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Abstract

Soft set theory and interval set theory are all mathematical tools for dealing with uncertainties. This paper
is devoted to the discussion of soft interval set and its application. The notion of soft interval sets is
introduced by combining soft set and interval set. Several operations on soft interval sets are presented in
a manner parallel to that used in defining operations on soft sets and the lattice structures of soft interval
sets are established. In addition, a soft interval set based decision making problem is analyzed.
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1. Introduction

To solve complicated problems in economics, engi-
neering, environmental science and social science,
methods in classical mathematics are not always
successful because of various types of uncertain-
ties present in these problems. While a wide range
of theories such as probability theory, fuzzy set
theory1, rough set theory2, and other mathemati-
cal tools are well-known and often serve as useful
approaches to describing uncertainty, each of them
has its advantages as well as inherent difficulties.
In 1999, Molodtsov3 introduced the concept of soft
sets, which can be seen as a new mathematical tool
for dealing with uncertainties. This so-called soft set
theory seems to be free from the difficulties affecting
the existing methods.

Presently, works on soft set theory are progress-

ing rapidly. Soft set theory has a rich potential for
applications in several directions, few of which had
been shown by Molodtsov3. Maji et al.4 described
the application of soft set theory to a decision mak-
ing problem. Chen et al.5 presented a new definition
of soft set parameterization reduction, and compared
this definition to the related concept of attributes
reduction in rough set theory. Kong et al.6 intro-
duced the notion of normal parameter reduction of
soft sets and presented a heuristic algorithm to com-
pute normal parameter reduction. In theoretical as-
pects, Maji et al.7 defined several operations on soft
sets and made a theoretical study on the theory of
soft sets. Irfan et al.8 introduced some new opera-
tions on soft sets and improved the notion of com-
plement of soft set. Based on these operations, Qin
et al.9 established the lattice structures and the soft
quotient algebras of soft sets.
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The study of hybrid models combining soft sets
with other mathematical structures is emerging as an
active research topic of soft set theory. Aktas and
Cagman10 compared soft sets to the related concepts
of fuzzy sets and rough sets. They also defined the
notion of soft groups and derived some related prop-
erties. Jun11 introduced the notion of soft BCK/BCI-
algebras. Jun and Park12 discussed the applications
of soft sets in ideal theory of BCK/BCI-algebras.
Maji et al.13 initiated the study on hybrid structures
involving fuzzy sets and soft sets. They introduced
the notion of fuzzy soft sets, which can be seen
as a fuzzy generalization of soft sets. Roy et al.14

presented a novel approach to deal with fuzzy soft
set based decision making problems. Yang et al.15

introduced the notion of interval-valued fuzzy soft
sets by combining interval-valued fuzzy set and soft
set models. By means of level soft sets and reduct
fuzzy soft sets, Feng et al.16,17 presented some ad-
justable approaches to fuzzy soft set and interval-
valued fuzzy soft set based decision making prob-
lems. The combination of soft set and rough set
models was also discussed by some researchers18,19.

The notion of interval sets was proposed by
Yao20 as a mathematical tool for dealing with quali-
tative information. An interval set is represented by
a pair of sets, namely, the lower and upper bounds.
It provides a useful and convenient method for rep-
resenting partially known concepts or for approxi-
mating undefinable concepts or complex concepts.
A generalized decision logic in interval-set-valued
information system is introduced21. Interval sets are
closely related to, and complementary to, fuzzy sets
and rough sets. The relationships among interval
sets, rough sets and fuzzy sets were investigated22,23.
A significant difference between these models lies
in the definition and interpretation of their extended
set-theoretic operators. More specifically, within a
framework of possible-worlds semantics analysis, it
has been shown that the rough set model and inter-
val set model correspond to two different extended
propositional logics22.

In many practical soft set based decision mak-
ing problems, the parameter approximations are ex-
tremely individual (dependent on expert’s evaluation
of alternatives) and thus cannot be lightly confirmed.

Sometimes we can only provide a lower bound and
an upper bound of parameter approximations. This
leads to the motivation to combine soft set and in-
terval set together. The organization of this paper is
as follows. In Section 2 we present the correlative
notions of interval sets. Section 3 deals with the al-
gebraic structures of soft interval sets. The concept
of soft interval sets is introduced by combining soft
set and interval set. Some operations on soft inter-
val sets are proposed and the lattice structures of soft
interval sets are established. The soft quotient alge-
bras are presented based the soft equality relations
between soft interval sets. A soft interval set based
decision making problem is examined in Section 4.
We have some conclusions in the concluding Section
5.

2. Interval sets

Let U be a set of objects. We consider the concepts
with respect to objects in U. A concept, in the classi-
cal view, is defined by a pair of intension and exten-
sion. Although the extension of a concept is actually
a subset of U, in many practical situations, a lack of
knowledge makes us unable to specify this subset.
Sometimes we can only provide a lower bound Al
and an upper bound Au. Any subset A that lies be-
tween Al and Au, namely, Al ⊆ A ⊆ Au can be the ac-
tual extension of the concept. Based on these obser-
vations, Yao20 proposed the notion of interval sets.

Definition 1 20 Let U be a non-empty set, called the
universe, and 2U be its power set. A subset of 2U of
the form

A = [Al,Au] = {A ∈ 2U ; Al ⊆ A ⊆ Au}
is called an interval set on U, where it is assumed

Al ⊆ Au. Al and Au are called the lower bound and
upper bound of A respectively.

In other words, an interval set on U is a family
of subsets of U. It is just an interval of the power
set lattice 2U . The symbols ∈,⊆,∩,∪ and − may be
used in their usual set-theoretic sense to represent re-
lationships between elements of 2U and an interval
set, and between different interval sets. Degenerate
interval sets of the form [A,A] are equivalent to or-
dinary sets. Thus, interval sets may be considered
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as an extension of elementary sets. In what follows,
the set of all interval sets on U is denoted by I(2U).

Interval set approach provides a tool for mod-
eling and processing partially known concepts and
for approximating undefinable or complex concepts.
Operations on interval sets are defined by Yao20

based on the corresponding set-theoretic operations
in a manner parallel to that used in defining opera-
tions on interval numbers. Thus, interval set alge-
bra may be regarded as a counterpart of the interval
number algebra proposed by Moore24.

Definition 2 20 Let A = [A1,A2] and B = [B1,B2]
be two interval sets on U. The interval-set intersec-
tion, union, and difference of A and B are defined
as:

A uB = {A∩B; A ∈A ,B ∈B},
A tB = {A∪B; A ∈A ,B ∈B},
A rB = {A−B; A ∈A ,B ∈B}.
Additionally, the interval-set complement of A

is defined as:
¬A = [U,U]rA .

Interval-set intersection, union, difference and
complement are closed operations on I(2U). Ac-
tually, for arbitrary interval sets A = [A1,A2] and
B = [B1,B2] on U, we have20:

A uB = [A1∩A2,B1∩B2],
A tB = [A1∪A2,B1∪B2],
A rB = [A1−A2,B1−B2] = A u¬B,
¬A = [Ac

2,A
c
1].

The following list summarizes properties of in-
terval sets25: for A ,B,C ∈ I(2U),

(I1) Idempotent: A uA = A , A tA = A .
(I2) Commutativity: A uB = BuA , A tB =

BtA .
(I3) Associativity: (A uB)uC = A u (BuC ),

(A tB)tC = A t (BtC ).
(I4) Distributivity: A u (B tC ) = (A uB)t

(A uC ), A t (BuC ) = (A tB)u (A tC ).
(I5) Absorption: A u (A tB) = A , A t (A u

B) = A .
(I6) De Morgan’s laws: ¬(A uB) = ¬A t¬B,

¬(A tB) = ¬A u¬A .
(I7) Double negation law: ¬¬A = A .
Hence, (I(2U),t,u) is a distributive lattice25.

The order relation v on I(2U) can be defined by:

[A1,A2] v [B1,B2] if and only if A1 ⊆ B1 and
A2 ⊆ B2.

In addition, [U,U] and [∅,∅] are the greatest ele-
ment and the least element in I(2U), respectively.

It is worth noticing that, for an interval set A =

[A1,A2], A u¬A is not necessarily equal to [∅,∅],
and A t¬A is not necessarily equal to [U,U]. Ac-
tually, we have A u¬A = [∅,A2 −A1], A t¬A =

[(A2−A1)c,U]. Hence ∅ ∈A u¬A , U ∈A t¬A .

3. Soft interval sets

Soft set theory was initiated by Molodtsov as a
mathematical tool for dealing with uncertainty. In
this section, by introducing interval set into the the-
ory of soft sets, we propose the concept of soft inter-
val sets and investigate its algebraic structures.

3.1. Concept of and operations on soft interval
sets

Let U be an initial universe set and E the set of
all possible parameters under consideration with re-
spect to U. Usually, parameters are attributes, char-
acteristics, or properties of objects in U. (U,E) is
called a soft universe. Molodtsov defined the notion
of a soft set in the following way:

Definition 3 3 A pair (F,A) is called a soft set over
U, where A ⊆ E and F is a mapping given by F :
A→ 2U .

Example 1 (1) Suppose that there are five houses
in the universe U given by U = {h1,h2,h3,h4,h5}
and E = {e1,e2,e3,e4,e5,e6} is the set of parameters.
Where e1,e2,e3,e4,e5 and e6 stand for the parame-
ters ‘expensive’,‘beautiful’,‘in the green surround-
ings’,‘in good repair’,‘wooden’, and ‘modern’ re-
spectively.

In this case, to define a soft set means to point
out expensive houses, beautiful houses, and so on.
The soft set (F,A) may describe the ‘attractiveness
of the houses’ which Mr.X is going to buy. Suppose
that A = {e1,e2,e3,e4} is the set of parameters Mr.X
concerned, F(e1) = {h2,h4}, F(e2) = {h1,h3}, F(e3) =

{h3,h4,h5}, and F(e4) = {h1,h5}. Then the soft set
(F,A) is a parameterized family {F(ei);1 6 i 6 4} of
subsets of U and give us a collection of approximate
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descriptions of an object. F(e1) = {h2,h4} means
houses h2 and h4 are ‘expensive’.

(2) Interval set may be considered as a special
case of the soft set. Let A = [A1,A2] be an interval
set on the universe U and C = A2−A1. It follows that
A = {F(B); B ∈ 2C} where F(B) = A1 ∪ B for every
B ∈ 2C . Thus, the interval set A may be considered
as the soft set (F,2C).

By the definition, a soft set (F,A) over U is a pa-
rameterized family of subsets of U. For e ∈ A, F(e)
may be considered as the set of e−approximate ele-
ments of the soft set (F,A). We notice that, in some
real applications, F(e) cannot be precisely defined
because of the complexity of the practical problems.
Maybe we can only provide a lower bound and an
upper bound of F(e). In this case, interval set is a
appropriate substitution for crisp subset of the uni-
verse.

Definition 4 A pair (F,A) is called a soft interval
set over U, where A ⊆ E and F is a mapping given
by F : A→ I(2U).

By this definition, a soft interval set over U is a
parameterized family of interval sets on U. Clearly,
soft interval set is a generalization of soft set. In
what follows, we denote by S I(2U) the set of all soft
interval sets over U.

Example 2 We consider the soft universe (U,E)
given in Example 1(1). (F,A) is a soft in-
terval set, where A = {e1,e2,e3,e4} is the
set of parameters we concerned and F(e1) =

[{h2,h4}, {h1,h2,h4}], F(e2) = [{h1,h3}, {h1,h3,h4}],
F(e3) = [{h3,h4,h5}, {h3,h4,h5}], and F(e4) =

[{h5}, {h1,h2,h5}].
This soft interval set gives us a collection of

approximate descriptions of an object. F(e1) =

[{h2,h4}, {h1,h2,h4}] means houses h2,h4 ∈ {h2,h4}
are definitely expensive, h1 ∈ {h1,h2,h4} − {h2,h4} is
possibly expensive, and h3,h5 ∈ U − {h1,h2,h4} are
not expensive.

Maji et al.7 and Irfan et al.8 introduced some op-
erations on soft sets. Similarly, we introduce the op-
erations on soft interval sets based on the operations
on interval sets.

Definition 5 Let (F,A) and (G,B) be two soft inter-
val sets over a common universe U.

(1) The extended union of (F,A) and (G,B), de-
noted by (F,A) ∪e (G,B), is the soft interval set
(H,C), where C = A∪B, and H is given by:

H(a) =


F(a), if a ∈ A−B,
G(a), if a ∈ B−A,
F(a)tG(a), if a ∈ A∩B.

(1)

(2) The extended intersection of (F,A) and (G,B),
denoted by (F,A)∩e (G,B), is the soft interval set
(H,C), where C = A∪B, and H ia given by:

H(a) =


F(a), if a ∈ A−B,
G(a), if a ∈ B−A,
F(a)uG(a), if a ∈ A∩B.

(2)

(3) The restricted union of (F,A) and (G,B),
denoted by (F,A)∪r (G,B), is the soft interval set
(H,C), where C = A∩B, and H(a) = F(a)tG(a) for
every a ∈C.

(4) The restricted intersection of (F,A) and
(G,B), denoted by (F,A)∩r (G,B), is the soft interval
set (H,C), where C = A∩B, and H(a) = F(a)uG(a)
for every a ∈C.
Definition 6 (1) (F,A) is called a relative null soft
interval set(with respect to the parameter set A), de-
noted by ∅A, if F(e) = [∅,∅] for all e ∈ A.

(2) (G,A) is called a relative whole soft interval
set(with respect to the parameter set A), denoted by
UA, if F(e) = [U,U] for all e ∈ A.
Definition 7 The relative complement of a soft in-
terval set (F,A) is denoted by (F,A)r and is defined
by (F,A)r = (Fr,A), where Fr : A→ I(2U) is a map-
ping given by Fr(e) = ¬F(e) for all e ∈ A.

Clearly, ((F,A)r)r = (F,A) holds.

3.2. Algebraic structures of soft interval sets

Algebraic structures play a fundamental role in
many fields of mathematics. Borzooei et al.26 dis-
cussed the lattice structures of some fuzzy algebraic
systems. We know that an interval set on a uni-
verse U is a bounded sublattice of the power set lat-
tice 2U and the set of all interval sets on U forms
a distributive lattice. In addition, Wang et al.27

proposed G−implication and L−implication opera-
tors on interval sets and constructed G−algebra and
MV−algebra of interval sets. In this subsection, we
consider the lattice structure of soft interval sets.
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Based on the order relation v on interval sets, we
define the order relation ⊆ on soft interval sets as fol-
lows: for arbitrary soft interval sets (F,A) and (G,B),
(F,A) ⊆ (G,B) if and only if A ⊆ B and F(a) vG(a)
for every a ∈ A.

We observe that this order relation is compatible
with the operation on soft interval sets, i.e.,

(F,A) ⊆ (G,B) if and only if (F,A) ∪e (G,B) =

(G,B).
In fact, let (F,A)∪e (G,B) = (H,A∪B). If (F,A)⊆

(G,B), then A ⊆ B and hence A∪ B = B. For each
a ∈ B, if a < A, then H(a) = G(a) by the defini-
tion; if a ∈ A, then H(a) = F(a)tG(a) = G(a) by
F(a) vG(a). Thus we have (F,A)∪e (G,B) = (G,B).
Conversely, we assume that (F,A)∪e (G,B) = (G,B).
It follows that A ⊆ B and for each a ∈ A, by F(a)t
G(a) = G(a) we conclude that F(a)vG(a) and hence
(F,A) ⊆ (G,B). Thus, the order relation ⊆ on soft in-
terval sets is just the order relation induced by ∪e.

It is trivial to verify that (S I(2U),⊆) is a partially
ordered sets. Actually, we have:

Theorem 1 (1) In (S I(2U),⊆), the least upper
bound (F,A) ∨ (G,B) and greatest lower bound
(F,A)∧ (G,B) of (F,A) and (G,B) can be explicitly
computed by using the following formulas:

(F,A)∨ (G,B) = (F,A)∪e (G,B),
(F,A)∧ (G,B) = (F,A)∩r (G,B).
(2) (S I(2U),∪e,∩r) is a bounded distributive lat-

tice.

Proof. (1) We prove that (F,A)∨ (G,B) = (F,A)∪e
(G,B) holds. Suppose that (F,A)∪e (G,B) = (H,A∪
B). For every a ∈ A, if a < B, then F(a) = H(a); if
a ∈ B, then F(a) v F(a) tG(a) = H(a). We con-
clude that (F,A) ⊆ (F,A) ∪e (G,B). Similarly, we
have (G,B)⊆ (F,A)∪e (G,B). Hence, (F,A)∪e (G,B)
is an upper bound of (F,A) and (G,B).

Let (M,C) be an upper bound of (F,A) and
(G,B), i.e., (F,A) ⊆ (M,C), (G,B) ⊆ (M,C). It fol-
lows that A ⊆C, B ⊆C and hence A∪B ⊆C. For ev-
ery a ∈ A∪B, if a ∈ A−B, then H(a) = F(a) v M(a);
if a ∈ B−A, then H(a) = G(a) v M(a); if a ∈ A∩ B,
then H(a) = F(a)tG(a) vM(a) by F(a) vM(a) and
G(a) v M(a). We conclude that (F,A)∪e (G,B) ⊆
(M,C). That is, (F,A)∪e (G,B) is the least upper
bound of (F,A) and (G,B).

(F,A) ∧ (G,B) = (F,A) ∩r (G,B) can be proved
similarly.

(2) By (1) we know that (S I(2U),∪e,∩r) is a lat-
tice. Trivially, ∅∅ and UE are the least and greatest
elements in S I(2U) respectively. We prove that the
following distributive law

(F,A)∪e ((G,B)∩r (H,C))
= ((F,A)∪e (G,B))∩r ((F,A)∪e (H,C))
holds for all (F,A), (G,B), (H,C) ∈ S I(2U). Sup-

pose that
(F,A)∪e ((G,B)∩r (H,C)) = (K,A∪ (B∩C)),
((F,A)∪e (G,B))∩r ((F,A)∪e (H,C))
= (L, (A∪B)∩ (A∪C)) = (L,A∪ (B∩C)).
For each a ∈ A∪ (B∩C),
(a) if a < A, then a ∈ B and a ∈ C, it follows that

K(a) = G(a)uH(a) = L(a);
(b) if a ∈ A, a < B, a < C, then K(a) = F(a) =

F(a)uF(a) = L(a);
(c) if a ∈ A, a ∈ B, a < C, then K(a) = F(a) =

(F(a)tG(a))uF(a) = L(a);
(d) if a ∈ A, a < B, a ∈ C, then K(a) = F(a) =

F(a)u (F(a)tH(a)) = L(a);
(e) if a ∈ A, a ∈ B, a ∈ C, then K(a) = F(a)t

(G(a)uH(a)) = (F(a)tG(a))u(F(a)tH(a)) = L(a).
Hence (F,A) ∪e ((G,B) ∩r (H,C)) = ((F,A) ∪e

(G,B))∩r ((F,A)∪e (H,C)).

We consider soft interval sets over a definite pa-
rameter set. Let A ⊆ E and

S IA(2U) = {(F,A); F : A→ I(2U)}

be the set of soft interval sets over the universe
U and the parameter set A. It is trivial to verify
that (F,A)∪e (G,A), (F,A)∩r (G,A) ∈ S IA(2U) for all
(F,A), (G,A) ∈ S IA(2U). Hence we have the follow-
ing Corollary.
Corollary 1 (S IA(2U),∪e,∩r) is a sublattice of
(S I(2U),∪e,∩r).
In (S IA(2U),∪e,∩r),UA and ∅A are the greatest ele-
ment and the least element respectively.

Now, we consider the algebraic structure of soft
interval sets with respect to operations ∪r and ∩e.
We define the order relation ⊆′ on soft interval sets
as follows: for arbitrary soft interval sets (F,A) and
(G,B), (F,A) ⊆′ (G,B) if and only if A ⊇ B and
F(b) vG(b) for every b ∈ B.
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It is easy to see that (S I(2U),⊆′) is a partially or-
dered sets.
Theorem 2 (1) In (S I(2U),⊆′), the least upper
bound (F,A) ∨ (G,B) and greatest lower bound
(F,A)∧ (G,B) of (F,A) and (G,B) can be explicitly
computed by using the following formulas:

(F,A)∨ (G,B) = (F,A)∪r (G,B),
(F,A)∧ (G,B) = (F,A)∩e (G,B).
(2) (S I(2U),∪r,∩e) is a bounded distributive lat-

tice.

Proof. (1) We prove (F,A) ∨ (G,B) = (F,A) ∪r
(G,B). Suppose that (F,A)∪r (G,B) = (H,A∩ B). It
follows that A∩B⊆ A and F(a)v F(a)tG(a) = H(a)
for all a ∈ A∩B. We conclude that (F,A) ⊆′ (F,A)∪r
(G,B). Similarly, we have (G,B) ⊆′ (F,A)∪r (G,B).
Hence, (F,A)∪r (G,B) is an upper bound of (F,A)
and (G,B) with respect to ⊆′.

Let (F,A) ⊆′ (M,C), (G,B) ⊆′ (M,C). It fol-
lows that C ⊆ A, C ⊆ B and hence C ⊆ A∩ B. For
every a ∈ C, we have F(a) v M(a), G(a) v M(a)
and consequently H(a) = F(a)tG(a) v M(a). We
conclude that (F,A) ∪r (G,B) ⊆′ (M,C). That is,
(F,A)∪r (G,B) is the least upper bound of (F,A) and
(G,B).

(F,A) ∧ (G,B) = (F,A) ∩e (G,B) can be proved
similarly.

(2) By the definition of ⊆′ we know that ∅E and
∅∅ are the least and greatest elements in S I(2U) with
respect to ⊆′, respectively. We prove that the follow-
ing distributive law

(F,A)∪r ((G,B)∩e (H,C))
= ((F,A)∪r (G,B))∩e ((F,A)∪r (H,C))
holds for all (F,A), (G,B), (H,C) ∈ S I(2U).
Suppose that
(F,A)∪r ((G,B)∩e (H,C)) = (K,A∩ (B∪C)),
((F,A)∪r (G,B))∩e ((F,A)∪r (H,C))
= (L, (A∩B)∪ (A∩C)) = (L,A∩ (B∪C)).
For each a ∈ A ∩ (B ∪C), we have a ∈ A and

a ∈ B∪C.
(a) if a ∈ B and a ∈C, then K(a) = F(a)t (G(a)u

H(a)) = (F(a)tG(a))u (F(a)tH(a)) = L(a);
(b) if a < B, a ∈ C, then K(a) = F(a)tH(a) =

L(a);
(c) if a ∈ B, a <C, then K(a) = F(a)tG(a) = L(a).
Since K and L are indeed the same interval-

set-valued mappings, we conclude that (F,A) ∪r

((G,B) ∩e (H,C)) = ((F,A) ∪r (G,B)) ∩e ((F,A) ∪r
(H,C)) as required.

Corollary 2 (S IA(2U),∪r,∩e) is a sublattice of
(S I(2U),∪r,∩e).

In (S IA(2U),∪e,∩r), ∅A and UA are the least ele-
ment and the greatest element respectively. For ev-
ery (F,A), (G,A) ∈ S IA(2U), we have (F,A) ⊆ (G,A)
if and only if (F,A) ⊆′ (G,A). It follows that
(S IA(2U),∪e,∩r) and (S IA(2U),∪r,∩e) are the same
lattices.

The following types of De Morgan’s laws hold in
soft interval set theory.

Theorem 3 Let (F,A) and (G,B) be two soft inter-
val sets over the same universe U such that A∩B ,
∅. Then

(1)((F,A)∪r (G,B))r = (F,A)r ∩r (G,B)r,
(2)((F,A)∩r (G,B))r = (F,A)r ∪r (G,B)r,
(3)((F,A)∪e (G,B))r = (F,A)r ∩e (G,B)r,
(4)((F,A)∩e (G,B))r = (F,A)r ∪e (G,B)r.

Proof. (1) Let (F,A) ∪r (G,B) = (H,A ∩ B),
(F,A)r ∩r (G,B)r = (K,A ∩ B). It follows that
((F,A)∪r (G,B))r = (Hr,A∩ B). For all a ∈ A∩ B,
we have Hr(a) = ¬H(a) = ¬(F(a)tG(a)) = ¬F(a)u
¬G(a) = Fr(a) uGr(a) = K(a), and consequently
((F,A)∪r (G,B))r = (F,A)r ∩r (G,B)r.

(2) By (1) we have ((F,A)r ∪r (G,B)r)r =

((F,A)r)r ∩r ((G,B)r)r = (F,A) ∩r (G,B), and
hence ((F,A) ∩r (G,B))r = (((F,A)r ∪r (G,B)r)r)r =

(F,A)r ∪r (G,B)r.
(3) Let (F,A) ∪e (G,B) = (H,A ∪ B), (F,A)r ∩e

(G,B)r = (K,A ∪ B). It follows that ((F,A) ∪e
(G,B))r = (Hr,A∪B). For all a ∈ A∪B,

(a) if a ∈ A− B, then Hr(a) = ¬H(a) = ¬F(a) =

K(a);
(b) if a ∈ B− A, then Hr(a) = ¬H(a) = ¬G(a) =

K(a);
(c) if a ∈ A∩ B, then Hr(a) = ¬H(a) = ¬(F(a)t

G(a)) = (¬F(a))u (¬G(a)) = K(a).
Hence we have ((F,A) ∪e (G,B))r = (F,A)r ∩e

(G,B)r.
(4) By (3) we have ((F,A)r ∪e (G,B)r)r =

((F,A)r)r ∩e ((G,B)r)r = (F,A)∩e (G,B). It follows
that ((F,A) ∩e (G,B))r = (((F,A)r ∪e (G,B)r)r)r =

(F,A)r ∪e (G,B)r.
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3.3. The soft equality relation on soft interval
sets

Based on the parameter analysis of soft set, Qin et
al.9 introduced the notion of soft equality relation
on soft sets. It is used to describe soft sets which
are ‘almost’ equal. With this relation, all the soft
sets on a definite universe can be partitioned to dif-
ferent classes in such a way that two soft sets will be
partitioned to same class if they are soft equal. Fur-
thermore, the soft equality relation can be used to
construct soft quotient algebra. In this subsection,
we follow the line of exploration in [9] and intend to
generalize this relation to soft interval sets.

Definition 8 Let (F,A), (G,B) be two soft interval
sets over the universe U. (F,A) is called soft equal to
(G,B), denoted by (F,A) ≈S (G,B), if for all a ∈ A∪
B, a ∈ A∩ B implies F(a) = G(a), a ∈ A− B implies
F(a) = [∅,∅], and a ∈ B−A implies G(a) = [∅,∅].
Example 3 We consider the soft interval set (F,A)
given in Example 2. Let (G,B) be a soft interval set,
where B = {e1,e2,e3,e4,e5}, G(ei) = F(ei) for every
1 6 i 6 4, and G(e5) = [∅,∅]. Then (F,A) ≈S (G,B).

Theorem 4 Let (F,A) and (G,B) be two soft inter-
val sets over the universe U. Then (F,A) ≈S (G,B) if
and only if (F,A)∪e (G,B) ≈S (F,A)∩r (G,B).

Proof. Let (F,A)∪e (G,B) = (H,A∪B) and (F,A)∩r
(G,B) = (T,A∩B).

Suppose that (F,A) ≈S (G,B). For all a ∈ A∩ B,
by Definition 8, we have F(a) = G(a), and hence
H(a) = F(a)tG(a) = F(a)uG(a) = T (a). For all
a ∈ A∪ B− A∩ B,(a)if a ∈ A− B, then F(a) = [∅,∅]
and hence H(a) = F(a) = [∅,∅]; (b)if a ∈ B−A, then
G(a) = [∅,∅] and hence H(a) = G(a) = [∅,∅]. Conse-
quently, (F,A)∪e (G,B) ≈S (F,A)∩r (G,B).

Conversely, suppose that (F,A) ∪e (G,B) ≈S
(F,A)∩r (G,B). For all a ∈ A∩ B, we have F(a)t
G(a) = F(a) uG(a) and hence F(a) = G(a). For
all a ∈ A− B, it follows that a ∈ A∪ B, a < A∩ B,
and hence F(a) = H(a) = [∅,∅]. For all a ∈ B −
A, G(a) = [∅,∅] can be proved similarly. Hence
(F,A) ≈S (G,B).

Theorem 5 Let (F,A), (G,B) be two soft sets over
the universe U.

(1) (F,A) ≈S (G,B) if and only if (F,A) ∪r
(G,B) ≈S (F,A)∩e (G,B).

(2) (F,A) ≈S (G,B) implies (F,A) ∪e (G,B) =

(F,A)∩e (G,B), (F,A)∪r (G,B) = (F,A)∩r (G,B).

The proof is similar to that of Theorem 4 and we
omit it.

Theorem 6 ≈S is a congruence relation on S I(2U)
with respect to operations ∩r and ∪e, i.e.,

(1) ≈S is an equivalence relation;
(2) (F,A) ≈S (G,B) and (H,C) ≈S (L,D) im-

ply (F,A)∩r (H,C) ≈S (G,B)∩r (L,D) and (F,A)∪e
(H,C) ≈S (G,B)∪e (L,D).

Proof. (1) It is trivial to verify that ≈S is reflexive
and symmetric.

Suppose that (F,A) ≈S (G,B) and (G,B) ≈S
(H,C). For all e ∈ A∩C, if e ∈ B, then e ∈ A∩ B
and e ∈ B∩C, it follows that F(e) = G(e) = H(e); if
e < B, then e ∈ A− B and e ∈ C − B, it follows that
F(e) = [∅,∅] = H(e).

For all e ∈ A−C, it follows that e ∈ A and e < C.
If e ∈ B, then e ∈ A∩B and e ∈ B−C. Consequently,
F(e) = G(e) = [∅,∅]; if e < B, then e ∈ A − B and
F(e) = [∅,∅].

For all e ∈C−A, H(e) = [∅,∅] can be proved sim-
ilarly. Hence (F,A) ≈S (H,C). We conclude that ≈S
is a transitive relation as required.

(2) Suppose that (F,A) ≈S (G,B) and (H,C) ≈S
(L,D). Let (F,A)∩r (H,C) = (M1,A∩C), (G,B)∩r
(L,D) = (M2,B∩D).

(a) If e ∈ (A∩C)∩ (B∩D), then e ∈ (A∩ B) and
e ∈ (C∩D). It follows that F(e) = G(e), H(e) = L(e)
and hence

M1(e) = F(e)uH(e) = G(e)uL(e) = M2(e).
(b) If e ∈ (A∩C) − (B∩ D), then e ∈ A, e ∈ C

and e < B∩D. It follows that e < B or e < D. If
e < B, then e ∈ A−B and hence F(e) = [∅,∅]. Conse-
quently, M1(e) = F(e)uH(e) = [∅,∅]. If e < D, then
e ∈ C −D and hence H(e) = [∅,∅]. It follows that
M1(e) = F(e)uH(e) = [∅,∅].

(c) If e ∈ (B∩D)− (A∩C), then M2(e) = [∅,∅]
can be proved similarly.

We conclude that (F,A) ∩r (H,C) ≈S (G,B) ∩r
(L,D).

Let (F,A) ∪e (H,C) = (T1,A ∪ C), (G,B) ∪e
(L,D) = (T2,B∪D).
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For all e ∈ (A∪C)∩ (B∪D), we have e ∈ A∪C
and e ∈ B∪D. Without losing of generality, we sup-
pose that e ∈ A and e ∈ D.

(a) If e ∈ B and e ∈C, then e ∈ A∩B and e ∈C∩D.
It follows that F(e) = G(e), H(e) = L(e) and hence
T1(e) = F(e)tH(e) = G(e)tL(e) = T2(e).

(b) If e < B and e ∈C, then e ∈ A−B and e ∈C∩D.
It follows that F(e) = [∅,∅], H(e) = L(e) and hence
T1(e) = F(e)tH(e) = H(e) = L(e) = T2(e).

(c) If e ∈ B and e <C, then e ∈ A∩B and e ∈D−C.
It follows that F(e) = G(e), L(e) = [∅,∅] and hence
T1(e) = F(e) = G(e) = G(e)tL(e) = T2(e).

(d) If e < B and e <C, then e ∈ A−B and e ∈D−C.
It follows that F(e) = [∅,∅], L(e) = [∅,∅] and hence
T1(e) = F(e) = [∅,∅] = L(e) = T2(e).

For all e ∈ A∪C−B∪D, we have e ∈ A∪C, e < B
and e < D.

(a) If e ∈ A and e ∈ C, then e ∈ A− B and e ∈
C−D. It follows that F(e) = H(e) = [∅,∅], and hence
T1(e) = F(e)tH(e) = [∅,∅].

(b) If e ∈ A and e < C, then e ∈ A− B. It follows
that F(e) = [∅,∅], and hence T1(e) = F(e) = [∅,∅].

(c) If e < A and e ∈ C, then e ∈ C −D. It follows
that H(e) = [∅,∅], and hence T1(e) = H(e) = [∅,∅].

For all e ∈ B∪D− A∪C, T2(e) = [∅,∅] can be
proved similarly.

Hence (F,A)∪e (H,C) ≈S (G,B)∪e (L,D).

Let (F,A)≈S = {(G,B); (G,B) ≈S (F,A)} be the
congruence class including (F,A) and S I(2U)/ ≈S =

{(F,A)≈S ; (F,A) ∈ S I(2U)} be the set of all congru-
ence classes. We define operations ∪S and ∩S on
S I(2U)/ ≈S as follows:

(F,A)≈S ∪S (G,B)≈S = ((F,A)∪e (G,B))≈S , (3)

(F,A)≈S ∩S (G,B)≈S = ((F,A)∩r (G,B))≈S . (4)

These two operations are well defined by Theorem
6. We call (S I(2U)/ ≈S ,∪S ,∩S ) the soft quotient al-
gebra with respect to ≈S . It is routine to verify that
(S I(2U)/ ≈S ,∪S ,∩S ) is a distributive lattice.

Theorem 7 (S I(2U)/≈S ,∪S ,∩S ) and (S IE(2U),∪e,∩r)
are isomorphic.

Proof. Let ϕ : S IE(2U)→ S I(2U)/ ≈S be defined
as ϕ(F,E) = (F,E)≈S for every (F,E) ∈ S IE(2U).

(1) If (F1,E), (F2,E) ∈ S IE(2U) and (F1,E) ,
(F2,E), then there exists a ∈ E such that F1(a) ,
F2(a), and consequently (F1,E)≈S , (F2,E)≈S .

(2) Let (F,A)≈S ∈ S I(2U)/ ≈S . We define
(F′,E) ∈ S IE(2U) as follows: F′(a) = [∅,∅] for each
a ∈ E − A and F′(a) = F(a) for each a ∈ A. Hence
(F′,E) ≈S (F,A) and

ϕ(F′,E) = (F′,E)≈S = (F,A)≈S .
By (1) and (2), we conclude that ϕ is a one-to-

one mapping.
(3) For every (F1,E), (F2,E) ∈ S IE(2U), we have:
ϕ((F1,E)∪e (F2,E)) = ((F1,E)∪e (F2,E))≈S

= (F1,E)≈S ∪S (F2,E)≈S = ϕ(F1,E)∪S ϕ(F2,E),
ϕ((F1,E)∩r (F2,E)) = ((F1,E)∩r (F2,E))≈S

= (F1,E)≈S ∩S (F2,E)≈S = ϕ(F1,E)∩S ϕ(F2,E).
We conclude that ϕ is an isomorphism,

(S I(2U)/ ≈S ,∪S ,∩S ) and (S IE(2U),∪e,∩r) are iso-
morphic.

In order to establish the soft quotient algebra
with respect to operations ∪r and ∩e, we discuss an-
other kind of soft equality relation ≈S .
Definition 9 Let (F,A), (G,B) ∈ S I(2U). (F,A) ≈S

(G,B) if for all e ∈ A∪ B, e ∈ A∩ B implies F(e) =

G(e), e ∈ A−B implies F(e) = [U,U], and e ∈ B−A
implies G(e) = [U,U].
Theorem 8 Let (F,A) and (G,B) be two soft inter-
val sets over the universe U. Then (F,A) ≈S (G,B) if
and only if (F,A)r ≈S (G,B)r.

Proof. Suppose that (F,A) ≈S (G,B). For all
e ∈ A∩ B, by definition, we have F(e) = G(e), and
hence Fr(e) = ¬F(e) = Gr(e). For all e ∈ A− B, we
have F(e) = [U,U] and hence Fr(e) = [∅,∅]. Simi-
larly, Gr(e) = [∅,∅] for all e ∈ B− A. We conclude
that (F,A)r ≈S (G,B)r as required.

Conversely, suppose that (F,A)r ≈S (G,B)r. For
all e ∈ A ∩ B, we have Fr(e) = Gr(e), and hence
F(e) = G(e). For all e ∈ A−B, we have Fr(e) = [∅,∅]
and hence F(e) = [U,U]. Similarly, G(e) = [U,U]
for all e ∈ B−A. Hence (F,A) ≈S (G,B).

Theorem 9 ≈S is a congruence relation with re-
spect to operations ∪r and ∩e.
The proof of this Theorem is similar to that of The-
orem 6.

Let (F,A)≈S = {(G,B); (G,B) ≈S (F,A)} be the
congruence class (with respect to ≈S ) including
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(F,A) and S I(2U)/ ≈S = {(F,A)≈S ; (F,A) ∈ S I(2U)}.
We define operations ∪S and ∩S on S I(2U)/ ≈S as
follows:

(F,A)≈S ∪S (G,B)≈S = ((F,A)∪r (G,B))≈S , (5)

(F,A)≈S ∩S (G,B)≈S = ((F,A)∩e (G,B))≈S . (6)

We call (S I(2U)/ ≈S ,∪S ,∩S ) the soft quotient alge-
bra with respect to ≈S . It is routine to verify that
(S I(2U)/ ≈S ,∪S ,∩S ) is a distributive lattice.

4. Applications to decision making problems

Maji et al.4 proposed tabular representation of soft
set to deal with soft set based decision making prob-
lems. We can represent soft interval set similarly
in a tabular form. Let (F,A) be a soft interval set,
a ∈ A and F(a) = [F(a)−,F(a)+]. By intuitionis-
tic semantics of soft interval set, we know that el-
ements in F(a)− belong definitely to F(a), elements
in U−F(a)+ does not belong to F(a), while elements
in F(a)+ − F(a)− are possibly belong to F(a). Fol-
lowing the idea of incomplete information system,
we represent soft interval set (F,A) in a binary ta-
ble and its entries hi j are defined as: hi ∈ F(a)− im-
plies hi j = 1; hi ∈ F(a)+−F(a)− implies hi j = ∗, and
hi ∈ U −F(a)+ implies hi j = 0. hi j = ∗ means we are
not sure whether hi ∈ F(a) or not.

The tabular representation of the soft interval set
(F,A) given in Example 2 is as in Table 1.

Table 1. The tabular representation of (F,A)

e1 e2 e3 e4

h1 ∗ 1 0 ∗
h2 1 0 0 ∗
h3 0 1 1 0
h4 1 ∗ 1 0
h5 0 0 1 1

Zou and Xiao28 proposed a data analysis ap-
proach to soft set under incomplete information.
The incomplete data will be predicted based on the
method of average probability. Suppose pa stands
for probability that an object in F(a)+ − F(a)− be-
longs to F(a), it can be defined by 28

pa =
|F(a)− |

|F(a)− |+|U−F(a)+ | ,a ∈ A.
We may take pa as the value of elements in

F(a)+ − F(a)− with respect to parameter a. By this

definition, for the soft interval set in Table 1, we
have pe1 = 1

2 , pe2 = 1
2 , pe4 = 1

3 . The extended tab-
ular representation of (F,A) is as in Table 2.

Table 2. The extended tabular representation of (F,A)

e1 e2 e3 e4

h1
1
2 1 0 1

3
h2 1 0 0 1

3
h3 0 1 1 0
h4 0 1

2 1 0
h5 0 0 1 1

In real decision making problems, the choice
parameters may not be of equal importance. To
cope with such problems, we can impose different
weights to different decision parameters. Addition-
ally, there may be some parameters which is ‘neg-
ative’ to optimal choice. So the weights can range
from −1 to 1, that is, the values domain of weights
is the interval [−1,1].

Maji et al.4 proposed an approach to weighted
soft set based decision making problems. The
choice value ci of object hi will be computed by:

ci =
∑

j w jhi j,

where w j is the weight of e j. The object with
the maximum choice value will be selected as the
optimal alternative. In this decision making prob-
lem, we know that e1 stands for ‘expensive’ and it
is negative to the optimal choice. We assume that
the weights of e1,e2,e3,e4 are −0.4,0.6,0.4,0.9, re-
spectively. The choice values ci of objects hi can be
computed as follows:

c1 = (−0.4)× 1
2 + 0.6×1 + 0.4×0 + 0.9× 1

3 = 0.7,

c2 = (−0.4)×1+0.6×0+0.4×0+0.9× 1
3 = −0.1,

c3 = (−0.4)×0 + 0.6×1 + 0.4×1 + 0.9×0 = 1,

c4 = (−0.4)×1 + 0.6× 1
2 + 0.4×1 + 0.9×0 = 0.3,

c5 = (−0.4)×0 + 0.6×0 + 0.4×1 + 0.9×1 = 1.3.

Hence, the optimal decision is to select h5.
The extended tabular representation of (F,A) with
weights and choice values is given by Table 3.
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Table 3. The extended tabular representation of (F,A) with
weights and choice values

e1,−0.4 e2,0.6 e3,0.4 e4,0.9 choice-value
h1

1
2 1 0 1

3 0.7
h2 1 0 0 1

3 -0.1
h3 0 1 1 0 1
h4 1 1

2 1 0 0.3
h5 0 0 1 1 1.3

This is only a simple example to show the pos-
sibility of using this method for decision making
problems which could be improved based on domain
knowledge and other competing data analysis meth-
ods. We summarize the soft interval set based de-
cision making approach presented in this section as
the following algorithm:

Step 1: Input the soft interval set (F,A) and place
it in tabular form.

Step 2: Compute average probability pa for each
parameter a ∈ A and construct the extended tabular
representation of (F,A), where pa =

|F(a)− |
|F(a)− |+|U−F(a)+ | .

Step 3: Input the weights w j of parameters in A.
Step 4: Compute the choice values ci of hi, where

ci =
∑

j w jhi j and hi j are entries in extended tabular
representation of (F,A).

Step 5: The optimal decision is hk if ck = maxici.
Step 6: If k has more that one value then any one

of hk may be chosen.

5. Conclusions

Soft set theory and interval set theory are all mathe-
matical tools for dealing with uncertainty. They are
closely related. This paper deals with the combina-
tion of soft set and interval set models and its appli-
cation. The notion of soft interval sets is introduced
and the algebraic structure of soft interval sets is in-
vestigated. Additionally, a soft interval set based de-
cision making problem is examined.

This paper focuses on the theoretical study of
soft interval sets. Because of limitation of spaces,
only a numerical example is provided to illustrate
the application method of soft interval sets. We think
that soft interval set theory may be applied to the
knowledge acquisition for interval-valued informa-
tion systems, qualitative information representation

and qualitative information reasoning. Based on this
paper, we can further probe the applications of soft
interval sets in practical fields. The combination of
soft interval set and other competing data analysis
models is another important and interesting issue to
be addressed.
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