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Abstract

A new approach for testing fuzzy hypotheses based on fuzzy data is introduced. According to the proposed
approach, a method is first developed based on the defined fuzzy point estimation, which are then used to
make a procedure for testing fuzzy hypotheses. This approach has been used to test simple, one-sided and
two-sided fuzzy hypotheses. Two new criteria, called degree of acceptance (DA) and degree of rejection
(DR), have been proposed to evaluate the test result. The application of the proposed method to lifetime
testing is studied.
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1 Introduction

In classical inferential statistics, testing hypothesis is
one of the most important and most investigated prob-
lems. The common approaches depend on precise data,
exact hypotheses, and exact parameters. However, in
practical situations, different kinds of uncertainty are
present, especially in situations with imprecise data
and/or imprecise hypotheses.

For example, in reliability analysis, measuring the
lifetime of a battery may not yield an exact result. A
battery may work perfectly over a certain period but
be losing in power for some time, and finally go dead
completely at a certain time. In this case, we may re-

port the lifetime with words rather than numbers, such
as: about 1000 (h), approximately 1400 (h), and so on.
In addition, in the study of battery lifetime, we may
like to test some non-precise (fuzzy) hypotheses. For
instance, we may be interested in testing if the mean
of lifetimes is “near to 1500 (h)” or, alternatively, it is
much less than 1500 (h). As another area, in clinical
treatments, some kind of diseases may be diagnosed
by ill-defined criteria. For instance, the disease sever-
ity may be described as low, medium, high, very high,
and so on. Similarly, in such studies, we may be in-
terested in testing non-exact hypotheses. For example,
we may like to test if the proportion of people infected
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by a certain virus is high (e.g., about 0.80) or, alter-
natively, if much less than 0.80. Many examples can
be given from other fields in which the observed data
and/or the hypotheses for testing are described in non-
exact terms. New procedures will, therefore, be needed
for the statistical analysis in such non-exact environ-
ments, based on soft computing methods 1�2�3 and/or
using the methods of computing with words 4�5. In re-
cent decades, much attention has been devoted to the
development of statistical methods in non-exact envi-
ronments, using the fuzzy set theory. In the following,
a brief review will be presented of some works on hy-
pothesis testing in fuzzy environments.

The problem of testing hypotheses with fuzzy data,
first, was considered by Casals and Gil 6, Casals et al.
7, Grzegorzewski 8, and Wu 9. Körner 10 proposed an
asymptotic test for expectation of random fuzzy vari-
ables. Montenegro et al.11 studied the problem of two
sample hypothesis tests of means of a fuzzy random
variable. Arnold 12�13, Taheri and Arefi 14, and Taheri
and Behboodian 15�16 investigated the topic of test-
ing statistical hypothesis when the hypotheses are pre-
sented by words rather than numbers. Arefi and Taheri
17, Grzegorzewski 18, Taheri and Behboodian 19, and
Torabi et al.20 studied the problem of testing statistical
hypotheses when both hypotheses and observations are
fuzzy (see also Kruse and Meyer 21). A generalized
version of Neyman-Pearson lemma for testing fuzzy
hypotheses using r-levels is investigated by Torabi 22.
The p-value approach to testing hypothesis in fuzzy en-
vironments has been studied by Filzmoser and Viertl23

and Parchami et al. 24�25. In addition, some hierarchi-
cal soft methods were developed for testing statistical
hypotheses in fuzzy environments by Arefi and Taheri
26, Buckley 27, Chachi et al. 28, Grzegorzewski 29,
Grzegorzewski and Hryniewicz 30, Hryniewicz 31, and
Taheri and Hesamian 32�33. For more studies about sta-
tistical methods in fuzzy environments, see, e.g. Taheri
34 and Viertl 35�36.

This article is organized as follows. After reviewing
some necessary concepts and notations in the present
section, we will define, in Section 2, the concepts of
fuzzy point estimation and fuzzy confidence interval
when the available observations are fuzzy rather than
crisp. In Section 3, we will investigate an approach to
testing non-fuzzy hypotheses with fuzzy observations

based on Kahraman’s work (see Kahraman et al.37). In
Section 4, after introducing simple, one-sided and two-
sided fuzzy hypotheses, we will extend Kahraman et
al.’s approach to the case when both the data available
and the hypotheses of interest are fuzzy. A brief con-
clusion will be provided in Section 5.

First, let us recall some preliminary concepts and
necessary notations about fuzzy sets and fuzzy num-
bers. For more details, see, e.g. Kruse and Meyer 21

and Klir and Yuan 38.
We place a “tilde” over a symbol to denote a fuzzy set.
So, �A : X � �0�1� represents the membership function
of the fuzzy set �A. An α-cut of �A, written �Aα , is de-
fined as �Aα � �x��A�x� � α�, for 0 � α � 1.
A fuzzy number �M is a fuzzy subset of the real num-
bers satisfying:

i) �M�x� � 1 for some x,

ii) �Mα is a closed, bounded interval for 0 � α � 1.

The set of all fuzzy numbers will be denoted by FN�R�.
A trapezoidal fuzzy number (TFN) �T , denoted by�T � �a1�a2�a3�a4�T , is defined by four numbers a1 �

a2 � a3 � a4 with the following membership function
(see Fig. 1)

�T �x� �

���������
x�a1
a2�a1

a1 � x� a2�

1 a2 � x� a3�
a4�x
a4�a3

a3 � x� a4�

0 otherwise�

Fig. 1. Trapezoidal fuzzy number �T � �a1�a2�a3�a4�T .

2 Fuzzy confidence intervals

Let X1� ����Xn be a random sample of size n from a prob-
ability density function (or probability mass function)
f �x;θ�, with the observed values x1� ����xn, where θ
is the unknown parameter. Below, we investigate an

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    319



Testing fuzzy hypotheses based on fuzzy data

approach to construct a fuzzy confidence interval for
the unknown parameter θ , when the available data are
fuzzy. In this regard, we recall two well-known defini-
tions from classical statistics (Definitions 1 and 3), to
consider them as basis for extension to the fuzzy envi-
ronment.

Definition 1 (see, Casella and Berger 39) A function
Y � u�X1� ����Xn� which is independent of θ is called
a point estimator for θ . The observed value θ� �
u�x1� ����xn� is called the point estimation of θ .

Definition 2 Suppose that, instead of x1� ����xn, we can
only get �X1� ����

�Xn as fuzzy observations. Then, by re-
placing the α-cuts of �Xi (�Xiα ) instead of xi in the point
estimation θ�, and using the interval arithmetic, we
obtain the α-cuts of the fuzzy point estimation �θ� as�θ�

α � u��X1α � ����
�Xnα �.

Remark 1 In this paper, for simplicity we consider�X1� ����
�Xn to be trapezoidal fuzzy numbers. Hence, �θ�

is a fuzzy number with the α-cuts �θ�
α � ��θ�L

α � �θ�U
α � �

u��X1α � ����
�Xnα �.

Definition 3 (see, Casella and Berger 39) Two-sided
crisp confidence interval: Any interval �π1�π2�,
where π1 � π1�θ

��δ � and π2 � π2�θ
��δ �, which does

not depend on θ and P�π1 � θ � π2� � 1�δ is called
a two-sided crisp confidence interval for θ at the con-
fidence level of 1�δ .

Definition 4 (See Grzegorzewski 8 and Kahraman et
al.37) Two-sided fuzzy confidence interval: Con-
sider a two-sided crisp confidence interval �π1�π2� for
θ at the confidence level of 1� δ . Suppose that we
observe the fuzzy data �X1� ����

�Xn. The α-cuts Πα �
�ΠL

α �ΠU
α � of the fuzzy confidence interval with the mem-

bership function μΠ��� are defined as�
ΠL

α � min�π1�
�θ �L

α �δ ��π1�
�θ �U

α �δ ��π2�
�θ �L

α �δ ��π2�
�θ �U

α �δ ���

ΠU
α � max�π1�

�θ �L
α �δ ��π1�

�θ �U
α �δ ��π2�

�θ �L
α �δ ��π2�

�θ �U
α �δ ���

�1�

Definition 5 One-sided crisp confidence interval:
Let π1 � π1�θ��δ � (or π2 � π2�θ��δ �) be such that
P�π1 � θ� � 1� δ (or P�θ � π2� � 1� δ ). Then
�π1�∞� (or ��∞�π2�) is called a lower (or upper) one-
sided confidence interval for θ at a confidence level of
�1�δ �.

Definition 6 (See Grzegorzewski 8 and Kahraman et
al. 37) One-sided fuzzy confidence interval: Sup-

pose that we have the one-sided crisp confidence inter-
vals �π1�∞� and ��∞�π2�. The α-cuts Πα of the lower
and upper one-sided fuzzy confidence intervals are de-
fined as follows

Πα � �ΠL
α �∞� �

�
min�π1�

�θ �L
α �δ ��π1�

�θ �U
α �δ ���∞

�
� �2�

and

Πα � ��∞�ΠU
α � �

�
�∞�max�π2�

�θ �L
α �δ ��π2�

�θ �U
α �δ ��

�
� �3�

Note: For the numerical examples in this paper, we
take the confidence level of �1�δ � equal to 0�95.

Remark 2 Viertl 35 proposed a method to define fuzzy
confidence regions based on fuzzy data. His method is
more general than ours in the sense that he does not
assume the fuzzy data to be necessarily fuzzy numbers.
In his approach, the data can be any normalized fuzzy
subsets of the real line. Inside, Chachi and Taheri40 in-
vestigated the problem of constructing fuzzy confidence
interval for fuzzy parameter, based on the h-cuts of nor-
mal (Gaussian) fuzzy random sample. It is remarkable
that, in their method, they, first, obtained two differ-
ent cases of the h-cuts of fuzzy confidence interval for
h-cuts of fuzzy parameter, and then they introduced a
method based on these h-cuts to obtain the member-
ship function of the fuzzy confidence interval. But, in
our method, we first obtain a fuzzy point estimation,
and then the α-cuts of fuzzy confidence interval is cal-
culated based on the h-cuts of the fuzzy point estima-
tion.

Example 1 Suppose that we have taken a fuzzy ran-
dom sample from N�θ �σ2 � 1� and we observed the
following trapezoidal fuzzy data:

No. Data No. Data
1 �65�70�70�80�T 6 �65�70�80�85�T
2 �55�65�70�75�T 7 �50�60�70�82�T
3 �60�70�75�83�T 8 �55�62�75�85�T
4 �55�60�60�65�T 9 �58�65�65�75�T
5 �50�63�65�72�T

Then, the two-sided crisp confidence interval for θ at
the confidence level of �1�δ � is

�π1�π2� � �X � z1�δ�2

1�
n
�X � z1�δ�2

1�
n
��

Now, based on Definition 2, by substituting ��Xα�
L and

��Xα�
U in X, the two-sided fuzzy confidence interval for
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θ at a confidence level of 0�95 can yield a fuzzy set with
the following α-cuts

Πα � �ΠL
α �Π

U
α �

�
�

min���Xα�
L� z1�δ�2

1�
n
���Xα�

U � z1�δ�2

1�
n
�

��Xα�
L � z1�δ�2

1�
n
���Xα�

U � z1�δ�2

1�
n
�

�max���Xα�
L� z1�δ�2

1�
n
���Xα�

U � z1�δ�2

1�
n
�

��Xα�
L � z1�δ�2

1�
n
���Xα�

U � z1�δ�2

1�
n
�
�

�
�
��Xα�

L� z1�δ�2

1�
n
���Xα�

U � z1�δ�2

1�
n

�

� �56�35�8α�78�65�8α�� �4�

where �X � �57�65�70�78�T and its α-cut is �Xα �

���Xα�
L���Xα�

U � � �57�8α �78�8α �.
In this example, the lower and upper one-sided crisp
confidence intervals for θ at a confidence level of
�1� δ � are �π1�∞� � �X � z1�δ

1�
n �∞� and ��∞�π2� �

��∞�X � z1�δ
1�
n �.

By substituting ��Xα�
L and ��Xα�

U in the one-sided crisp
confidence intervals, we obtain the lower and upper
one-sided fuzzy confidence intervals for θ at a confi-
dence level of 0�95 as the fuzzy sets. The α-cuts of
these fuzzy sets are

Πα � �ΠL
α �∞�

�
�
min���X�L

α � z1�δ�2
1�
n ��
�X�Uα � z1�δ�2

1�
n ��∞

�

�
�
��X�L

α � z1�δ�2
1�
n �∞

�
� �56�45�8α�∞�� �5�

and

Πα � ��∞�ΠU
α �

�
�
�∞�max���X�L

α � z1�δ
1�
n ��
�X�Uα � z1�δ

1�
n �
�

�
�
�∞���X�Uα � z1�δ

1�
n

�
� ��∞�78�55�8α�� �6�

Remark 3 Note that, in a general setting, it is not nec-
essary for �θ� to be a fuzzy number. If �θ� is a fuzzy
set, then we can follow the proposed procedure to con-
struct the fuzzy confidence region instead of the fuzzy
confidence interval.

3 Testing hypotheses based on fuzzy
data

In this section, based on fuzzy observations �X1� ����
�Xn

from a probability density function (or probability
mass function) f �x;θ�, we review an approach to test
the following hypotheses 8�37 (we will extend this ap-
proach to fuzzy hypotheses in next section):

a�

�
H0 : θ � θ0

H1 : θ �� θ0
b�

�
H0 : θ � θ0

H1 : θ � θ0
c�

�
H0 : θ � θ0

H1 : θ � θ0

Definition 7 For testing the above hypotheses based
on fuzzy data �X1� ����

�Xn, a function Φ : �FN�R��n �
P��0�1�� given by

Φ��X1� ����
�Xn� �

��
�

�0� i f θ0 � �SΠ� �S�Π�
c�

�1� i f θ0 � �S�Π� �SΠ�
c�

�0�1� i f θ0 � �S�Π�SΠ�
�7�

is called a fuzzy test function at the significance level of
δ , where in the third part, H0 is accepted with a degree
of acceptance (DA) equal to μΠ�θ0� and is rejected
with a degree of rejection (DR) equal to μ�Π�θ0�. For
hypotheses a, b, and c, the membership function of Π
is obtained from relations �1�, �2�, and �3�, respec-
tively. Also, P��0�1�� is the power set of �0�1�, and
SΠ and S�Π are the supports of the fuzzy sets μΠ�x�
and μ�Π�x� � 1� μΠ�x�, respectively. (See Fig. 2-4
for the cases a, b, and c).

Fig. 2. H0 is accepted with DA=1.
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Fig. 3. H0 is rejected with DR=1.

Fig. 4. H0 is accepted (rejected) with DA=0.3 (DR=0.7).

Remark 4 The above procedure can be reduced to the
ordinary procedure for testing hypotheses, if the data
set is crisp (non-fuzzy).
Example 2 Consider Example 1. Suppose that we are
interested in testing the following hypotheses at a sig-
nificance level of δ � 0�05�

H0 : θ � 75�
H1 : θ �� 75�

Based on Relation �4�, the membership function μΠ�x�
is obtained as

μΠ�x� �

��
�

3x�169�04
24 56�35� x � 64�35�

1 64�35� x � 70�65�
235�96�3x

24 70�65� x � 78�65�
�8�

Hence, H0 is accepted with DA � 0�46 and is rejected
with DR � 0�54 (Fig. 5).

Fig. 5. H0 is rejected (accepted) with DR=0.54 (DA=0.46).

Example 3 Consider Example 1. Suppose that we
want to test the following one-sided hypotheses:�

H0 : θ � 75�
H1 : θ � 75�

Based on Relation �5�, the membership function μΠ�x�
of the one-sided fuzzy confidence interval is obtained
as

μΠ�x� �

���
x�56�45

8 56�45 � x � 64�45�
1 64�45 � x�
0 otherwise�

�9�

Hence, at the significance level of δ � 0�05, we accept
H0 with DA=1. (See Fig. 6).

Fig. 6. H0 is accepted with DA=1.

Example 4 Consider Example 1. Suppose that we
want to test the following one-sided hypotheses:�

H0 : θ � 75�
H1 : θ � 75�

Based on Relation �6�, the membership function μΠ�x�
of the one-sided fuzzy confidence interval is obtained
as

μΠ�x� �

���
1 x � 70�55�
78�55�x

8 70�55 � x � 78�55�
0 otherwise�

�10�

Hence, at the significance level of δ � 0�05, we accept
H0 with DA=0.44. (See Fig. 7).

Fig. 7. H0 is accepted with DA=0.44.
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4 Testing fuzzy hypotheses based on
fuzzy data

In this section, we extend the concepts of simple and
composite hypotheses to simple and composite fuzzy
hypotheses. Then, we investigate a new approach for
testing hypotheses based on fuzzy data when the hy-
potheses of interest are fuzzy, too.

Definition 8 Let �θ0 be a known fuzzy number.

i) Any hypothesis of the form �H : θ is �θ0� is called
a fuzzy simple hypothesis.

ii) Any hypothesis of the form �H : θ is not �θ0� is
called a fuzzy two-sided hypothesis.

iii) Any hypothesis of the form �H :
θ is smaller than �θ0� is called a fuzzy left
one-sided hypothesis.

iv) Any hypothesis of the form �H :
θ is larger than �θ0� is called a fuzzy right
one-sided hypothesis.

In the following, we investigate some methods to test
the hypotheses in the following forms

a��

�
H0 : θ is �θ0�

H1 : θ is not �θ0�

b��

�
H0 : θ is larger than �θ0�

H1 : θ is not larger than �θ0�

c��

�
H0 : θ is smaller than �θ0�

H1 : θ is not smaller than �θ0�

For simplicity, we will consider the fuzzy num-
ber �θ0 to be a trapezoidal fuzzy number �θ0 �
�a1�a2�a3�a4�T . For constructing our method, we as-
sume that

� AT is the total area under the graph of �θ0.

� AΠ is the area under both the graph μΠ�x� and the
graph �θ0, limited to the interval �ΠL

0�5�Π
U
0�5�.

� A�Π is the area under both the graph μ�Π�x�

and the graph �θ0, limited to the interval
��∞�ΠL

0�5�
�
�ΠU

0�5�∞�.

The above areas are shown in Fig. 8-10 for the hy-
potheses a�, b� and c�, respectively.

Fig. 8. AΠ and A�Π in case a�.

Fig. 9. AΠ and A�Π in case b�.

Fig. 10. AΠ and A�Π in case c�.

Definition 9 For the above one-sided and two-sided
fuzzy hypotheses and based on fuzzy data �X1� ����

�Xn, a
function Φ : �FN�R��n � P��0�1�� given by

Φ��X1�
�X2� ����

�Xn��

��
�

�0� i f �a1�a4��Π0�5�

�1� i f �a1�a4�� ��Π0�5��
�0�1� otherwise�

�11�

is called to be a fuzzy test function at the significance
level of δ . In the third part of Relation �11�, H0 is

accepted with a degree of acceptance DA �
AΠ
AT

and is
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rejected with a degree of rejection DR �
A
�Π

AT
. For hy-

potheses a�, b� and c�, Π0�5 is obtained from Relations
�1�, �2� and �3�, respectively. Also, �a1�a4� is the sup-
port of the fuzzy number �θ0.

Remark 5 The motivation behind the above definition
is the one-to-one correspondence between confidence
sets and tests of hypotheses (see, e.g. Theorem 9.2.1
(Section 9) in Casella and Berger 39). For example, in
testing the hypothesis H0 : θ � θ0 vs. H1 : θ �� θ0, we
accept H0 if θ0 belongs to the (same level) confidence
interval and reject H0 if not. Now, in the fuzzy case, we

accept the fuzzy hypothesis ”H0 : θ is �θ0” by a degree
of acceptance (DA). This degree of acceptance, is cal-
culated based on the area under the graph of �θ0 which
is under the graph of μΠ��� (the membership function
of the fuzzy confidence interval).

Example 5 Consider Example 1. Now suppose we
would like to test the following fuzzy hypotheses at the
significance level of δ � 0�05�

H0 : θ is �65�70�76�81�T �
H1 : θ is not �65�70�76�81�T �

Here, H0 suggests that θ is almost between 70 and
76, and H1 suggests that θ is away from the interval
�70�76�. As in Example 2, the membership function
μΠ�x� is obtained in the following way:

μΠ�x� �

�������
3x�169�04

24 i f 56�35 � x � 64�35
1 i f 64�35 � x � 70�65
235�96�3x

24 i f 70�65 � x � 78�65
0 otherwise�

Hence, by Definition 9, at the significance level δ �

0�05, H0 is accepted with DA �
AΠ
AT

� 6�15
11 � 0�56 and

is rejected with DR�
A
�Π

AT
� 3�12

11 � 0�28. (See Fig. 11).

Fig. 11. H0 is accepted (rejected) with DA � 0�56 (DR � 0�28).

Example 6 Consider Example 1. We are interested in
testing the following one-sided fuzzy hypotheses at a
significance level of δ � 0�05�

H0 : θ is larger than �65�70�76�81�T �
H1 : θ is not larger than �65�70�76�81�T �

In Example 3, the membership function μΠ�x� is ob-
tained as

μΠ�x� �

���
1 i f x� 70�55
78�55�x

8 i f 70�55 � x� 78�55
0 otherwise�

Therefore, by Definition 9, at the significance level of

δ � 0�05, H0 is accepted with DA �
AΠ
AT

� 6�05
11 � 0�55

and is rejected with DR �
A
�Π

AT
� 3�20

11 � 0�29. (See Fig.
12).

Fig. 12. H0 is accepted (rejected) with DA � 0�55 (DR � 0�29).

Example 7 Consider Example 1. Suppose we want to
test the following one-sided fuzzy hypotheses at the sig-
nificance level of δ � 0�05�

H0 : θ is smaller than �65�70�76�81�T �
H1 : θ is not smaller than �65�70�76�81�T �

In Example 4, the membership function μΠ�x� is ob-
tained as

μΠ�x� �

���
x�56�45

8 i f 56�45 � x � 64�45
1 i f 64�45 � x
0 otherwise�

Therefore, by Definition 9, at a significance level of
δ � 0�05, H0 is accepted with DA �

AΠ
AT

� 1 and is re-

jected with DR �
A
�Π

AT
� 0. (See Fig. 13).
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Fig. 13. H0 is accepted (rejected) with DA � 1 (DR � 0).

Example 8 Application in lifetime testing: The life-
time of the batteries (in terms of hours) produced by a
company has an exponential distribution with an un-
known mean θ , i.e.

f �x;θ� �
1
θ

exp�� x
θ
�� x � 0� θ � 0�

In a random sample of size n � 12 batteries, we ob-
served the following trapezoidal fuzzy data:

No Data No Data
1 �0�0�700�1200�T 7 �0�0�100�700�T
2 �0�0�1050�1100�T 8 �0�0�900�1150�T
3 �0�0�700�1050�T 9 �0�0�550�1100�T
4 �0�0�100�460�T 10 �0�0�150�700�T
5 �0�0�1050�1300�T 11 �0�0�1100�1220�T
6 �0�0�700�1180�T 12 �0�0�100�600�T

Note that measuring the lifetime of a battery may
not yield an exact number. A battery (for instance data
No. 1) may work perfectly for 700 (h) before it be-
gins to lose power during the next 500 (h). It finally
goes completely dead after 1200 (h). Suppose we are
interested in testing the following one-sided fuzzy hy-
pothesis at the significance level of δ � 0�10:�

H0 : θ is larger than �800�1000�1000�1250�T�

H1 : θ is not larger than �800�1000�1000�1250�T�

The right one-sided crisp confidence interval for θ at
a confidence level of �1�δ � is

�0�π2� � �0�
2nX

χ2
�2n�δ �

��

Now, by substituting ��Xα�
L and ��Xα�

U of �X instead of
X in the above relation, the upper one-sided fuzzy con-
fidence interval for θ at a confidence level of 1� δ �

0�90, is a fuzzy set with the following α-cuts

Πα � �0�ΠU
α � �

�
0�max� 2n��Xα �L

χ2
�2n�δ �

�
2n��Xα �U

χ2
�2n�δ �

�

	

� �0�1502�042�582�424α�� �12�

where the membership function of �X
is μ

�X
�x����0�0�600�980�T and its α-cut is

���Xα�
L���Xα�

U � � �0�980�380α �.

Based on Relation �12�, the membership function
μΠ�x� is obtained as

μΠ�x� �

��
�

1 i f 0� x � 919�618
1502�042�x

582�424 i f 919�618� x � 1502�042
0 otherwise�

Therefore, by Definition 9, at the significance level

of δ � 0�1, H0 is accepted with DA �
AΠ
AT

� 216�342
225 �

0�962 and is rejected with DR �
A
�Π

AT
� 3�069

225 � 0�017.
(See Fig. 14).

Fig. 14. H0 is accepted (rejected) with DA � 0�962 (DR � 0�017).

5 Conclusion

The new approach proposed in this paper for testing
statistical hypotheses in fuzzy environments, which is
an extension of the Kahraman et al.’s work 37, has cer-
tain merits as follows:

I) It is established upon the concept of fuzzy confi-
dence interval. (Note that, in classical testing
hypotheses, there is a close relationship between
interval estimation and hypothesis testing 39).
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II) By introducing the concepts of degree of accep-
tance (DA) and degree of rejection (DR), the pro-
cedure enables us to test fuzzy hypotheses in a
rather natural way.

III) This work can be regarded as a step toward the
computing with words in the field of statistical
intelligent analysis.

Applications of the proposed method in fuzzy regres-
sion models 41 and also in quality control 42 may be
some directions for future researches.
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