
DT : a detection tool to automatically detect code smell in software
project

Xinghua Liu1,a and Cheng Zhang2,b
1School of Computer Science and Technology，Anhui University, China
2School of Computer Science and Technology，Anhui University, China

axinghua.liu@ahu.edu.cn，bcheng.zhang@ahu.edu.cn

Keywords: code smell; detection; detection tool; metric; threshold

Abstract . Context: Code smell can make the decline of code quality. Code smell is not a bug, and
also can't make system to run exceptionally. It just can make some difficulties for software
developers to understand and maintain the source code of projects, and then cause unnecessary
maintenance costs. Objective: We try to more accurately detect code smell. Method: We put
forward our smell detection tool: DT for short. We use DT to detect eleven code smells through
detecting two kinds of projects: lab project, industrial project. Result: We get good results by using
our Smell Detection Tool (DT), comparing with some famous detection tools: Checkstyle, PMD,
JDeodorant and iPlasma. Conclusion: Our method Smell Detection Tool (DT) can be used to detect
11 kinds of code smell, In the future, we will go on detecting more code smells that can't be
detected, and then do a survey about code smell among the software developers and maintainers.

1.Introduction
Code smell is an irrationality of code of software projects. They impede the evolution of code, so

that they will result in an aftereffect that software developers pay more costs on maintenance.
 For detecting code smell, researchers develop detection tool to detect code smell automatically in

source code of project. Among these detection tools, there are some famous detection tools:
Checkstyle1, Infusion2, iPlasma [1], PMD [2], JDeodorant [3] InFusion, Stench Blossom and so on.
Most detection tools can detect three or four code smells.

The other parts of paper are as follows: Section 2 describes the related work. The Detection
Theory is informed in Section 3. Experiment & Discussion is shown in Section 4. Section 5 comes
to a conclusion and future work.

2.Related work
Fowler et al. [4] firstly put forward a concept Code Smell, which can result in some problems of

maintainability. Dag Sjoberg et al. [5] mention the questions of maintenance, if we leave code smell
aside, it causes a vexatious loss to the quality of code. Code smell is involved with project code.
What's more, the size of industrial project is so enormous. This is not practical to find code smell by
hand in project. Therefore code smell detection tools arise gradually.

Researchers gradually put forward some detection tools. The first detection tool is released by
Eva van Emden et al. [6]. There are some famous detection tools: Checkstyle, iPlasma, PMD,
JDeodorant and so on.

Marinescu, Cristina, et al [7] also put forward a detection tool iPlasma. iPlasma is a sub version
of InFusion and detect 4 code smells, this tool has lower detection precision. Xinghua et al.[8] also

1 http://checkstyle.sourceforge.net.
2 http://www.intooitus.com/inFusion. html

4th International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2016)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 71

681

carry out a systematic literature review of code smell. They introduce different detection tools of
code smell. They make a comparison among these tools.

 We put forward our own code smell detection tool ：DT. What's more, we want to more
precisely detect these code smells by using our own tool.

3.Detection Theory
3.1Research Questions
Question 1: Do we get higher detection precision than other well-known detection tools?
 In the past two decades, lots of detection tools had been proposed. They can support to detect

several code smells, but the precision is different among these detection tools. Some detection tool
has lower precision.

3.2 Detection Thoughts
We summarize and analyze these detection achievements of other research, we put forward our

own detection thought. Through our thought, we put forward our own detection tool named DT.
 In our detection tool, we use one main detection thoughts: Abstract Syntax Tree (AST) .
3.2.1 Abstract Syntax Tree
Abstract Syntax Tree (AST) uses a tree structure to represent the abstract syntax of source code.

Each node of the tree corresponds to a structures in source code. The main work of AST is to
decompose the sentences of projects.

3.3 Detection Tool of Code Smell
In the past decades, researchers develop a lot of detection tools to detect code smell. There are

appearance of several famous detection tools: Checkstyle , JDeodorant, PMD, InFusion, iPlasma
and Stench Blossom. We informed these famous detection tool for two reasons: first one is that we
want to introduce existing results of detection; the second one is that we will compare our detection
tool DT with these detection tools in posteriori experiment.

3.4 Detection of Code Smell
One purpose of code smell research is to reduce maintenance costs. If we detect the code smell

in project by hand, it's not still reducing the cost, instead increasing the burden of work. So the code
smell researchers develop automatic detection tool to detect code smell. The purpose of this section
is that we introduce the detection of code smell. Through this section, we will understand the
detection of code smell as a whole. Meanwhile, we through analysis of table 3 to choose code
smells that we need to detect in projects.

Large Class There are 15 detection tools supporting the detection of Large Class in table 3.
Large Class is one class that burdens too much responsibility. During the detection, detection tools
often use the Line of Code (LOC) as a metric to measure a project whether it has Large Class or not.
In the same way, long method also take responsibility that other methods should take. Detection
tool can use the LOC or other same metrics to judge whether a method has long method or not.
Because of the simple metric, so there are a lot of Detection tool can detect Large Class and Long
method.

3.5 Detection Metrics
In the former section, we discuss Detection Thoughts in macroscopic angle. In this section, we

discuss the specific detection metrics according to each code smell. We introduce our detection tool
DT by detecting code smells Large Class .

3.5.1 Large class
Large Class is one class that burdens too much responsibility. For detecting Large Class, we

consider two elements: File Length (FL) and percentage (P).
File Length (FL) is the number of code lines per file; Proportion (P) is the percentage that the

numbers of code lines of every file take up the total numbers of code lines of project.
We think it is inadequate that detection tool Checkstyle only consider the single element: File

Length(FL). Because we may encounter some extreme situations. For instance, the file has too
much code lines , but it only takes up a very small proportion, so it is not a large class. Secondly,

Advances in Computer Science Research, volume 71

682

we can't only think about the percentage singly too, for example, if a small project only have two
files, the percentage is larger than 20%, but the file length is too small, we can't set it as a larger
class.

Table 1: Weight Distribution
Length weight Percentage weight

< 500 0.4 20% 0.3
>200 0.3 10% 0.1

As the Definition between File Length and weight(Table 1), when the FL is larger than 500, we

give the file 0.4 weight; when the FL is larger than 200 and smaller than 500, we give the file 0.3
weight, other situations aren't be considered.

As the Definition between Percentage and weight(Table 1), when the P is larger than 20%, we
give the file 0.3 weight; when the P is larger than 10% and smaller than 20%, we give the file 0.1
weight, other situations aren't be considered.
 We combine weight of File Length(FL) and weight of percentage(P), and then produce final
weight value:

weight of FL + weight of P = total weight
 Summing up the above, when file length is greater than 500 , and the percentage is greater than
20%;
 when file length is greater than 500, and the percentage is greater than 10%;

when file length is greater than 200. and the percentage is greater than 20%;
 If we encounter the three above situations, we can judge the class is a large class.

4 .Experiment & Discussion
4.1 Experiment system
We carry out our comprehensive experiment on t : a research lab project. In table 2, the lab

project PLOW_Code_Smells has 16,627 LOC. This project has 43 java files. Although it is a small
project, it has some classical code smells, we can get more deeply understanding of code smell
through carrying out experiment on this research project. Each detection tool can support to detect
code smell of lab project. We will carry out comparison among these tools.

Table 2: Weight Distribution
System Project Name Project type LOC
System A PLOW Code Smells Lab Project 16 K LOC

4.2 Large Class
We carry out a comparison with detection tools: Checkstyle. Checkstyle support to detect Large

Class. Checkstyle use a XML file to set the detection threshold.
In System A, when Checkstyle set the detection threshold as 500 LOC, we can get 9 classes that

have the inclination of Large Class in table 3. We can see the two Large Class is DateAxis.java and
AbstractCategoryItemRender.java. We can find that DateAxis.java has 1,872 LOC, it accounts for
11.25% size of project. AbstractCategoryItemRender.java has 1,843 LOC, it accounts for 11.07%
size of project. The two class is actual Large Class.

If we change the threshold LOC from 500 to 1000 in table 3. Checkstyle and our detection tool
have the same detection result: 2 Large Class. The two classes are classes that are mentioned before:
DateAxis.java and AbstractCategoryItemRender.java.

Table 3: Large Class

Detection Tool
Threshold

500 1000
DT 2 9

Checkstyle 9 2

Advances in Computer Science Research, volume 71

683

5.Conclusion and future work
Our detection tool DT can get better results and precision than checkstyle, PMD and iPlasma in

the detection of code smell.
In the future, we should make our detection tool to detect these code smells that have been less

attention to, specially these code smells that no detection tool can detect; secondly, we should have
more communications with industrial field, and doing a survey about code smell among the
software developers and maintainers.

6.Acknowledgment
 This work is supported by National Natural Science Foundation of China(NO. 61402007) and

the natural science foundation of Anhui Province (No. 1408085QF108).

7. References
[1] C. Marinescu, R. Marinescu, P. F. Mihancea, and R. Wettel. iplasma: An integrated platform for
quality assessment of object-oriented design. In In ICSM (Industrial and Tool Volume. Citeseer,
2005.
[2] S. Slinger. Code smell detection in eclipse. Delft University of Technology, 2005.
[3] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. Jdeodorant: Identification and removal of
type-checking bad smells. In Software Maintenance and Reengineering, 2008. CSMR 2008. 12th
European Conference on, pages 329–331. IEEE, 2008.
[4] M. Fowler. Refactoring: improving the design of existing code. Pearson Education India, 1999.
[5] D. Sjoberg, A. Yamashita, B. C. D. Anda, A. Mockus, T. Dyba, et al. Quantifying the effect of
code smells on maintenance effort. Software Engineering, IEEE Transactions on, 39(8):1144–1156,
2013.
[6] E. Van Emden and L. Moonen. Java quality assurance by detecting code smells. In Reverse
Engineering, 2002. Proceedings. Ninth Working Conference on, pages 97–106. IEEE, 2002.
[7] D. Sjoberg, A. Yamashita, B. C. D. Anda, A. Mockus, T. Dyba, et al. Quantifying the effect of
code smells on maintenance effort. Software Engineering, IEEE Transactions on, 39(8):1144–1156,
2013.
[8] C. Z. Xinghua Liu. the detection of code smell on software development: a mapping study.
Submitted.

Advances in Computer Science Research, volume 71

684

