ
is a homomorphic mapping, so there exist x1 ∈
µ−1(y1), x2 ∈ µ−1(y2) such that x1 ∧ x2 ∈ µ−1(y1 ∧
y2), x1∨ x2 ∈ µ−1(y1∨ y2). By Definition 20,
µ(∆)(β)(y1∧ y2)
=

∨
x1∧x2∈µ−1(y1∧y2)

∨
α∈p−1(β)∩Ω

∆(α)(x1∧ x2)

µ(∆)(β)(y1∨ y2)
=

∨
x1∨x2∈µ−1(y1∨y2)

∨
α∈p−1(β)∩Ω

∆(α)(x1∨ x2),

so we can get that
µ(∆)(β)(y1∧ y2)∧µ(∆)(β)(y1∨ y2)
= (

∨
x1∧x2∈µ−1(y1∧y2)

∨
α∈p−1(β)∩Ω

∆(α)(x1∧ x2))
∧

(
∨

x1∨x2∈µ−1(y1∨y2)

∨
α∈p−1(β)∩Ω

∆(α)(x1∨ x2))

=
∨

x1∧x2∈µ−1(y1∧y2)

∨
α∈p−1(β)∩Ω

∨
x1∨x2∈µ−1(y1∨y2)

∨
α∈p−1(β)∩Ω

(∆(α)(x1∧ x2)∧∆(α)(x1∨ x2))
>

∨
x1∧x2∈µ−1(y1∧y2)

∨
α∈p−1(β)∩Ω

∨
x1∨x2∈µ−1(y1∨y2)

∨
α∈p−1(β)∩Ω

(∆(α)(x1)∧∆(α)(x2))
= (

∨
x1∈µ−1(y1)

∨
α∈p−1(β)∩Ω

(∆(α)(x1)))
∧

(
∨

x2∈µ−1(y2)

∨
α∈p−1(β)∩Ω

(∆(α)(x2))).

So we can get the result as required.

Theorem 7 (S (L,E), t̃, ũ) forms a modular lattice.

Proof. By virtue of Proposition 4, Proposition 6
and Proposition 7, (S (L,E), t̃, ũ) forms a lattice.

For modularity, let (Fi,Ai) ∈ S (L,E), (i = 1,2,3)
be such that (F1,A1) > (F2,A2). We have to prove
that (F1,A1) u ((F2,A2) t (F3,A3)) = ((F1,A1) u
(F3,A3))t (F2,A2).

Since the inequality (F1,A1) u ((F2,A2) t
(F3,A3))> ((F1,A1)u (F3,A3))t (F2,A2) is obvious,
so it is enough to prove that (F1,A1)u ((F2,A2)t
(F3,A3)) 6 ((F1,A1)u (F3,A3))t (F2,A2).

Let
(F1,A1) u ((F2,A2) t (F3,A3)) = (H,B), ((F1,A1) u
(F3,A3))t (F2,A2) = (K,C). Firstly, since (F1,A1) >
(F2,A2), so A2 ⊆ A1, thus, it is clear that A1∩ (A2∪
A3) = (A1∩A3)∪A2. Secondly, for all ε ∈ A1∩ (A2∪

A3), we have that ε ∈ A1 and ε ∈ A2∪A3,
(a) if ε ∈ A2, ε < A3, then, H(ε) = F1(ε)u F2(ε) =

K(ε);
(b) if ε ∈ A2 and ε ∈ A3, then, H(ε) = F1(ε)u(F2(ε)t
F3(ε)) ⊆ F2(ε)t F2(ε)t F3(ε) = (F1(ε)u F2(ε))t
F3(ε) = K(ε).
(c) if ε < A2 and ε ∈ A3, then, H(ε) = F1(ε)tF3(ε) =

K(ε).
Hence, we can get the result as required. Let

(F,A) and (G,B) be fuzzy soft lattices over L. We
define (F,A)d (G,B) = (H,C) as follows: C = A∩B
and H(ε) = F(ε)tG(ε) for all ε ∈C. It is clear that
we have the following:
Proposition 8 If (F,A) and (G,B) be fuzzy soft lat-
tices over L, then (H,C) = (F,A)d (G,B) is a fuzzy
soft lattice over L.
Proposition 9 Let (F,A), (G,B) and (H,C) be fuzzy
soft lattices over L. Then

1. (F,A)d (F,A) = (F,A),

2. (F,A)d (G,B) = (G,B)d (F,A),

3. ((F,A) d (G,B)) d (H,C) = (F,A) d ((G,B) d
(H,C)).

Proposition 10 Let (F,A), (G,B) be fuzzy soft lat-
tices over L. Then

1. ((F,A)d (G,B))ũ(F,A) = (F,A),

2. ((F,A)ũ(G,B))d (F,A) = (F,A).

Theorem 8 (S (L,E),d, ũ) is a modular lattice.
Definition 21 Let (F,A) and (E,B) be fuzzy soft lat-
tices over L. We define (F,A)e (E,B) = (H,C) as
follows: C = A∩ B and H(ε) = F(ε)∩ E(ε) for all
ε ∈C.
It is clear that we have the followings:
Proposition 11 If (F,A) and (G,B) be fuzzy soft lat-
tices over L, then (H,C) = (F,A)e (G,B) is a fuzzy
soft lattice over L.
Proposition 12 Let (F,A), (G,B) and (H,C) be
fuzzy soft lattices over L. Then

1. (F,A)e (F,A) = (F,A),

2. (F,A)e (G,B) = (E,B)e (F,A),

3. ((F,A) e (G,B)) e (H,C) = (F,A) e ((G,B) e
(H,C)).
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Proof. Straightforward.

Similarly, we have the following propositions:
Theorem 9 (S (L,E),t,e) is a modular lattice.
Proposition 13 (S (L,E),d,e) is a distributive lat-
tice.

Proof. Similarly, we can get that (S (L,E),d,e)
is a distributive lattice. We only prove that
(S (L,E),d,e) is distributive .

It is enough to prove that (F,A) d ((G,B) e
(H,C)) = ((F,A)d (G,B))e ((F,A)d (H,C)) for all
(F,A), (G,B), (H,C) ∈ S (L,E).
Let (F,A)d ((G,B)e (H,C)) = (K,A∩ (B∩C)) and
((F,A) d (G,B)) e ((F,A) d (H,C)) = (M, (A ∩ B) ∩
(A ∩ B)) = (M,A ∩ B∩C). For all ε ∈ A ∩ B∩C,
that is, ε ∈ A, ε ∈ B, ε ∈ C, by Lemma 13, we
can get that K(ε) = F(ε)t (G(ε)uH(ε)) = (F(ε)t
G(ε))u (F(ε)tH(ε)) = M(ε), thus, (F,A)d ((G,B)e
(H,C)) = ((F,A)d (G,B))e ((F,A)d (H,C)).

4. Fuzzy soft ideal over L and the lattice
structure of fuzzy soft ideal over L

Definition 22 Let (F,A) be a fuzzy soft set over L,
(F,A) is called a fuzzy soft ideal if F(ε) is a fuzzy
ideal over L, for all ε ∈ A.
Theorem 10 Let S (W,E) and S (T,E′) be fuzzy soft
classes over lattices W and T , respectively, f :
S (W,E) → S (T,E′) be a mapping, p : E → E′ be
a mapping and µ be a homomorphic mapping from
W to T . If (∆,Ω) is a fuzzy soft ideal over T , then
f −1(∆,Ω) is a fuzzy soft ideal over S .

Proof. For all α ∈ p−1(Ω), x1, x2 ∈ µ−1(∆)(α), we
have that
µ−1(∆)(α)(x1∨ x2) = ∆(p(α))(µ(x1∨ x2))
= ∆(p(α))(µ(x1)∨µ(x2))
= ∆(p(α))(µ(x1))∧∆(p(α))(µ(x2))
= µ−1(∆)(α)(x1)∧µ−1(∆)(α)(x2).

Theorem 11 Let S (W,E) and S (T,E′) be fuzzy soft
classes over lattices W and T , respectively, f :
S (W,E) → S (T,E′) be a mapping, p : E → E′ be
a mapping and µ be a surjective homomorphic map-
ping from W to T . If (∆,Ω) is a fuzzy soft ideal over
W, then f (∆,Ω) is a fuzzy soft ideal over T .

Proof. For all α ∈ p(Ω), x1, x2 ∈ µ(∆)(α), we have
that
µ(∆)(α)(x1∨ x2) = ∆(p(α))(µ(x1∨ x2))
= ∆(p(α))(µ(x1)∨µ(x2))
= ∆(p(α))(µ(x1))∧∆(p(α))(µ(x2))
= µ(∆)(α)(x1)∧µ(∆)(α)(x2).

Theorem 12 Let µ1,µ2 be fuzzy ideals of L, then
µ1 t µ2 is a fuzzy ideal of L, where, µ1 t µ2 is de-
fined by (µ1tµ2)(x) = max{µ1(x),µ2(x)},
Proof. For all x ∈ L,y ∈ L, by Proposition
2, if x 6 y, then µ1(x) > µ1(y),µ2(x) > µ2(y), so
we have that (µ1 t µ2)(x) = max{µ1(x),µ2(x)} >
max{µ1(y),µ2(y)} = (µ1 t µ2)(y), so we can get that
µ1tµ2 is a fuzzy ideal of L.

Lemma 14 Let µ1,µ2 and µ3 be fuzzy ideals of L,
then

1. µ1tµ1 = µ1,

2. µ1tµ2 = µ2tµ1,

3. (µ1tµ2)tµ3 = µ1t (µ2tµ3).

Proof. Straightforward.

Theorem 13 Let µ1,µ2 be fuzzy ideals of L, then
µ1 u µ2 is a fuzzy ideal of L, where, µ1 u µ2 is de-
fined by (µ1uµ2)(x) = min{µ1(x),µ2(x)},
Proof. It is similar to the proof of Theorem 12.

Lemma 15 Let µ1,µ2 and µ3 be fuzzy ideals of L,
then

1. µ1uµ1 = µ1,

2. µ1uµ2 = µ2uµ1,

3. (µ1uµ2)uµ3 = µ1u (µ2uµ3).

Proof. Straightforward.

Lemma 16 Let µ1 and µ2 be fuzzy ideals of L, then

1. (µ1uµ2)tµ1 = µ1,

2. (µ1tµ2)uµ1 = µ1.

Proof. Straightforward.

Lemma 17 Let µ1,µ2 and µ3 be fuzzy ideals of L,
then
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1. (µ1uµ2)tµ3 = (µ1tµ3)u (µ2tµ3);

2. (µ1tµ2)uµ3 = (µ1uµ3)t (µ2uµ3).

Proof. We only prove (1).
For all x ∈ L, without loss of generality, suppose that
µ1(x) > µ2(x), so we have that
((µ1uµ2)tµ3)(x)
= max{min{µ1(x),µ2(x)},µ3(x)}
= max{µ2(x),µ3(x)}, ((µ1tµ3)u (µ2tµ3))(x)
= min{max{µ1(x),µ3(x)},max{µ2(x),µ3(x)}}
= max{µ2(x),µ3(x)},
so we can get that (µ1 uµ2)tµ3 = (µ1 tµ3)u (µ2 t
µ3).

We denote the set of all fuzzy ideals of L by
FI (L), then
Theorem 14 (FI (L),t,u) forms a distributive
lattice.

Proof. It is immediate by Lemma 14, Lemma 15,
Lemma 16 and Lemma 17.

Proposition 14 Let (F,A) and (G,B) be fuzzy soft
ideals over L, then (H,C) = (F,A)ũ(G,B) is a fuzzy
soft ideal over L, where, (H,C) is defined by C =

A∪B and for all ε ∈C,

H(ε) =



F(ε), i f ε ∈ A−B,
G(ε), i f ε ∈ B−A,
F(ε)uG(ε), i f ε ∈ A∩B.

Proof. Straightforward.

Lemma 18 Let (F,A), (G,B) and (H,C) be fuzzy soft
ideals over L. Then

1. (F,A)ũ(F,A) = (F,A),

2. (F,A)ũ(G,B) = (G,B)ũ(F,A),

3. ((F,A)ũ(G,B))ũ(H,C) = (F,A)ũ((G,B)ũ(H,C)).

Proof. Straightforward.

Proposition 15 Let (F,A) and (G,B) be fuzzy soft
ideals over L, then (H,C) = (F,A)t̃(G,B) is a fuzzy
soft ideal over L, where, (H,C) is defined by C =

A∪B and for all ε ∈C,

H(ε) =



F(ε), i f ε ∈ A−B,
G(ε), i f ε ∈ B−A,
F(ε)tG(ε), i f ε ∈ A∩B.

Proof. Straightforward.

Lemma 19 Let (F,A), (G,B) and (H,C) be fuzzy soft
ideals over L. Then

1. (F,A)t̃(F,A) = (F,A),

2. (F,A)t̃(G,B) = (G,B)t̃(F,A),

3. ((F,A)t̃(G,B))t̃(H,C) = (F,A)t̃((G,B)t̃(H,C)).

Proof. Straightforward.

Lemma 20 Let (F,A) and (G,B) be fuzzy soft ideals
over L. Then

1. (F,A)t̃((F,A)ũ(G,B)) = (F,A),

2. (F,A)ũ((F,A)t̃(G,B)) = (F,A).

Proof. Straightforward.

Lemma 21 Let (F,A), (G,B) and (H,C) be fuzzy
ideals of L, then

1. ((F,A)ũ(G,B))t̃(H,C)
= ((F,A)t̃(H,C))ũ((G,B)t̃(H,C));

2. ((F,A)t̃(G,B))ũ(H,C)
= ((F,A)ũ(H,C))t̃((G,B)ũ(H,C)).

Proof. It is immediate by Lemma 17.

We denote the set of all fuzzy soft ideals over
L by S (I,E) and the parameter set by E, that is,
S (I,E) = {(F,A)|A ⊆ E,F : A→ P(U)}.
Theorem 15 (S (I,E), t̃, ũ) forms a distributive lat-
tice.

Proof. It is immediate by Proposition 14, Lemma
18, Proposition 15, Lemma 19, lemma 20 and
Lemma 21.

Similarly, we have the followings:
Proposition 16 Let (F,A) and (G,B) be fuzzy soft
ideals over L, then (H,C) = (F,A)e (G,B) is a fuzzy
soft ideal over L, where, (H,C) is defined by C =

A∩B and for all ε ∈C,H(ε) = F(ε)uG(ε)

Proof. Straightforward.
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Proposition 17 Let (F,A) and (G,B) be fuzzy soft
ideals over L, then (H,C) = (F,A)d (G,B) is a fuzzy
soft ideal over L, where, (H,C) is defined by C =

A∩B and for all ε ∈C,H(ε) = F(ε)tG(ε)

Proof. Straightforward.

Theorem 16 (S (I,E),d,e) forms a distributive lat-
tice.

Proof. It is similar to the proof of Theorem 15.

Theorem 17 (S (I,E),d, ũ) forms a distributive lat-
tice.

Proof. It is similar to the proof of Theorem 15.

Theorem 18 (S (I,E), t̃,e) forms a distributive lat-
tice.

Proof. It is similar to the proof of Theorem 15.

5. conclusion

In this paper we have introduced the concept of
fuzzy soft lattice and fuzzy soft ideal over a lattice
and studied some of their related properties and dis-
cussed their lattice structure. By duality, we can dis-
cuss the related notions and properties of fuzzy soft
filter over a lattice. To extend this work, one can
study the properties of soft sets in other algebraic
structures and fields. In addition, based on these re-
sults, we can further probe the applications of fuzzy
soft lattices.
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