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Abstract. In this paper, we propose a novel inertial-assisted slam system intended for low-cost micro
aerial vehicles (MAVs). The system sensor assembly consists of color camera, depth camera and a
inertial measurement unit (IMU) with three-axis accelerometers/gyroscopes. We use IMU data to
enable probability-based predetermined operations rather than hypothesis testing iterations to
accelerate pose calculation and obtain its optimal estimation through nonlinear optimization. We
illustrate the performance of our system by hovering a MAV in a GPS-denied environment which
position accuracy can reach 3.9cm RMSE in a 189 second flight and its robustness is also illustrated
in a complex indoor environment.

Introduction

As portable computing devices, such as smart phones, smart glasses and other devices, become more
ubiquitous, there is an interest to provide such devices with localization and mapping capabilities.
Localization can be partially addressed by relying on systems that use global positioning system
(GPS) signals or triangulation of cell tower signals to calculate position. However, such services tend
to be limited to use outdoors, since GPS signals or cell tower signals may be blocked within buildings.
Moreover, commercial localization and mapping services are generally unable to provide accuracy
higher than several meters with respect to position.

Visual-based inertial navigation systems rely on information obtained from images and inertial
measuring devices in order to achieve localization and mapping. Since visual-based inertial
navigation systems do not require signals from GPS or cell towers, such systems may be used indoors
where GPS and cell signals cannot reach or are unavailable due to obstacle or interference.
Furthermore, visual-based inertial navigation systems enable very high position accuracy, e.g., on the
order of centimeters. However, visual-based inertial navigation systems are typically computationally
intensive as they need to process large amounts of image data acquired from an image detector, such
as a camera, and inertial measurement unit (IMU), all in real-time. In addition, to achieve highly
accurate measurements of position, a history of information related to previous poses (positions and
orientations), inertial measurements and image features is typically stored, thus requiring device to
use a substantial amount of memory and consequently large computation time to process this
information.

System overview.

The visual-inertial fusion approaches found in the literature can be categorized to follow two
approaches. In loosely-coupled systems, e.g. [1], the IMU measurements are incorporated as
independent inclinometer and relative yaw measurements into the stereo vision optimization. Weiss
et al. [2] use vision-only pose estimates as updates to an EKF with indirect IMU propagation. Also in
[3], relative stereo pose estimates are integrated into a factor-graph containing inertial terms and
absolute GPS measurements. Such methods limit the complexity, but disregard correlations amongst
internal states of different sensors.
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Fig 1 Synchronized RGB, depth and IMU hardware

Notation and Definitions. (1) Notation: We employ the following notation throughout this work:
Fydenotes a reference frame A; vectors expressed in it are written as p,or optionally as p5¢, with B
and C as start and end points, respectively. A transformation between frames is represented by a
homogeneous transformation matrix Tpp that transforms the coordinate representation of
homogeneous points from Fg to F,. Its rotation matrix part is written as C§; the corresponding
quaternion is written as g5 = [T 7nT] € S3, € and 1 representing the imaginary and real parts. We
adopt the notation introduced in Barfoot et al. [1]: concerning the quaternion multiplication
q5 = q8®qS . (2) Frames: The performance of the proposed method is evaluated using a
stereo-camera/IMU setup schematically depicted in Figure 3. Inside the tracked body that is
represented relative to an inertial frame, Fyy, we distinguish camera frames, F, and the IMU-sensor
frame, Fg.
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Fig 2 Coordinate frames involved in the hardware setup used: two cameras are placed as a stereo
setup with respective frames F,. IMU data is acquired in Fs,. F is estimated with respect to F,.

(3) States: The variables to be estimated comprise the robot states at the image times (index k) X%
and landmarks X¢. X holds the robot position in the inertial frame P},°, the body orientation
quaternion qy,, the velocity in inertial frame V,° , as well as the biases of the gyroscopes b, and the
biases of the accelerometers b,. Thus, Xy is written as:

T T T
Xg = [PWS |qusTIVYS |b,T|b,"] € R®x S3 x R® (1
e T T .
Furthermore, we use a partition into the pose states, X = [Pws |qW5T] and the speed/bias states
T T . . . .
Xop = [sz |bgT |baT] . Landmarks are represented in homogeneous coordinates as in [4], in order

to allow seamless integration of close and very far landmarks: X; = [lx|ly|lz | lW]T € R*.

System Architecture. We try to descripted our system architecture as two parts, front-end and
back-end. As shown in Figure 3, Front-end module is in charge of calculating the pose information
between consequence frames. While back-end module is responsible for optimization. It contains
bundle adjustment and maintains a keyframes package and feature points map.
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Fig 3 System architecture

IMU accelerated pose calculation

We get RGB, depth and synchronized IMU data from the hardware. According to the intrinsic and
extrinsic parameters of RGB and depth camera, A RGB point cloud is generated. In the pre-process
module, we successfully combine IMU, a FAST feature detector and a rotated BRIEF feature
descriptor to approximate the rotation-invariant ORB features, used in large angular velocity
estimation. The pipeline mainly consists of five modules: re-mapping, FAST feature scoring, image
smoothing, non-maximal suppression and BRIEF descriptor generation.

At two successive sampling time, we combine the 3D position of a given feature point in the
previous image with the motion from IMU to predict its 2D projection in the next image. Then we use
a circle-window to search for the real corresponding feature point. For another matching scheme
considering the rectified stereo frames at the same sampling time, we are able to search the
corresponding features directly on the same row of the second image.

The 2D-3D correspondences are used for motion estimation, since 3D information can be
recovered from the pointcloud. Each correspondence can be represented by ¢; = {p;, u;}, where
p; = [x;, i, z;]" is the 3D coordinate in the previous frame and u; = [u;, v;, 1]7 is the 2D image
(undistorted and rectified) pixel index in the current frame. Then we have:

Aiu; = K(Rp; + t)

X 0 uC
K=10 f, v (2)
0O 0 1

where K is the camera intrinsic parameters, R and t are the rotation and translation between two
successive camera frames, and A; is the unknown scale factor.
Assume that we have n feature correspondences ¢y, ¢, ..., ¢;, and the exact rotation R from IMU

readings. Let R = [ry,15,73]" and t = [t,, ¢y, tZ]T respectively. Then we have d; =rip; +t,.
Replace A; with t and we get:
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[(ul - uc)r?,Tpl - fxrlTpl] [fx 0 U, — u1'|
(i —vIrspi—fipo | o fr ve—vy |
s =|: P e (3)
(un - uc)rgpn - fxrlTpn Ifx 0 U~ unl
(vn - vc)rSTPn - fyrszn lO fy .

Then we can obtain a least square solution to t with a minimal n of 2.

We shall now use IMU data to make the pose calculation more accuracy and fast. As IMU has a
high orientation accuracy in short time. So the initial guess of rotation R is provided by IMU. Then
we use Longest Successive Consistency (LONSC) method to reject outliers. We will explain the
details of this algorithm and compare it to the traditional well-known outlier rejection method —
RANSAC. The basic idea of LONSC is to estimate motion for every two successive correspondences
stored in a 1D array and regard the longest successive motion-consistent sequence (SMS) as an inlier
set. These inliers set will be used to estimate a motion model which can identify most of other inliers.
The LONSC algorithm architecture is shown in Algorithm 1.

Algorithm 1 Motion estimation based on LONSC
Require:
The sequence of correspondences {cl, c2, ...,
The rotation R provided by IMU;
Ensure:
The set of inliers;
The estimated translation t;

1: MLen=MTail=CLen=0,T=0, ® = @;
2: fori=2toncdo
3. if R, T and ci are consistent then
4: CLen=CLen + 1;
5: if CLen > MLen then
6: MLen = CLen, MTail =1;
7: end if
8: else
9: Use ¢ and c; to estimate T;
10: CLen=1;
11: endif
12: end for
13: Use {cMmTail-MLen+1s ---» CMTail} tO €stimate Af;

14: fori=1ton.do

15: ifR,  and c; are consistent then
16: Add c; to P;

17:  endif

18: end for

19: Use @ to estimate t;

20: return @, t;

So far, the front-end get the relative rotation and translation between two consequence frames. As
there is no costly RANSAC step involved—another advantage of tight IMU involvement. For the
subsequent optimization, a bounded set of camera frames is maintained, i.e. poses with associated
images taken at that time instant; all landmarks visible in these images are kept in the local map. As
illustrated in Figure 4, we distinguish two kinds of frames: we introduce a temporal window of the S
most recent frames including the current frame; and we use a number of N keyframes that may have
been taken far in the past. For keyframe selection, we use a simple heuristic: if the ratio between the
image area spanned by matched points versus the area spanned by all detected points falls below 50 to
60%, the frame is labeled keyframe.

484



£

ATLANTIS
PRESS Advances in Computer Science Research, volume 71

@0'. »l
J=XKF 4

Temporal/IMU window
Fig 4 Frames kept for matching and subsequent optimization

Tight coupled nonlinear optimization

We seek to formulate the visual-inertial localization and mapping problem as one joint optimization
of a cost function J(X ) containing both the (weighted) reprojection errors e, and the temporal error
term from the IMU e;:

J(x)= ZZ > e"kTW""+Ze AC (4)

i=1 k=1 jeO(i,k)
where k denotes the camera frame index, and j denotes the landmark index. The indices of

landmarks visible in the k" frame are written as the set J(X). Furthermore, er’] k represents the
information matrix of the respective landmark measurement, and W¥ the information of the k** IMU
error.

Inherently, the purely visual SLAM has 6 Degrees of Freedom (DoF) that need to be held fixed
during optimization, i.e. the absolute pose. The combined visual-inertial problem has only 4 DoF,
since gravity renders two rotational DoF observable. This complicates fixation. We want to freeze
yawing around the gravity direction (world z-axis), as well as the position, typically of the first pose

(index k;). Thus, apart from setting position changes to zero, (5p%5k = 03, We also postulate
Sakt = [fakt|sakt|0]”.

In the following, we will present the (standard) reprojection error formulation. Afterwards, an
overview on IMU kinematics combined with bias term modeling is given, upon which we base the
IMU error term.

1) Reprojection Error Formulation:
We use a rather standard formulation of the reprojection error adapted with minor modifications
ey = zK — by (Te s TE L") (5)
Hereby h;(:--) denotes the camera projection model and z“/’ stands for the measurement image
coordinates. The error Jacobians with respect to minimal disturbances follow directly.
2) IMU Kinematics

Under the assumption that the measured effects of the Earth’s rotation is small compared to the
gyroscope accuracy, we can write the IMU kinematics combined with simple dynamic bias models
as:

WS _ . WS
bw™ = Uy

qws = EQ(GEVS: Wg, bg)CIWS

1.71‘//://5 = Cws(ayy/s + Wq — ba) + gW (6)
b, =w
g by

. 1
ba = —;ba+Wba

T
where the elements w = [WgT 2wl ng, w,fa] are each uncorrelated zero-mean Gaussian white

noise processes. dy° are accelerometer measurements and gy, the Earth’s gravitational acceleration
vector. In contrast to the gyro bias modeled as random walk, we use the time constant T > 0 to model
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the accelerometer bias as bounded random walk. The matrix Q is formed from the estimated angular
rate @¢° = wyy® + w, — by, with gyro measurement @g’>.
So the linearized error dynamics take the form
oXy = F.(X3)0%X; + G(X)w D)

where G is straight-forward to derive and:

03><3 [Cws SV]X Cws 93><3 03><3
03><3 _ 03><3 03>><3 CWS 03><3 ( 8 )
|:C — 03><3 _Csw [vv gl _[s o _[s vle o -l 3
03><3 03x3 03><3 03><3 03><3
1
03><3 03x3 03x3 03><3 _; |3

3) Formulation of the IMU Measurement Error Term
Due to the difference in measurement rates with camera measurements taken at time steps k and k
+ 1, as well as faster IMU-measurements that are not synchronized with the camera measurements in
general. We need the IMU error term ek (X K Xk+1 7k ) to be a function of robot states at steps k and
k+1 as well as of all the IMU measurements in between these time instances (comprising
accelerometer and gyro readings) summarized as Z;. Hereby we have to assume an approximate
normal conditional probability density f for given robot states at camera measurements k and k + 1:
f(ek|xk XE+1) ~ (0, RE) (9)
For the state prediction XX+ (XE, Z5) with associated conditional covariance P(5Xk**|xk, ZK),
the IMU prediction error term can now be written as:

|- ﬁmvysk+1 _ vay5k+1 -|
~K k+171
2 [QW§1®QWJ§1 ]
Pk+1 k+1
sb+ - Xsb+
This is simply the difference between the prediction based on the previous state and the actual
state—except for orientation, where we use a simple multiplicative minimal error.

ek(Xxk Xk, zk) = € R'® (10

1:3

Experiment Results

We present experimental results using a custom-built sensor prototype as shown in Figure, which
provides VGA color images and dual IR camera depth camera with 6 cm baseline synchronized to the
IMU (BMXO055) measurements. The proposed method runs in real-time for all experiments on a
standard laptop (2.2 GHz Quad-Core Intel Core 15, 8 Gb RAM). We use g20 [5] as an optimization
framework. A precise intrinsic and extrinsic calibration of the camera with respect to the IMU using

[6] was available beforehand. The IMU characteristics used (Table I) are slightly more
conservative than specified.

Table 1 IMU CHARACTERISTICS

Gyroscopes Accelerometers
RMS 360 °/h RMS 4 mg
RNSD 0.014 °/s/hz@10hz PSD 150 ug/hz
Resolution 0.004 °/s Resolution 0.98 mg

We adopt the evaluation scheme of [7]: for many starting times, the ground truth and estimated
trajectories are aligned and the error is evaluated for increasing distances travelled from there. Our
tightly-coupled algorithm is evaluated against ground truth. To ensure that only the estimation
algorithms are being compared, we fix the feature correspondences for all algorithms to the ones
derived from the tightly-coupled approach.
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Fig 5 experiment result from a 300m” room flight
Table 2 Statistical Error Analysis
RMSE Mean Medium Std Min Max
3.93cm 0.3cm -0.73 3.63cm -10.1cm 17.1cm

As an experiment, the sensor is fastened on a quad-drone while flying in a 300 m” room. This
sequence exhibits challenging high dynamic, lighting and texture conditions while flying through
lights and box. The odometry comparison plot in Figure demonstrates the applicability of the
proposed method in such scenarios with a loop-closure error of 17.1 cm, and its stand error can reach

3.63 cm. As can be seen from figure 5 (a), our tightly coupled visual-IMU SLAM perform better than
pure visual SLAM.

Conclusion

This paper presents a method of tightly integrating inertial measurements into keyframe-based
visual SLAM. The combination of error terms in the non-linear optimization is motivated by error
statistics available for both keypoint detection and IMU readings—thus superseding the need for any
tuning parameters. Using the proposed approach, we obtain global consistency of the gravity
direction and robust outlier rejection employing the IMU kinematics motion model. At the same time,
all the benefits of keyframe based nonlinear optimization are obtained, such as pose keeping in
stand-still. Results obtained using a stereo-camera and IMU sensor demonstrate real-time operation
of the proposed framework while exhibiting increased accuracy and robustness over vision-only or a
loosely coupled approach.
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