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Abstract

The Control of Genetic Algorithms parameters allows to optimize the search process and improves the
performance of the algorithm. Moreover it releases the user to dive into a game process of trial and failure
to find the optimal parameters.
Yet the control of parameters has received much attention in the case of static optimization problems,
its investigation in the case of dynamic optimization problems (DOPs) is certainly a promising area of
search. Indeed, in the case of DOPs the problem is not just to find the optima but to track the moving
optima over time, so the parameters must be adapted to this dynamic environment.
The proposed algorithm Parameters Control for Dynamic Optimization (PCDO) is based on Genetic Al-
gorithm with Fitness Sharing (GAFS). To solve DOPs by controlling GAs parameters, PCDO uses several
strategies. First, an unsupervised fuzzy clustering method is used to track multiple optimums and to per-
form GAFS. Second, a modified enthusiasm selection is used to adjust the selection pressure. Third, a
clustering multi non uniform Mutation is utilized to locate an unexplored search space. Fourth, a novel
technique with multiple crossover is applied to guide the algorithm in promising regions of the search
space. Fifth, a self adaptive mutation rate is evolved through generation with a learned parameter, in
order to control the diversity of the population.
In the concern of maintaining the diversity of the population, a new genetic operator called Fertilization is
proposed. PCDO is tested on six problems generated from Generalized Dynamic Benchmark Generator
(GDBG). Experimental results demonstrate that PCDO outperforms other GAs on DOPs. Moreover, the
ability of PCDO to maintain diversity is demonstrated by a new diversity measure.

Keywords:Genetic Algorithms, Unsupervised Learning, Fuzzy Clustering, Dynamic Optimization, Evo-
lutionary Algorithms, Fitness Sharing, Multi-modal function optimization, Generalized dynamic bench-
mark generator (GDBG).
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1. Introduction

In the real world, many optimization problems are
time-varying1,2. In fact, the challenge of these opti-
mization problems consists in locating and tracking
the moving optima over time.
Several researchers have focused on solving DOPs.
GAs are the most used in DOPs because GAs are in-
spired from the Darwinian evolution, which is con-
fronted with a dynamic environment in nature. How-
ever, when solving DOPs, Standard GAs suffer from
a major problem which is the convergence. Conse-
quently, they can not be adapted to the new envi-
ronment when change occurs and they progressively
loose diversity through generations.
To address this problem of diversity4, several ap-
proaches based on GAs have been developed such
as increasing mutation rate10, using the immigrants
approaches17,9,28,22, using explicit or implicit mem-
ory 29,5,24, spreading out the population by multi-
ple sub-populations approaches6,27, promoting di-
versity by an artificial objective function31, and im-
proving GAs by hybridization strategies8,32.
To maintain diversity in population, GAs parameters
must be taken into consideration and adapted dy-
namically. This issue of adapting parameters is an
important area of search in GAs, especially, static
problems that use adaptive tuning parameters have
received considerable attention33. Indeed, mutation
and crossover rates have been investigated34,35,36

and fuzzy logic controller that sets the parameters
has been tested37. Nevertheless, adjusting param-
eters would probably turn out to be most beneficial
in connection with DOPs. But, it is not sufficient to
adapt one parameter like the hyper-mutation factor,
or to increase an exploration parameter for solving
DOPs. Rather, we should maintain a balance be-
tween the exploration and exploitation parameters.
In PCDO, the mechanism of diversity is based on the
concept of fitness sharing and this mechanism is en-
hanced by adapting dynamically GAs parameters. In
order to maintain a balance between exploration and
exploitation parameters, the system architecture of
PCDO is built on two components. The first compo-
nent is a GA with Fitness Sharing (GAFS) enhanced
by four remedies, the second one is an unsupervised
fuzzy clustering algorithm.

For the purpose of enhancing the mechanism of di-
versity, some parameters of the first component are
dynamically adapted. First, a new genetic oper-
ator called Fertilization is presented. The princi-
ple of this operator is to add new individuals in
the current population. These new individuals are
the prototypes (Vi) given by the second component.
Then, we apply mutation and restricted crossover
for only those prototypes. This new sub-population
is added to the current population with elitism re-
placement. Second, a Modified Enthusiasm Selec-
tion 16, 18 (MES), is used to dynamically adjust the
selection pressure. Third, a new mutation opera-
tor named Clustering Multi Non Uniform Mutation
(CMNUM) with a self adaptive mutation rate is used
to find a new peak in new search space. Fourth, a
new crossover based on multiple-crossover (CMC)
between parents, prototypes (Vi), and best individu-
als is used to find dynamically the regions that have a
high probability of containing good solutions. This
crossover method is able to explore other areas of
the search space.
To form the niches, the second component is used in
order to identify clusters that correspond to niches.
The number of clusters (C), as well as the charac-
teristics of each detected cluster (Ci), are automati-
cally provided by this unsupervised fuzzy clustering
without requiring any prior knowledge on the dis-
tribution of population. The characteristics (C, the
prototypes Vi , the cluster radius ri) are used to over-
come the weakness of fitness sharing.
This paper is presented in the following manner.
First, we review the Clustering Algorithms used in
our approach. Second, we provide a description for
Fitness Sharing. Third, we present our proposed
method, followed by experimental results and an
analysis of these results. Finally, we conclude with
a discussion and directions for future research in
PCDO.

2. Clustering Algorithm

In GAs, individuals are usually created at random
manner. Accordingly, information on the distribu-
tion of individuals may, therefore, be missing and
clusters may overlap. The benefit of using fuzzy
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clustering consists in the fact that it efficiently deals
with overlapping clusters, and does not require prior
knowledge on individuals distribution. Drawing on
an inter-points similarity measure, this clustering al-
gorithm is founded in two major steps. The first step
is an Unsupervised Fuzzy Learning (UFL)7 proce-
dure that explores the individuals of population P(t)
for discovering the clusters. Besides, the number of
clusters (C), UFL provides the initial prototypes (Vi ).
The second step is an optimization procedure that
applies Fuzzy C-Means (FCM)3 algorithm with the
aim to optimize the C learned prototypes.
UFL starts with generating the first cluster around
the first encountered individual. The other individu-
als are then sequentially explored. A new cluster is
automatically created whenever the current individ-
ual presents a similarity less than a prefixed thresh-
old Smin, to the already existing prototypes.
The similarity measure controls how the clusters are
formed. In this study, the similarity measure is based
on Euclidean distance. To measure the similarity be-
tween any pair of p-dimensional vectors (individu-
als)Ii andI j (Ii , I j ∈ℜp), the following expression is
used:

S(i, j) = 1− d(Ii , I j)√
p

(1)

Where d(Ii , I j ) is the Euclidean distance measure,
calculated on the basis of the normalized values ofIi
andI j .
In equation(1), ifIi is replaced by a cluster proto-
typeVj , S(i,j) can be interpreted as the membership
degreeµi, j of I j to the jth cluster.

µi, j = 1− d(Ii ,Vj)√
p

(2)

The equation(2) is used in each iteration of the learn-
ing process for assessing the membership degree of
the current individual to all the C existing clusters
(C being variable). Hence, the condition to create a
new cluster is formulated as follows:

max
16 j6C

(µi, j )< Smin

If this condition is not verified, the prototype of each
detected cluster should be updated according to the

following equation:

Vj =
∑i

k=1 µk, j I j

∑i
k=1 µk, j

;16 j 6C (3)

Where i denotes the current individual index.
Generally, in the absence of any prior information to
the selection of good value forSmin, the algorithm
is automatically iterated for different values ofSmin,
belonging to an interval [ξmin,ξmax], where:

ξmin = min
i 6=k

(S(Ii , Ik)) (4)

ξmax= max
i 6=k

(S(Ii , Ik)) (5)

However, this clustering algorithm is sensitive to the
choice of the similarity threshold valueSmin, in our
clustering algorithmSmin is varied within the range
ξmin,ξmaxwith a step equal to 0.01 (step=0.01). Con-
sequently, the different values ofSmin may lead to
different results. So, a criterion validity is used in
the third phase. This validation (VAL) has used the
normalized partition entropy3 which is defined as
follows :

h(U) =− 1
log(C)

1
N

N

∑
i=0

C

∑
j=0

[ui j log(ui j )] (6)

Where U=[µi, j ] matrix of membership degrees;
C:Number of clusters; N:Population Size.
The best solutionU∗ is the one that minimizes h(), in
this case the number of clustersC∗ given by UFL() is
the optimum found and also the prototypeV∗ given
by FCM(). The proposed clustering algorithm UFL-
FCM-VAL is described as follows:
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Data: Individuals: (I1, I2, .....IN)
Result: Prototypes (V∗1 ,V

∗
2 , ...,V

∗
C ); C∗:

Number of Clusters
Initialization ;
Smin← ξmin ; hmin← 1 ; C∗← 2;
while Smin < ξmax do

Apply UFL();
Apply FCM();
if (hmin < h()) then

hmin← h();
C∗←C;
V∗←V;
U∗←U ;

end
Smin← Smin+step;

end

Algorithm 1: Clustering Algorithm: UFL-
FCM-VAL()

The solutionU∗ is then defuzzified in order to as-
sign each individual to its natural cluster. The deci-
sion rule used for this operation consists in assigning
each individual to the cluster for which it presents
the maximum membership degree. The result is a fi-
nal hard C-partition with C prototypesV1,V2, ...,VC.
These prototypes represent the tracking optima and
also the individuals for fertilization operator.

3. Fitness Sharing

The mechanism of niching methods are based on
the principle of promoting the formation of artifi-
cial niches during the evolutionary process. Niching
methods try to preserve a diversity within the popu-
lation to avoid premature convergence of the algo-
rithm. This paper is focused more specifically to
fitness sharing30 which combined with the method
(UFL-FCM-VAL), presented previously, to obtain a
more efficient hybrid model.
Fitness sharing is used for preserving and enhanc-
ing variation within population. The fitness sharing
maintains genetic diversity in a population by en-
couraging the niche concept and permit the inves-
tigation of many optima in the area search space.
This concept is built by penalizing the individuals in
densely populated regions. In this fact, the individ-

ual fitness is divided by its niche count. The shared
fitness value fsh for an individual is as follows:

fsh,i =
fi

∑N
j=1sh(d(i, j))

(7)

where fi is the Fitness value, N is the population size
and d(i, j) is a distance measure between the individ-
uals i and j. The sharing function (sh) measures the
similarity between two individuals:

sh(d(i, j)) =

{

1−
(

d(i, j)
σs

)α
if d(i,j)< σ s

0 otherwise.
(8)

Whereσs denotes a threshold of dissimilarity andα
is a constant which regulates the shape of the shar-
ing function.
The primary problems of GAFS are the number q
and the niche radii are often estimated. Furthermore,
making σs the same for all individuals means that
the peaks are considered as nearly equidistant in the
domain.26

To overcome these limitations, our approach uses a
fuzzy clustering technique in order to determine au-
tomatically the number of niches q (q=number of
clusters given by UFL-FCM-VAL) . Moreover, the
radius of each niche is continuously updated.

4. PCDO algorithm

The aim of PCDO is to determine and to track dif-
ferent optima of dynamic functions. Moreover, the
number of peaks q and the characteristics corre-
sponding to niches (center, radius, cardinal) are pro-
vided by the first component of PCDO. The idea is
to apply UFL-FCM-VAL to population of solutions
produced by GAFS, in order to detect the presence
of homogeneous and well separated clusters. If the
entropy of the fuzzy c-partition obtained7 is higher
than (10−2), these solutions will again be evolved
by GAFS and classified by UFC-FCM-VAL.
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Fig. 1. PCDO Structure.

PCDO is an iterative technique (Figure 1) based
on two components. The first component (GAFS)
is a GA which combines fitness sharing, in order to
maintain diversity and to encourage speciation. The
second component (UFL-FCM-VAL) is based on
an unsupervised fuzzy clustering algorithm. UFL-
FCM-VAL performs the partition of the individuals,
which are provided by GAFS, into a set of C clus-
ters. Each of the C clusters corresponds to a niche.
Hence, individuals once again undergo a cyclic pro-
cess throughout the two components. PCDO system
is based on the following:

1. the number of clusters (C) is computed by
UFL -FCM-VAL;

2. prototypes, provided by UFL-FCM-VAL, rep-
resent the individuals used in fertilization op-
erator;

3. each cluster represents a niche;

4. The subpopulations and their appropriated
subspaces are generated using the characteris-
tics (center and radius) of each identified clus-
ter;

5. In order to identify a non-detected niche in the
previous cycle, GAFS is used again.

The different components are described in the next
sections.

4.1. GAFS component

To solve the problem, a set of candidate solutions
is randomly created. This set of solutions is called
population. Then, the quality of each individual is
measured by the fitness sharing and the best ones
are selected as parents. The chosen individuals re-
produce and undergo a variation process by means
of genetic operators, such as crossover and muta-
tion, creating a new offspring population. Finally,
the next generation of the population is formed by
combining parent and offspring populations. This
process is repeated until a certain stop condition,
e.g., number of generations is reached. The details
are as follows:
The initialization of the population of individuals
is generated by a random process, the population
size is N = 100. The real encoding scheme is
used in the PCDO. For the crossover operator, we
have used a Clustering Multiple Crossover , with
crossoverrate=(1−mutation rate). For the muta-
tion, we have considered Clustering Multi Non Uni-
form Mutation. For the mutation rate, we have cho-
sen an adaptive mutation rate starting at 0.4. For
selection operator, We have used a Modified Enthu-
siasm Selection.
GAFS component makes the computation of the fol-
lowing for each cluster or niche i:

• Cardinal of the niche: card (i) = total number of
individuals assigned to the niche i

• Prototypes (Vi ): the mean vector of the cluster
elements;

Vi =
1

card(i)

card(i)

∑
j=1

I j (9)

• radius of the niche

σi = maxI∈niche(d(I ,Vi)) (10)

σs = max16i6C(σ i) (11)
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4.1.1. Fertilization Operator

After calculating and updating the prototypes by
UFL-FCM-VAL, the fertilization operator allows to
insert new individuals in the population. The first
individuals in this sub population are the prototypes
F(t), we evolved the individuals by respecting the
following steps:

• Apply crossover, Let If , Im are two parents, the
children are:
C1=α*I f +(1-α)*I m

C2=α*I m+(1-α)*I f ; Whereα ∈[0,1]
the result is the sub populatiońF(t);

• apply Gaussian mutation (the result is the sub pop-
ulationF̈(t));

• each individual in{F(t)U F́(t)U F̈(t)} replaces the
nearest individual in the population P(t) if it has a
higher fitness.

4.1.2. Modified Enthusiasm Selection

Modified Enthusiasm Selection (MES)16 , is based
on standard tournament selection. But MES pro-
vides a new opportunity for individuals who are ex-
cluded by the tournament selection. These individ-
ual are ranked according to their fitness and a per-
centage of enthusiasmλ is given to these individuals
in order to increase their fitness. After the enthusi-
asm individual has been selected, MES put it to its
raw fitness. MES guards also in each iteration the
best individual. The tournament size (k) is the num-
ber of clusters (C) given by UFL-FCM-VAL7. This
tournament size controls better the selection pres-
sure18. In the pseudo code of MES, TabR represents
an array of integer containing, with random manner,
the indices of individuals in the population; TabW
represents an array of individuals indices’s who will
be selected by the selection method; TabS represents
an array of individuals indices’s, these individuals
are sorted in a decreasing order of Shared Fitness
( f ()). TabT represent an array ofk−1 indidual fit-
ness.
MES() summarizes the pseudo code of the selection
method.

Data: Array: (TabR(), TabS() )
Result: Array: (TabW())
Initialization ;
k←C;
l ← 0;
for i← 0 to k do

ShuffleTabR() ;
j← 0;
while j < N do

C1← TabR( j) ;
for m← 1 to k do

C2← TabR( j +m);
if f(C1)< f(C2) then

C1←C2
end
if m> 1 then

aux←m;
for m← 1 to k do

TabT(m)← f (I j+m);
f(I j+m)=λ f((I j+m);

end
m← aux;

end
end
for m← 1 to k do

f (I j+m)← TabT(m);
end
j ← j +k+1;
TabW(l)←C1;
TabW(l +1)← TabS(l) ;
l ← l +2 ;

end
end

Algorithm 2: Modified Enthusiasm Selection
MES()

4.1.3. Clustering Multi Non Uniform Mutation

The aim of the mutation operator is to find an un-
explored search space. However, the classical mu-
tation operator cannot satisfy this requirement in an
effective manner. If the offspring fitness is less than
the parent fitness, it is difficult to be retained. Even
if this offspring is located in an unexplored search
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space. So, this unexplored search space cannot be
considered by this mutation operation.
To ensure the population diversity, the Clustering
Multi Non Uniform Mutation (CMNUM)14 is con-
structed in the purpose of keeping the offspring
which is located in the unexplored search space. For
that, CMNUM has inserted the offspring whose fit-
ness function is less than those of the parents but
only if the offspring do not belong to already exist-
ing clusters.
The pseudo code CMNUM() summarizes the muta-
tion operator:

Data: (Individual: Parent)
Result: (New Individual: Child)
// Let Class1={C1,C2,...,Cc};
// Class1 set of clusters given by
UFL-FCM-VAL ;
Child is created conforming to equation 12;
if (Child ∈ Class1)then

if (f(child)<f(Parent))then
Child← Parent

end
else

P(t)=P(t)∪{Child}
end

Algorithm 3: Clustering Multi Non Uniform
Mutation, CMNUM()

Child=

{

Parent+(XUB−Pareent).A if r< 0.5
Parent+(Parent−XLB).A if r> 0.5

(12)
Where

A= 〈r1(1−
c

cmax
)〉b (13)

where r and r1 are uniform random numbers in
(0,1), andb is the shape parameter14. XUB is the up-
per bound andXLB is the lower bound.C is the num-
ber of clusters given by UFLFCM-VAL andCmax is
equal to Maximum number of clusters.

4.1.4. Self Adaptive Mutation rate

The most technique used to adapt the mutation rate
is the self adaptive method where the value ofpm

is modified by evolving it. The idea is that good

parameter value will provide an evolutionary advan-
tage to individual it belongs to and therefore it will
itself breed in the population. During the dynamic
optimization process, clustering algorithms can ex-
tract information about the diversity of the popula-
tion. If the number of clusters is high, we can con-
clude that the population is diversified. Otherwise,
we must diversify the population. That is why, the
mutation rate formula used depends on the number
of clusters.

pm(t +1) = (1+
1− pm(t)

pm(t)
exp(−γN(0,1)))−1

(14)
Such the mutation rate is distributed according to a
logistic normal distribution;
The learning rateγ controls the size of adaptation
steps.

γ = (λ
C

Cmax
+(1−λ )| (O(t)−B(t))

max(O(t),B(t)
|) (15)

λ depends the nature of the problem, C is the num-
ber of clusters given by UFL-FCM-VAL, Bt is the
best solution obtained by an algorithm just before
the environmental change, Ot is the optimum value
of the environment at time t.
If C < 5, the cluster number is low then the popula-
tion should be diversified, in this case the mutation
rate increases. But if the number of cluster is hight
and| (O(t)−B(t))

max(O(t),B(t) | is low, i.e., the performance begins
to decline in this case the mutation rate increases.

4.1.5. Clustering Multiple Crossover

Crossover plays an important role in the implemen-
tation of robust adaptive GAs. Clustering Multiple
Crossover (CMC) operates in three ways. First, a
random pair of parents (x,y) produces two new off-
springs (K11,K12):

K11= 0.5[(1+βq)x+(1−βq)y] (16)

K12= 0.5[(1−βq)x+(1+βq)y] (17)

if u< 0.5 then

βq = exp(−αu) (18)

else
βq = exp(α(u−1)) (19)
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Where u a random number in (0,1)

α =
C

Cmax
(20)

Where C the number of clusters given by UFL-
FCM-VAL and Cmax=maximum number of clusters,
in this study we choose Cmax=70.
Second, a set S(t)={T% of the best individuals in
the population} gives the first parent P1. The sec-
ond parent P2 is chosen randomly in the population,
but P1 and P2 belong to different clusters. This pair
of parents (P1,P2) produces (K21,K22):

K21= α ∗P1+(1−α)∗P2 (21)

K22= α ∗P2+(1−α)∗P1 (22)

Third, a set Prot(t) of the prototypes given by UFL-
FCM-VAL gives the first parent P1. The second par-
ent P2 is chosen randomly in the population, but P1
is not the prototype of the cluster that belongs P2.
This pair of parents (P1,P2) produces (K31,K32) ac-
cording to equations 21 and 22. We choose the best
pair of CHIL1={K11,K12,K21,K22,K31,K33}. We
insert also in the population the elements of CHIL1
which present a small similarity, less thanSmin, to
the entire already existing prototypes. Our method,
Clustering multiple crossover, allows to exploit the
search space and also to explore other areas of the
search space.

4.2. UFL-FCM-VAL component

Once UFL-FCM-VAL() is applied, a defuzzification
procedure is performed in order to affect definitely
each individual to its natural cluster for which it
presents the maximum membership degree. This re-
sults in a final hard C-partition with C cluster centers
V1; V2; . . . ; Vc, which allow to track the expected
optima. In addition to the cluster prototypes, the al-
gorithm also provides some interesting characteris-
tics:

• the number of individuals assigned to the cluster;
• the prototype Vi and the radius of the cluster ri ;
• the maximum and minimum of inter points simi-

larities within the cluster,ξmax andξmin.

5. Experimental results

In this section, four groups of experiments were car-
ried out based on the GDBG20. The objective of
the first group of experiments is to investigate the
work mechanism of PCDO, analyze the advantage
of using different remedies, and study the diversity
of PCDO. In the second group of experiments, the
performance of PCDO is compared with a number
of well known genetic algorithms taken from the lit-
erature. The aim of the third group is to study the
mechanism of diversity with a new diversity mea-
sure. To understand the sensitivity of the parameter
specifications on the performance of PCDO, the last
experiment examines PCDOs with some parameters
turn off.
PCDO is tested on six problems generated by the
benchmark proposed by Li et al20. There are seven
change types of the system control parameters in the
benchmark test. They are small step change, large
step change, random change, chaotic change, recur-
rent change, recurrent change with noise and dimen-
sional change. The seven change types of GDBG are
described as follows:

• Small step

∆φ = α .‖φ‖ .r.φseverity (23)

• Large step

∆φ = ‖φ‖ .(α .sign(r)+ r.(αmax−α)) .φseverity

(24)
• Random

∆φ = N(0,1) .φseverity (25)

• Chaotic

φ (t +1) = A.(φ (t)−φmin) .
(1− (φ (t)−φmin))

‖φ‖
(26)

• Recurrent

φ (t +1) = φmin+‖φ‖ .
(

sin
(

2π
P t +ϕ

)

+1
)

2
(27)

• Recurrent with noisy

φ (t +1) = φmin+‖φ‖ .
(

sin
(

2π
P t +ϕ

)

+1
)

2
+λ
(28)

whereλ = N(0,1).noisyseverity
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• Dimensional

D(t +1) = D(t)+sign.∆D (29)

where‖φ‖ is the change range ofφ , φseverity is a
constant number that indicates change severity ofφ ,
φmin is the minimum value ofφ , noisyseverity∈ ⌈0,1⌉
is noisy severity. α ∈ ⌈0,1⌉ and αmax∈ (0,1) are
constant values, which are set to 0.04 and 0.1 in the
GDBG system.ϕ is the initial phase, r is a random
number in (-1, 1), sign(x) returns 1 when x is greater
than 0, returns -1 when x is less than 0, otherwise,
returns 0.∆D is equal to 1.

D( f ) = Max D =⇒ sign=−1 (30)

D( f ) = Min D =⇒ sign= 1 (31)

Where MaxD and Min D are the maximum and
minimum number of dimensions. The six test prob-
lems defined in21 are: F1 Rotation peak function,
F2 Composition of Spheres function, F3 Compo-
sition of Rastrigins function, F4 Composition of
Griewanks function, F5 Composition of Ackleys
function and F6 Hybrid Composition function. The
parameters of the six problems are the same chosen
in 21.
Our first experiment is to investigate the PCDOs
mechanism of diversity and analyze the fertiliza-
tion operator in association with the parameters con-
trol of GAs. The second experiment is devoted to
the performance of PCDO compared with SGA and
GAFS. In this experiments, Standard Genetic Algo-
rithm (SGA) parameters are as follows: simulated
binary crossover12, with crossover rate=0.8. For the
mutation, we considered the polynomial mutation
11, with mutation rate=0.2. We have used a Tour-
nament Selection with size=4. The population size
is N =100 For PCDO and SGA on a DOPs, 30 inde-
pendent runs were executed with the same set of ran-
dom seeds. For each run, 50 environmental changes
were allowed and the best-of-generation fitness was
recorded every generation. The best-of-generation
fitness averaged over 30 runs and formulated below:

FBOG=
1
G

G

∑
i=1

(

1
R

R

∑
j=1

FBOGi, j

)

(32)

where G = 50, R = 30 is the total number of runs, and
FBOGi, j is the best-of-generation fitness of generation
i of run j. The best-of-generation fitness against gen-
eration on the DOPs for PCDO is shown in Figure
2.

Fig. 2. Dynamic performance of PCDO compared to SGA
andGAFS

Fig. 3. Diversity Comparison

PCDO significantly outperforms SGA, PCDO
give better results than GAFS. This result validates
the benefit of introducing Fertilization into GAFS
and the most significant role of adapting mutation
and using new crossover, mutation operators for
DOPs. In order to understand the effect of fertil-
ization scheme and parameters control influence on
the population diversity, we recorded the diversity
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of the population every generation for each run of a
PCDO on a DOPs. The mean population diversity
of a PCDO on a DOPs at generation over 20 runs is
calculated according to the formula:

Div(t) =
1
30

30

∑
k=1

(

1
ln(n−1)

n

∑
i=1

n

∑
j 6=i

di, j (k, t)

)

(33)

Di, j(k, t) Euclidean distance between the i-th and j-
th individuals at generation t of the k-th run. The
diversity dynamics over generation for SGA and
PCDO on DOPs is shown in Figure 3. It can be seen
that PCDO does maintain the highest diversity level
in the population while SGA maintains the lowest
diversity level. This interesting result shows that the
approach that aims at maintaining a high diversity
level in the population in dynamic environments is
the one with fertilization operator and parameters
control.
In the second experiment we used GDBG system,
the parameters of the test problems are set as the
same as in21. PCDO is compared with SGA,
Random Immigrants Genetic Algorithms (RIGA)
28 with the total number of immigrants Ni=30,
and also with Hyper-mutation Genetic Algorithm
(HMGA)10. For this second experiment, SGA,
HMGA, RIGA parameters are as follows: simulated
binary crossover12 , with crossover rate=0.85. For
the mutation, we considered the Gaussian mutation,
with mutation rate=0.15. We have used a Tourna-
ment Selection with size=4. The population size is
N =100.
All tests (table 1, table 2, table 3, table 4, table 5, ta-
ble 6) present the results of the average best, average
mean, average worst values and the standard error
(STD). The results allow us to compare the quality
of the solution founded by each technique. Table
1 shows that the performance of the four methods
seems to be almost similar with a marked improve-
ment in PCDO, because F1 is the simplest one to
optimize. But when the number of peaks is equal
to 50, PCDO outperforms the other techniques. Ta-
ble 2, presents the results for a more complicated
function, which has multiple optima and with a di-
mension =10. The SGA technique loses diversity
due to the convergence of the algorithm. RIGA loses
the quality of the solution due to a random individu-

als included in the population, and diversity is much
lower compared to PCDO. Table 3 shows that for a
function F3 which has multiple optima, the quality
of the solution to PCDO is much better, but what is
interesting in this table is the diversity of the popula-
tion in the case of PCDO is much higher compared
other techniques. Table 4 shows the performance of
each method for a complicated multi-modal function
with a huge number of local optima. PCDO uses the
fitness sharing performed by UFL-FCM-VAL, then
PCDO assigned each individual in the population to
its niche by SS. So, PCDO does not fall into the trap
of local optima, it is able to find the global optimum.
Therefore, other techniques (SGA, HMGA, RIGA)
have a problem of finding the global optimum and
are diving into the local optima, so the error values
are high. The results of function f5 are presented
in table 5, the performance of PCDO is much bet-
ter compared to SGA, HMGA and also RIGA. Ta-
ble 6 presents the results of a composition of com-
plicated functions, especially the Weierstrass’s func-
tion, which is continuous at all points in research
space, but is not differentiable at any point. In this
complicated function, PCDO presents the best re-
sults compared to the other techniques By observing
the results in table 7, it can be seen that the challenge
of different change types is quite different. Looking
through the difficulty of the problems starting from
the simplest,the small step, and through the most
complicated test to optimize, SGA, RIGA and RIGA
have difficulties to optimize the problems, especially
chaotic change and dimensional change. But, in all
tests, PCDO performs much better than SGA, RIGA
and HMGA.
Figure 4 provides sample results related to another
aspect of this study. It is the aspect of diversity
of SGA, RIGA, HMGA and PCDO. To measure
the concept of diversity of the population, we adopt
a criterion measure often used in genetic studies
namely the Hill’s diversity index. It is a measure
of abundance proportional to associate the indices
of Shannon-Weaver and Simpson. The Hill’s diver-
sity index provides a more precise view of the di-
versity observed. This index varies between 0 and
1. It is maximal when individuals belong to several
clusters, i.e., the existence of several clusters.
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It is minimal when one cluster dominates the
population. Its formula is as follows:

H ′ = 1−Hill = 1−
( 1

λ )

exp(H)
(34)

λ =
C

∑
i=1

Ni(Ni−1)
N(N−1)

(35)

H =−
C

∑
i=1

((
Ni

N
)∗Log2(

Ni

N
)) (36)

Whereλ is Simpson’s index;
H is Shannon-Weaver’s index;
C: number of clusters given by UFL-FCM-VAL;
Ni : Cardinal of each cluster;
N: Population Size.

Fig. 4. Hill’s Diversity index

The diversity curve of PCDO presents a high level
of diversity and this diversity is continuous for sev-
eral generations. This PCDO’s curve shows no drop
in values. The maintenance of diversity is due to
the control by PCDO in the process of evolution.

PCDO controls several parameters such as the se-
lection pressure by Modified Tournament Selection.
The mutation is controlled by Clustering Multi Non
Uniform Mutation and an adaptive mutation rate.
The crossover is improved by Clustering multiple
crossover. Fitness sharing is performed by UFL-
FCM-VAL. While SGA loses diversity of popula-
tion easily. RIGA has a low diversity compared to
PCDO. But what is striking in this study is the ran-
dom variation of the diversity of RIGA in the pro-
cess of evolution. HMGA lost the diversity, this is
due to such problems as how to adapt the mutation
rate over time and how to choose the hyper-mutation
factor. PCDO adapt this factor by clustering, and
this factor depends on the number of clusters.
The last experiment is devoted to understanding the
sensitivity of the parameter specifications on the
performance of PCDO and also the importance of
using adaptive exploitation parameters and adap-
tive exploration parameters together, as presented in
PCDO. To claim the effect of PCDO components,
PCDO is examined with some functionality turned
off. The first case is devoted to PCDO. In the sec-
ond case, we used GAFS with only the new muta-
tion operator CMNUM (GAFS+CMNUM). In the
third case, GAFS is used with the selection opera-
tor MES (GAFS+MES). In the fourth case, the new
crossover operator CMC represented the functional-
ity turned on (GAFS+CMC). The fifth case, GAFS
is used with all functionality turned off (GAFS).
Based on the Hills diversity index, we have mea-
sured the concept of diversity of the population for
the five cases. Figure 5 shows clearly that PCDOs,
in terms of diversity, outperforms all other cases.
GAFS with four remedies, as proposed in PCDO,
maintains efficiently a balance between exploitation
and exploration.
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Table 1. Error Values Achieved for ProblemsF1.

Technique used Peaks(m) Errors T1 T2 T3 T4 T5 T6 T7

SGA

10

Avg best 0.03e−7 1.34e−7 4.13e−5 8.7e−6 0.65e−5 6.5e−6 1.24e−5

Avg worst 30.53 42.38 64.16 69.74 32.15 54.84 37.05
Avg mean 10.45 14.19 12.23 23.39 7.69 30.81 8.05

STD 5.11 8.01 10.54 21.41 5.23 21.46 5.73

50

Avg best 8.74e−5 4.12e−4 6.33e−4 5.32e−4 4.11e−4 5.35e−5 2.21e−4

Avg worst 41.35 58.53 61.21 56.84 44.62 54.61 23.62
Avg mean 17.61 20.46 14.09 27.18 9.78 28.91 14.78

STD 9.28 10.38 13.41 21.08 4.38 18.38 4.46

HMGA

10

Avg best 0 0 8.71e−7 0 5.66e−5 0 2.31e−6

Avg worst 10.24 21.63 40.62 15.78 19.39 14.98 21.03
Avg mean 5.04 9.89 26.35 8.16 7.79 8.76 9.18

STD 1.12 4.23 17.12 2.75 4.66 2.15 4.02

50

Avg best 1.34e−6 1.52e−5 3.41e−6 6.23e−5 1.57e−5 5.43e−6 2.45e−5

Avg worst 13.12 15.13 19.31 19.17 20.24 15.76 14.83
Avg mean 5.92 6.27 7.38 10.07 10.43 8.97 9.49

STD 3.46 5.42 4.57 3.28 6.84 3.37 4.03

RIGA

10

Avg best 0 1.52e−7 6.25e−7 8.51e−7 4.33e−7 9.12e−7 4.11e−7

Avg worst 1.02 2.75 3.51 5.16 5.91 0.18 17.38
Avg mean 1.05 2.81 7.95 2.26 3.29 1.46 1.89

STD 1.42 6.28 12.02 1.75 4.66 2.73 4.03

50

Avg best 0 2.52e−6 1.03e−5 3.51e−6 4.71e−5 4.36e−6 0.52e−5

Avg worst 1.32 4.03 7.21 3.27 2.13 2.15 0.98
Avg mean 1.62 4.27 6.37 8.69 2.64 3.47 2.49

STD 1.98 4.07 10.41 2.84 2.84 3.94 2.71

PCDO

10

Avg best 0 0 0 0 0 0.43e−12 0.52e−12

Avg worst 0.01 0.41 1.65 1.28 3.77 0.21 0.43
Avg mean 0.01 0.06 1.13 0.06 0.05 0.06 0.03

STD 0.02 1.43 2.04 0.05 1.16 0.07 0.14

50

Avg best 0 0 4.53e−10 0 0 0 1.04e−10

Avg worst 0.04 3.03 3.21 0.29 0.14 0.28 0.32
Avg mean 0.02 0.83 2.12 0.19 0.05 0.03 0.24

STD 0.04 2.13 6.12 0.23 0.05 0.34 0.29

Table 2. Error Values Achieved for ProblemsF2.

Technique used Errors T1 T2 T3 T4 T5 T6 T7

SGA

Avg best 0.21e−5 3.14e−5 5.83e−5 9.58e−5 0.91e−5 6.5e−5 0.94e−5

Avg worst 98.65 458.12 489.45 123.15 398.54 123.15 178.54
Avg mean 34.17 83.91 128.52 32.54 94.28 123.15 278.54

STD 0.48 4.12 7.12 1.02 3.56 2.78 5.33

HMGA

Avg best 2.04e−7 7.02e−6 4.56e−7 1.21e−7 3.57e−7 1.21e−7 10.57e−6

Avg worst 7.43 11.05 21.72 7.86 9.29 8.29 12.52
Avg mean 1.76 8.31 9.62 2.27 12.76 7.29 25.83

STD 3.16 8.09 11.25 2.63 8.61 7.37 12.83

RIGA

Avg best 1.68e−7 6.07e−6 4.96e−7 2.31e−7 4.67e−7 2.11e−7 11.97e−6

Avg worst 6.13 9.15 18.37 6.81 7.27 9.13 10.43
Avg mean 1.36 7.31 8.92 2.37 10.21 5.08 11.13

STD 2.62 7.07 10.35 2.23 6.51 6.45 10.53

PCDO

Avg best 0 3.27e−9 1.62e−9 4.33e−9 2.16e−8 4.63e−8 7.81e−8

Avg worst 1.21 4.76 7.23 2.24 7.34 6.38 7.31
Avg mean 1.03 4.27 5.01 1.12 3.53 1.98 6.12

STD 43.68 91.15 31.12 58.12 76.59 23.15 10.54
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Table 3. Error Values Achieved for ProblemsF3.

Technique used Errors T1 T2 T3 T4 T5 T6 T7

SGA

Avg best 4.31e−3 8.35e−3 4.23e−3 9.85e−3 1.47e−3 6.51e−3 2.81e−3

Avg worst 792.45 958.12 925.45 1123.15 1043.54 523.85 878.94
Avg mean 141.85 582.51 554.72 497.23 597.63 529.93 692.64

STD 243.14 400 431.12 518 246.59 323.15 271.42

HMGA

Avg best 14.32e−4 18.25e−4 9.17e− 21.47e−4 8.43e−4 16.63e−4 9.87e−4

Avg worst 91.84 102 97.14 123.45 98.15 83.80 178.24
Avg mean 41.18 45.89 154.87 121 114.17 115.73 129.04

STD 81.47 101.12 76.15 119.85 94.57 23.79 79.42

RIGA

Avg best 4.31e−4 7.74e−4 2.47e−4 15.47e−4 4.23e−4 8.95e−5 6.83e−4

Avg worst 73.74 96 43.14 98.85 76.45 63.75 108.02
Avg mean 23.28 26.91 134.77 98.09 98.74 101.13 97.08

STD 41.46 89.82 56.95 98.87 64.07 13.69 59.72

PCDO

Avg best 6.41e−8 3.32e−8 2.47e−8 4.38e−7 6.47e−8 6.41e−8 3.73e−8

Avg worst 16.05 25.68 16.06 12.67 14.83 19.76 20.87
Avg mean 1.74 20.57 12.32 8.03 13.63 6.93 13.87

STD 343.13 410 431.22 510 346.51 313.15 371.42

Table 4. Error Values Achieved for ProblemsF4.

Technique used Errors T1 T2 T3 T4 T5 T6 T7

SGA

Avg best 2.13e−3 6.34e−4 15.12e−3 9.97e−3 11.17e−3 21.54e−3 10.714e−3

Avg worst 172.5 248 431.02 351.62 558.43 261.27 454.21
Avg mean 41.41 125.15 214.54 97.23 84.79 63.64 102.34

STD 103.14 200.05 212.02 148 156.49 133.74 352.48

HMGA

Avg best 4.51e−4 8.05e−4 4.03e−3 1.72e−3 2.47e−3 19.34e−3 7.164e−3

Avg worst 31.84 110 187.13 121.2 298.15 61.29 64.34
Avg mean 41.41 125.15 214.54 97.23 84.79 63.64 102.34

STD 14.18 35.85 25.89 14.88 56.48 121.74 152.56

RIGA

Avg best 1.71e−5 2.45e−5 2.13e−5 2.28e−5 0.41e−5 9.38e−5 5.34e−5

Avg worst 19.54 95.76 125.18 121.2 198.12 81.39 74.24
Avg mean 21.67 108.65 119.81 97.23 84.29 57.44 107.04

STD 10.68 48.25 35.89 11.86 77.98 128.24 102.96

PCDO

Avg best 1.36e−10 0.08e−10 2.83e−10 5.04e−9 1.14e−10 1.27e−10 7.34e−10

Avg worst 7.35 26.53 15.24 20.34 28.21 19.59 62.58
Avg mean 0.17 22.23 0.17 16.72 20.25 14.43 29.87

STD 2.38 16.61 1.23 8.37 25.24 13.12 10.72

Table 5. Error Values Achieved for ProblemsF5.

Technique used Errors T1 T2 T3 T4 T5 T6 T7

SGA

Avg best 6.83e−3 7.61e−3 5.71e−3 3.87e−3 8.46e−3 5.12e−4 6.05e−3

Avg worst 181.53 197.82 112.15 120.65 189.84 112.15 201.24
Avg mean 28.35 31.57 28.62 32.84 14.29 41.23 21.34

STD 43.67 55.75 61.02 50.32 78.32 64.25 41.74

HMGA

Avg best 1.58e−4 3.22e−4 3.33e−4 4.85e−5 1.37e−4 2.07e−4 2.05e−5

Avg worst 81.64 97.89 101.05 138.75 169.84 102.75 173.14
Avg mean 38.25 31.58 48.52 12.14 23.39 37.13 14.54

STD 33.62 45.15 21.72 37.42 38.39 39.85 14.74

RIGA

Avg best 5.58e−5 2.28e−5 7.03e−5 2.55e−6 0.35e−5 1.07e−5 1.75e−5

Avg worst 71.64 87.82 71.25 83.75 69.84 82.95 73.14
Avg mean 18.25 21.58 68.52 72.14 24.59 47.53 34.54

STD 33.67 45.85 51.72 30.42 38.39 19.85 19.74

PCDO

Avg best 0 0 0 0 0 7.27e−11 3.15e−10

Avg worst 8.03 2.86 9.76 8.66 5.67 6.65 7.75
Avg mean 1.02 1.37 2.24 0.12 3.31 2.12 4.12

STD 2.06 4.12 3.32 9.08 4.67 4.43 10.86
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Table 6. Error Values Achieved for ProblemsF6.

Technique used Errors T1 T2 T3 T4 T5 T6 T7

SGA

Avg best 1.31e−2 4.44e−3 9.61e−3 1.48e−2 0.93e−3 5.04e−3 0.724e−3

Avg worst 247.6 558.2 683.6 723 308.5 530.1 698.3
Avg mean 39.55 129.61 98.53 63.74 160.28 53.45 68.34

STD 63.88 208.3 101.18 218.42 106.49 187.95 134.12

HMGA

Avg best 5.34e−3 2.14e−3 6.31e−3 9.78e−3 0.23e−3 1.37e−3 0.22e−3

Avg worst 87.79 252.5 304.8 198.6 475.8 265.7 424.5
Avg mean 51.12 58.71 80.27 62.83 103.56 49.56 65.63

STD 10.97 63.77 83.88 24.23 160.65 96.76 75.91

RIGA

Avg best 4.67e−4 0.04e−3 7.81e−3 10.08e−4 7.93e−4 0.86e−3 1.32e−3

Avg worst 37.81 192.6 214.9 208.6 365.7 275.2 364.7
Avg mean 48.82 38.61 79.67 52.89 93.76 39.96 58.73

STD 10.37 53.67 81.28 20.03 130.85 92.06 71.23

PCDO

Avg best 2.75e−6 8.82e−7 9.16e−6 0.12e−7 3.12e−7 0.46e−7 4.36e−7

Avg worst 22.85 28.65 39.98 30.73 70.69 38.56 53.87
Avg mean 10.73 21.67 31.62 20.36 56.63 12.63 53.23

STD 6.02 14.56 13.22 9.43 31.24 25.76 43.76

Table 7. Algorithm Overall Performance.

F1(10) F1(50) F2 F3 F4 F5 F6

SGA

T1 0.851 0.716 0.698 0.125 0.1993 0.282 0.299
T2 0.767 0.729 0.567 0.0761 0.145 0.345 0.261
T3 0.845 0.674 0.578 0.0421 0.174 0.378 0.221
T4 0.695 0.612 0.445 0.0328 0.0812 0.345 0.328
T5 0.591 0.589 0.432 0.0485 0.108 0.353 0.385
T6 0.523 0.558 0.351 0.0789 0.158 0.351 0.289
T7 0.458 0.523 0.256 0.0241 0.123 0.256 0.241

Mark 0,068660 0,063400 0,077800 0,010067 0,022740 0,053392 0,046648

HMGA

T1 0.889 0.788 0.769 0.242 0.288 0.469 0.342
T2 0.848 0.678 0.658 0.145 0.278 0.558 0.345
T3 0.746 0.748 0.512 0.189 0.248 0.412 0.489
T4 0.723 0.858 0.351 0.0859 0.158 0.451 0.389
T5 0.758 0.523 0.256 0.0641 0.223 0.256 0.241
T6 0.423 0.458 0.131 0.0489 0.258 0.351 0.289
T7 0.658 0.523 0.456 0.0831 0.163 0.456 0.391

Mark 0,072385 0,066025 0,071544 0,019927 0,037480 0,067224 0,056536

RIGA

T1 0.958 0.978 0.858 0.295 0.478 0.658 0.645
T2 0.887 0.845 0.745 0.161 0.245 0.645 0.561
T3 0.845 0.874 0.781 0.221 0.374 0.678 0.521
T4 0.795 0.712 0.645 0.128 0.312 0.445 0.328
T5 0.791 0.689 0.432 0.185 0.389 0.532 0.485
T6 0.623 0.658 0.651 0.189 0.258 0.451 0.489
T7 0.458 0.523 0.256 0.141 0.123 0.456 0.441

Mark ,078065 0,076570 0,102784 0,025752 0,051312 0,089112 0,071912

PCDO

T1 0.998 0.988 0.894 0.798 0.978 0.878 0.725
T2 0.987 0.945 0.854 0.745 0.975 0.801 0.689
T3 0.935 0.902 0.785 0.658 0.897 0.798 0.614
T4 0.895 0.879 0.714 0.548 0.847 0.712 0.598
T5 0.891 0.789 0.658 0.548 0.801 0.651 0.524
T6 0.812 0.768 0.578 0.579 0.689 0.601 0.475
T7 0.759 0.754 0.548 0.651 0.589 0.512 0.456

Mark 0.09036 0.086455 0.116432 0.10344 0.133912 0.114776 0.094216

Performance: SGA : 34.27 —— HMGA: 39.11——— RIGA :49.55 ——– PCDO:73.96
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Fig. 5. PCDO examined with some functionality turned off

6. Conclusion

In this work, we have conceived a new approach
for solving DOPs. PCDO method has taken into
account several remedies for finding and tracking
optima in dynamic environments. First, the fitness
sharing performed by the unsupervised fuzzy clus-
tering UFL-FCM-VAL is used to find the near opti-
mal solutions in promising regions and to track op-
tima. Second, the new genetic operator called Fer-
tilization is introduced to maintain diversity. Third,
the modified enthusiasm selection is used to dy-
namically adjust the selection pressure and to en-
thuse worst individuals . Fourth, the new mutation
which is called Clustering Multi Non Uniform Mu-
tation is used to find an unexplored search space by
the insertion of new individuals which belong to no
clusters already detected. Fifth, the new crossover
named Clustering multiple crossover has exploited
the best area search space and also has explored
other promising regions in the search space.
The system architecture of PCDO was designed with
the purpose to strike a balance between exploration
parameters and exploitation parameters. Experi-
mental results, by using a new diversity measure,
have demonstrated that this aim has been achieved.

In addition, PCDO has given a better result than the
use of an adaptive exploration parameter or an adap-
tive exploitation parameters separately. Another ad-
vantage of PCDO, is that it has liberated the user
from choosing himself the optimal GAs parameters.
GDBG test problems have shown the efficiency of
the PCDO. This performance is due to the reme-
dies proposed in this study. The proposed cluster-
ing method is efficient to ameliorate fitness shar-
ing; the fertilization operator maintains much bet-
ter population diversity; and the adaptive parameters
control used in this study maintains a dynamic bal-
ance between exploration and exploitation. Gener-
ally speaking, PCDO can effectively locate and track
multiple optima in dynamic environments.
It would also be interesting to combine other tech-
niques into PCDO to further improve its perfor-
mance in dynamic environments. For example, Par-
ticle Swarm continually looks for new areas of the
search space, and PCDO exploits the previously de-
tected promising areas. Another idea is to use PCDO
with Fuzzy rules to adapt crossover and mutation
rates.
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