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Abstract. In this paper, we propose a novel inertial-assisted slam system intended for low-cost micro 
aerial vehicles (MAVs). The system sensor assembly consists of color camera, depth camera and a 
inertial measurement unit (IMU) with three-axis accelerometers/gyroscopes. We use IMU data to 
enable probability-based predetermined operations rather than hypothesis testing iterations to 
accelerate pose calculation and obtain its optimal estimation through nonlinear optimization. We 
illustrate the performance of our system by hovering a MAV in a GPS-denied environment which 
position accuracy can reach 3.9cm RMSE in a 189 second flight and its robustness is also illustrated 
in a complex indoor environment. 

Introduction 

As portable computing devices, such as smart phones, smart glasses and other devices, become more 
ubiquitous, there is an interest to provide such devices with localization and mapping capabilities. 
Localization can be partially addressed by relying on systems that use global positioning system 
(GPS) signals or triangulation of cell tower signals to calculate position. However, such services tend 
to be limited to use outdoors, since GPS signals or cell tower signals may be blocked within buildings. 
Moreover, commercial localization and mapping services are generally unable to provide accuracy 
higher than several meters with respect to position.  

Visual-based inertial navigation systems rely on information obtained from images and inertial 
measuring devices in order to achieve localization and mapping. Since visual-based inertial 
navigation systems do not require signals from GPS or cell towers, such systems may be used indoors 
where GPS and cell signals cannot reach or are unavailable due to obstacle or interference. 
Furthermore, visual-based inertial navigation systems enable very high position accuracy, e.g., on the 
order of centimeters. However, visual-based inertial navigation systems are typically computationally 
intensive as they need to process large amounts of image data acquired from an image detector, such 
as a camera, and inertial measurement unit (IMU), all in real-time. In addition, to achieve highly 
accurate measurements of position, a history of information related to previous poses (positions and 
orientations), inertial measurements and image features is typically stored, thus requiring device to 
use a substantial amount of memory and consequently large computation time to process this 
information. 

System overview.  

The visual-inertial fusion approaches found in the literature can be categorized to follow two 
approaches. In loosely-coupled systems, e.g. [1], the IMU measurements are incorporated as 
independent inclinometer and relative yaw measurements into the stereo vision optimization. Weiss 
et al. [2] use vision-only pose estimates as updates to an EKF with indirect IMU propagation. Also in 
[3], relative stereo pose estimates are integrated into a factor-graph containing inertial terms and 
absolute GPS measurements. Such methods limit the complexity, but disregard correlations amongst 
internal states of different sensors. 
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Fig 3 System architecture 

IMU accelerated pose calculation 

We get RGB, depth and synchronized IMU data from the hardware. According to the intrinsic and 
extrinsic parameters of RGB and depth camera, A RGB point cloud is generated. In the pre-process 
module, we successfully combine IMU, a FAST feature detector and a rotated BRIEF feature 
descriptor to approximate the rotation-invariant ORB features, used in large angular velocity 
estimation. The pipeline mainly consists of five modules: re-mapping, FAST feature scoring, image 
smoothing, non-maximal suppression and BRIEF descriptor generation. 

At two successive sampling time, we combine the 3D position of a given feature point in the 
previous image with the motion from IMU to predict its 2D projection in the next image. Then we use 
a circle-window to search for the real corresponding feature point. For another matching scheme 
considering the rectified stereo frames at the same sampling time, we are able to search the 
corresponding features directly on the same row of the second image. 

The 2D-3D correspondences are used for motion estimation, since 3D information can be 
recovered from the pointcloud. Each correspondence can be represented by ܿ௜ ൌ ሼ݌௜,  ௜ሽ, whereݑ
௜݌ ൌ ሾݔ௜, ,௜ݕ ௜ݑ ௜ሿ் is the 3D coordinate in the previous frame andݖ ൌ ሾݑ௜, ,௜ݒ 1ሿ் is the 2D image 
(undistorted and rectified) pixel index in the current frame. Then we have: 

௜ݑ௜ߣ ൌ ௜݌ሺܴܭ ൅  ሻݐ

ܭ ൌ ൥
௫݂ 0 ௖ݑ
0 ௬݂ ௖ݒ
0 0 1

൩                                                        （2） 

where ܭ is the camera intrinsic parameters, ܴ and ݐ are the rotation and translation between two 
successive camera frames, and ߣ௜ is the unknown scale factor. 

Assume that we have ݊ feature correspondences ܿଵ, ܿଶ, … , ܿ௡ and the exact rotation ܴ from IMU 

readings. Let ܴ ൌ ሾݎଵ, ,ଶݎ ଷሿ்ݎ  and ݐ ൌ ,௫ݐൣ ,௬ݐ ௭൧ݐ
்

 respectively. Then we have ௜ߣ ൌ ଷݎ
௜݌் ൅ ௭ݐ . 

Replace ߣ௜ with ݐ and we get: 
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 （3）                        ݐ

Then we can obtain a least square solution to	ݐ with a minimal n of 2. 
We shall now use IMU data to make the pose calculation more accuracy and fast. As IMU has a 

high orientation accuracy in short time. So the initial guess of rotation ܴ is provided by IMU. Then 
we use Longest Successive Consistency (LONSC) method to reject outliers. We will explain the 
details of this algorithm and compare it to the traditional well-known outlier rejection method – 
RANSAC. The basic idea of LONSC is to estimate motion for every two successive correspondences 
stored in a 1D array and regard the longest successive motion-consistent sequence (SMS) as an inlier 
set. These inliers set will be used to estimate a motion model which can identify most of other inliers. 
The LONSC algorithm architecture is shown in Algorithm 1. 

Algorithm 1 Motion estimation based on LONSC 
Require: 
 The sequence of correspondences {c1, c2, ..., 
 The rotation R provided by IMU; 
Ensure: 
 The set of inliers; 
 The estimated translation t; 
1: MLen = MT ail = CLen = 0, T = 0, Φ ൌ ∅; 
2: for i = 2 to nc do 
3:   if R, T and ci are consistent then 
4:     CLen = CLen + 1; 
5:     if CLen > MLen then 
6:       MLen = CLen, MTail = i; 
7:     end if 
8:   else 
9:     Use ci−1 and ci to estimate T; 

10:     CLen = 1; 
11:   end if 
12: end for 
13: Use {cMTail−MLen+1, ..., cMTail} to estimate ˆ̂ݐ; 
14: for i = 1 to nc do 
15:   if R, ̂ݐ and ci are consistent then 
16:     Add ci to Φ; 
17:   end if 
18: end for 
19: Use Φ to estimate t; 
20: return Φ, t; 

So far, the front-end get the relative rotation and translation between two consequence frames. As 
there is no costly RANSAC step involved—another advantage of tight IMU involvement. For the 
subsequent optimization, a bounded set of camera frames is maintained, i.e. poses with associated 
images taken at that time instant; all landmarks visible in these images are kept in the local map. As 
illustrated in Figure 4, we distinguish two kinds of frames: we introduce a temporal window of the S 
most recent frames including the current frame; and we use a number of N keyframes that may have 
been taken far in the past. For keyframe selection, we use a simple heuristic: if the ratio between the 
image area spanned by matched points versus the area spanned by all detected points falls below 50 to 
60%, the frame is labeled keyframe. 
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the accelerometer bias as bounded random walk. The matrix Ω is formed from the estimated angular 
rate ෥߱ௌ

ௐௌ ൌ ߱ௐ
ௐௌ ൅ ௚ݓ െ ܾ௚, with gyro measurement ෥߱ௌ

ௐௌ. 
So the linearized error dynamics take the form 

( ) ( )R c R R Rx F x x G x w                                         （7） 

where ܩ is straight-forward to derive and: 
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3) Formulation of the IMU Measurement Error Term 
Due to the difference in measurement rates with camera measurements taken at time steps k and k 

+ 1, as well as faster IMU-measurements that are not synchronized with the camera measurements in 
general. We need the IMU error term ݁௦௞൫ܺோ

௞, ܺோ
௞ାଵ, ܼ௦௞൯ to be a function of robot states at steps k and 

k+1 as well as of all the IMU measurements in between these time instances (comprising 
accelerometer and gyro readings) summarized as ܼ௞

௦. Hereby we have to assume an approximate 
normal conditional probability density f for given robot states at camera measurements k and k + 1: 

݂൫݁௦௞หܺோ
௞, ܺோ

௞ାଵ൯ ൎ ࣨሺ0, ܴ௦௞ሻ                                            （9） 
For the state prediction ෠ܺோ

௞ାଵሺܺோ
௞, ܼ௞

௦ሻ with associated conditional covariance ܲ൫ߜ ෠ܺோ
௞ାଵหܺோ

௞, ܼ௦௞൯, 
the IMU prediction error term can now be written as: 

݁௦௞൫ܺோ
௞, ܺோ

௞ାଵ, ܼ௦௞൯ ൌ

ۏ
ێ
ێ
ۍ ෠ܲௐ

ௐௌೖశభ െ ௐܲ
ௐௌೖశభ

2 ቂݍොௐௌ
௞ାଵ⨂ݍௐௌ

௞ାଵିଵቃ
ଵ:ଷ

෠ܺ
௦௕
௞ାଵ െ ܺ௦௕

௞ାଵ ے
ۑ
ۑ
ې
∈ Թଵହ                       （10） 

This is simply the difference between the prediction based on the previous state and the actual 
state—except for orientation, where we use a simple multiplicative minimal error. 

Experiment Results 

We present experimental results using a custom-built sensor prototype as shown in Figure, which 
provides VGA color images and dual IR camera depth camera with 6 cm baseline synchronized to the 
IMU (BMX055) measurements. The proposed method runs in real-time for all experiments on a 
standard laptop (2.2 GHz Quad-Core Intel Core i5, 8 Gb RAM). We use g2o [5] as an optimization 
framework. A precise intrinsic and extrinsic calibration of the camera with respect to the IMU using 

[6] was available beforehand. The IMU characteristics used (Table I) are slightly more 
conservative than specified. 

Table 1 IMU CHARACTERISTICS 
Gyroscopes Accelerometers 

RMS 360  °/h RMS 4  mg 
RNSD 0.014 °/s/hz@10hz PSD 150 ug/hz 

Resolution 0.004 °/s Resolution 0.98 mg 
 

We adopt the evaluation scheme of [7]: for many starting times, the ground truth and estimated 
trajectories are aligned and the error is evaluated for increasing distances travelled from there. Our 
tightly-coupled algorithm is evaluated against ground truth. To ensure that only the estimation 
algorithms are being compared, we fix the feature correspondences for all algorithms to the ones 
derived from the tightly-coupled approach.  
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