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Abstract 

Multiple attribute decision analysis (MADA) problems often include both qualitative and quantitative attributes 
which may be either precise or inaccurate. The evidential reasoning (ER) approach is one of reliable and rational 
methods for dealing with MADA problems and can generate aggregated assessments from a variety of attributes. In 
many real world decision situations, accurate assessments are difficult to provide such as in group decision 
situations. Extensive research in dealing with imprecise or uncertain belief structures has been conducted on the 
basis of the ER approach, such as interval belief degrees, interval weights and interval uncertainty. In this paper, the 
weights of attributes and utilities of evaluation grades are considered to be fuzzy numbers for the ER approach. 
Fuzzy analytic hierarchy process (FAHP) is used for generating triangular fuzzy weights for attributes from a 
triangular fuzzy judgment matrix provided by an expert. The weighted arithmetic mean method is proposed to 
aggregate the triangular fuzzy weights of attributes from a group of experts. α-cut is then used to transform the 
combined triangular fuzzy weights to interval weights for the purpose of dealing with the fuzzy type of weight and 
utility in a consistent way. Several pairs of group evidential reasoning based nonlinear programming models are 
then designed to calculate the global fuzzy belief degrees and the overall expected interval utilities of each 
alternative with interval weights and interval utilities as constraints. A case study is conducted to show the validity 
and effectiveness of the proposed approach and sensitivity analysis is also conducted on interval weights generated 
by different α-cuts. 

Keywords: Evidential reasoning; Fuzzy weight; Interval utility; α-cut; Multiple attribute decision analysis. 
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1. Introduction 

Multiple attribute decision analysis (MADA) with 
various types of attributes is common in practice.1 For 
instance, in a project evaluation problem, both 
quantitative attributes measured by numerical values and 
qualitative attributes judged by linguistic variables need 
to be taken into account. In general, several quantified 
evaluation grades may be defined for assessing a 
qualitative attribute, for example, indifferent, average, 
good, and so on. Numerical values associated with these 
grades are used to transform the subjective judgment of 
an alternative on a qualitative attribute to a numerical 
value, or the numerical value assessed to a quantitative 
attribute is transformed to degrees on several evaluation 
grades. Then the values assessed on all attributes in a 
consistent form can be aggregated into a general 
assessment. 

The evidential reasoning (ER) approach was 
introduced in 1990s2,3 based on the Dempster-Shafer 
(D-S) theory4,5 and is well-suited to dealing with 
complex MADA problems. It uses a distributed 
assessment based on several defined evaluation grades to 
present incomplete or fuzzy subjective judgments and it 
is convenient to combine different types of attributes. 

There have been several development stages for the 
ER approach. Firstly, a basic framework of the ER 
approach is proposed2,3 based on the evidence 
combination rule of the D-S theory for the combination 
of multiple uncertain subjective judgments. To facilitate 
data collection in real decision environments, Yang 
proposed an improved method to the ER approach for 
the transformation of different sets of linguistic 
evaluation grades associated with different qualitative 
attributes and certain values associated with quantitative 
attributes to one set of evaluation grades.6 In dealing 
with the irrationality in the original ER framework, four 
synthesis axioms are discussed and an improved ER 
algorithm which could satisfy these axioms is proposed.7 
In the original ER recursive algorithm,6,7 L-1 calculation 
steps are needed for the combination of L basic attributes. 
The analytical ER algorithm is then proposed8 based on 
the recursive algorithm and Yen’s combination rule,9 in 
which only one step of calculation is to be conducted to 
generate the overall performance. Secondly, the ER 
approach has been applied to many real world decision 
making issues, for instance, motorcycle and car 
evaluation,2,3,7 large engineering product evaluation,10 

general cargo ship design,11 supplier selection in VMI 
alliance circumstance, 12 contractor selection,13 safety 
analysis,14,15 self assessment,16, 17, 18 environmental 
impact assessment,8 pipeline leak detection,19 strategic 
R&D project assessment,20 new product development,21 
bridge condition assessment,22 consumer preference 
prediction,23 and so on. Thirdly, on the implementation 
of the ER approach, a window-based and graphically 
designed decision support software package called 
intelligent decision system (IDS) is developed on the 
basis of the ER approach.16, 17, 24 It not only provides a 
flexible and easy to use interface for modeling and 
decision analysis, but also a structured knowledge base 
to help assessors to make judgments more objectively.  

In a MADA problem, although the relative weight of 
an attribute is considered in the ER algorithm, the 
relative importance of an attribute is not always 
provided precisely due to the lack of information or the 
limit of knowledge and experience. Consequently, 
subjective judgments may be provided by a group of 
assessors because an individual may be incapable of 
providing a reliable judgment. In this circumstance, crisp 
values are not appropriate to present the weights of 
attributes from a group of experts anymore. In the field 
of research in the ER approach under uncertainties, Xu 
et al  studied the ER approach for MADA under 
interval uncertainty25 where the frame of discernment 
comprising not only single evaluation grades such as 
‘good’, ‘average’, but also any subset of consecutive 
evaluation grades. Yang studied the ER approach for 
MADA under both probabilistic and fuzzy uncertainties 
where every two adjacent evaluation grades are 
supposed to be possibly overlapped to some degree.26 
Wang et al also extended the ER approach where the 
belief degrees are supposed to be interval values and 
several programming models are constructed,27 based on 
which Guo further extended the ER approach under both 
interval belief degrees and interval weights.28 

In this paper, we investigate a decision situation 
where a group of experts are involved in providing 
uncertain weights, in particular triangular fuzzy weights. 
Firstly, a set of triangular fuzzy judgment matrices are 
constructed from a group of experts, based on which a 
set of triangular fuzzy weights are generated by the 
FAHP29 method. Then the weighted arithmetic mean 
method is used to generate a combined triangular fuzzy 
weight of each attribute from the perspectives of all 
experts. The α-cut method is used to transform the 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                   424



Group Evidential Reasoning Approach 

combined triangular fuzzy weights to interval weights. 
The global fuzzy belief degrees are then generated based 
on the interval weights calculated by the α-cut method 
and the ER algorithm through four groups of ER based 
nonlinear programming models. 

From the calculation by the ER algorithm, an 
aggregated belief degree can be generated which needs 
to be transferred into a definite value through utility 
function.6, 7, 20 Due to the different backgrounds and 
expertise, the utility estimations on the same evaluation 
grade by every two decision makers (DMs) may be 
different in group decision circumstances. It may also be 
changed by individual DM himself/herself at different 
decision points. For example, a DM may be risk taking 
at one period of time and risk averse at another time 
point due to the changes of external environment. In this 
paper, fuzzy utilities are used in the ER approach and 
assumed to be constraints in the nonlinear programming 
models for the computation of the general assessment 
value for the presentation of risk preferences from 
different DMs or the attitude changes of DMs towards 
risk. 

The structure of this paper is summarized as follows. 
Section 2 and section 4 are a brief introduction about the 
Dempster-Shafer’s evidence theory and the ER approach 
respectively. The concept of triangular fuzzy number 
which is the basis of our extension of the ER approach is 
to be introduced in section 3. Section 5 provides the 
extension of the ER approach to deal with triangular 
fuzzy weights in group decision making environment. In 
section 6, the approach to generate global belief degrees 
under triangular fuzzy weights are proposed, and section 
7 provides the approach to generate overall expected 
utility under fuzzy weights and fuzzy utilities. Section 8 
is a numerical example to illustrate our proposed 
approach. This paper is concluded in section 9. 

2. Dempster–Shafer’s Evidence Theory 

Dempster-Shafer’s evidence theory is introduced by 
Dempster4 and refined by Shafer.5 It is one of the 
powerful tools to deal with uncertainty and has been 
applied in many fields.30-34 In the D-S evidence theory, a 
sample space is called the frame of discernment which is 
denoted by  . A basic hypothesis in   is represented 
by nH ( 1, 2, , )n N  . 

The basic probability mass to the subset A of   is 
denoted by ( )m A , which measures the degree to which 
the evidence supports A. It satisfies the following two 

conditions: 
( ) 1

A

m A


  0 ( ) 1m A A              (1) 

( ) 0m                                  (2) 

where   is the power set of  , consisting of all 
subsets of  , and   is an empty set. ( )m A  expresses 
the portion of the total belief exactly committed to A  
given a piece of evidence, but does not include the 
portion of belief to the subsets of A . ( )m   measures 
the degree of ignorance that is the portion of the belief 
unassigned to any subsets of  . 

The probability assigned to A  of   that 
considering all the premises of A  is denoted by 

( )Bel A  as defined below: 
( ) ( ) ( )

B A

Bel A m B A 


          (3) 

The kernel of the D-S evidence theory is the D-S 
combination rule which can be used to aggregate 
different sources of evidence. Suppose there are n pieces 
of evidence in  , and they each provide a basic 
probability mass to a subset A  of  , such as 

1 2( ), ( ), , ( )nm A m A m A . The D-S combination rule is 
defined as follows: 

1

1

1

1 1
, ,

1 ( ) ( )
n

n

n n
A A
A A

K m A m A






  

 
      
 





         (4) 

1

1

1 1
, ,

0,

( ) ( ) ( ),
n

n

n n
A A
A A A

A

m A K m A m A A






  


    







 (5) 

Eq. (4) reflects the conflict among n pieces of 
evidence, which is called the normalization factor and 
satisfies 1K  . 

3. Concept of Triangular Fuzzy Number 

In this section, the concept of triangular fuzzy number 
will be briefly reviewed.35-38 At first, the basic concept of 
fuzzy sets and fuzzy numbers will be briefly 
introduced.38-41 

A fuzzy set M  of the universe of discourse 

1 2{ , , , }nX x x x   can be denoted by  

1 1 2 2( ) / ( ) / ( ) /M M M n nM x x x x x x       (6) 

where M  denotes the membership function of the 
fuzzy set M  with equation as follows: 

                : [0,1]M X                (7) 
( )M ix ( 1,2, , )i n   denotes the degree of 

membership of ix  to the fuzzy set M . If ix X   
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with ( ) 1M ix  , then the fuzzy set M  is called a 
normal fuzzy set. According to Chen,38 a fuzzy number 
is a fuzzy set in the universe of discourse X  that is 
both normal and convex. 

A generalized triangular fuzzy number M  of the 
universe of discourse X  could be characterized by a 
triangular membership function represented as 

( , , ; )MM l m u w , where (0,1]Mw  . l , m  and u  
are all real numbers. l  and u  are the lower and upper 
bounds of the fuzzy number M  respectively, and 
l m u  . When 1Mw  , then the generalized 
triangular fuzzy number M  becomes a normal 
triangular fuzzy number, denoted as 

( , , ;1)M l m u ( , , )l m u . When l m u   and 
1Mw  , then M  becomes a crisp value. The 

geometrical explanation of a generalized triangular 
fuzzy number is shown in Fig. 1. 

 

 

Fig. 1.  Geometrical explanation of a generalized triangular 
fuzzy number ( , , ; )Ml m u w  

The membership function of a normal triangular fuzzy 
number M  can be represented as follows: 

0 ( , ] [ , )

1
( ) [ , ]

1
[ , ]

M

x l u

l
x x x l m

m l m l
u

x x m u
m u m u




    

  

 


   

 (8) 

In this paper, the relative importance of an attribute 

ie  is represented by ( , , ;1) ( , , )l m u l m u
i i i i i i i        . 

m
i denotes the most possible value of the relative 

importance i  confirmed to the ith attribute with the 
membership function ( ) 1m

M i Mw    , while l
i and 

u
i are the left and right extensions of i  respectively. 

They each denote the most pessimistic weight judgment 
and the most optimistic weight judgment assigned to ie  
respectively, with ( ) ( ) 0l u

M i M i     . The weight 

i  could be assigned to any values in the range of 
[ , ]l u

i i   with a member function which can be 
calculated by Eq. (8). The distance of the two values is 
represented by the absolute value u l

i i   which 
denotes the largest fuzzy degree of the relative 
importance assigned to ie . In other words, the larger the 
absolute value, the fuzzier the judgment is. 

0u l
i i    indicates that the weight judgment to the 

ith attribute is not fuzzy at all. 

4. The Analytical ER Algorithm 

The ER approach can be used to deal with MADA 
problems to aggregate multiple attributes.2, 3, 6-8 It uses a 
belief decision matrix (BDM) where each of its elements 
is a vector of belief degrees assessed to a set of 
evaluation grades in contrast with a conventional 
decision matrix where a single value is used to assess an 
alternative on each attribute in most other MADA 
methods. The ER approach is developed on the basis of 
the D-S evidence theory discussed in section 2. A set of 
linguistic evaluation grades for the assessment of an 
attribute on an alternative is defined in the ER approach 
as follows: 

1 2{ , , , }NH H H H            (9) 

where nH ( 1, 2, , )n N   each denotes an evaluation 
grade and they together form a frame of discernment. 
They are assumed to be collectively exhaustive and 
mutually exclusive. 1H  and NH  are assumed to be 
the worst and best evaluation grade respectively. Without 
loss of generality, 1nH   is supposed to be preferred to 

nH . The notations of some basic symbols in the ER 
approach are shown in table 1. 

Table 1.  Notation of the main symbols 

Symbol Notation 

ie  
The ith attribute, 1, 2, ,i L  , L  is 

the total number of basic attributes in 
assessing the general performance 

la  
The lth alternative, 1, 2, ,l S  , S  
is the number of alternatives to be 
assessed 

i  
The weight of the ith attribute ie , and 

1
1

L

ii



  

, ( )n i la
The belief degree that la  is assessed on 

ie  to evaluation grade nH  

, ( )H i la
The degree of uncertainty that la  is 

assessed on ie  

l m u

x

0  

Mw  
M  

( )M x  
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From the basic symbols presented in Table 1, the 

assessment of an alternative la  on a basic attribute ie  
to all evaluation grades can be denoted by the following 
statement: 

, ,( ( )) {( , ( )), 1, 2, , ; , ( )}i l n n i l H i lS e a H a n N H a     

( 1, 2, , ; 1, 2, , )i L l S           (10) 

There are two basic conditions for , ( )n i la  in the ER 

approach which are shown below: 

,0 ( ) 1n i la  , ,
1

( ) 1
N

n i l
n

a


       (11) 

If ,
1

( ) 1
N

n i l
n

a


 , the information provided by DM is 

considered to be complete. Otherwise, it is said to be 
incomplete.  

In the ER approach, each qualitative attribute is 
assigned with belief degrees on all evaluation grades as 
denoted in Eq. (9). The ER approach provides both the 
recursive7 and analytical algorithms8 to aggregate the 
assessments on multiple factors. Each of the algorithms 
has its own merits and can be applied in different 
decision situations. The analytical ER algorithm is 
described as follows: 

, ,( ) ( )n i l i n i lm a a                          (12) 

, , ,
1

( ) 1 ( ) 1 ( )
N N

H i l n i l i n i l
n n i

m a m a a 
 

          (13) 

, ( ) 1H i l im a   , , ,
1

( ) (1 ( ))
N

H i l i n i l
n

m a a 


     (14) 

, , ,
1

, ,
1

( ) [ ( ( ) ( ) ( ))

( ( ) ( ))]

L

n l n i l H i l H i l
i

L

H i l H i l
i

m a k m a m a m a

m a m a





  

 








      (15) 

, , ,
1 1

,
1

( ) ( ( ) ( )) ( )

( ) ( )

L L

H l H i l H i l H i l
i i

L

H l H i l
i

m a k m a m a m a

m a k m a

 



    
 
   
 

 



 
 (16) 

, , ,
1 1

1
, ,

1

[ ( ( ) ( ) ( ))

( 1) ( ( ) ( ))]

LN

n i l H i l H i l
n i

L

H i l H i l
i

k m a m a m a

N m a m a

 





   

  








     (17) 

1, 2, ,i L  ; 1, 2, ,n N  ; 1, 2, ,l S   

where , ( )n i lm a  is the basic probability assignment of 

la  being assessed to nH  on the basic attribute ie , 

, ( )H i lm a  is the remaining probability mass unassigned 

to any individual grade after all the N  grades have 

been considered for assessing the general attribute as far 
as ie  is concerned. ( )n lm a  is the combined 

probability assignment to la  on nH  generated by 

assessing all the L attributes.  
From the above description, it is clear that only one 

step needs to be conducted for generating the overall 
assessment ( )n lm a , ( )H lm a and ( )H lm a by combining 
L  basic attributes. 

Let ( )n la  be the combined belief degree to which 

la ( 1, 2, , )l S   is assessed on nH  and ( )H la  the 
belief degree unassigned to any individual evaluation 
grade after all the L  basic attributes have been 
assessed. Then we have 

( )
( ) , 1,2, ,

1 ( )
n l

n l
H l

m a
a n N

m a
  


      (18) 

( )
( )

1 ( )
H l

H l
H l

m a
a

m a
 




                 (19) 

where 

        
1

( ) ( ) 1
N

H l n l
n

a a 


                  (20) 

After the aggregation of L  basic attributes, a 
distributed assessment for la  on the general level can 
then be presented as follows:  

( ( )) {( , ( )), 1, 2, , ; , ( )}l n n l H lS y a H a n N H a    (21) 

5. Method for Generating the Aggregated 
Triangular Fuzzy Weights from Group of 
Experts 

The analytic hierarchy process (AHP) can be used as a 
method for the comparison of relative importance for 
attributes.42, 43 In the traditional AHP method, each 
element in the comparison matrix is an accurate value. 
With the decision making environments becoming more 
and more complex, the comparison of two attributes may 
not always be definitely fixed to a certain value anymore. 
The triangular fuzzy judgment matrix was proposed by 
Laarhoven,29 which is a fuzzy extension of Saaty's 
pairwise comparison method42 that was extended by 
Gran44 and Lootsma.45 Kwiesielewicz46 further improved 
the fuzzy analytic hierarchy process (FAHP) proposed 
by Laarhoven. In this paper, the weights of attributes in 
the ER approach are supposed to be triangular fuzzy 
weights which are calculated using FAHP based on the 
triangular fuzzy judgment matrix.  

5.1. Triangular fuzzy judgment matrix 

Each element in a triangular fuzzy judgment matrix is a 
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triangular fuzzy number as defined in the following 
definition. 
Definition 1. ( )ij L LA a  ( , 1, 2, , )i j n   is a L L  

triangular fuzzy judgment matrix if the elements ija  are 

represented by triangular fuzzy number as follows: 
( , , )ij ij ij ija l m u              (22) 

where L  is the total number of attributes involved in 
the comparison of two attributes. 

The subjective preferences of experts have direct 
significant impact on the outcomes of decision making 
in the process of constructing a hierarchical assessment 
structure and judgment matrix, whilst expert judgments 
can be incorrect or inaccurate, which leads to wrong 
decisions. Individual experts may be incompetent for 
dealing with the complexity of decision making 
problems under multiple criteria. In complex real 
decision making processes, it is important to get a group 
of experts involved in order to make decisions more 
objectively and reliably. However, research shows that 
experts always achieve different degrees of consistency 
in decision making because of their different 
backgrounds or expertise and conflicting interests. A 
question then arises as to how to generate group attitude 
towards the importance of attributes from individual 
expert’s judgments.  

Suppose { 1 2, , , , ,t TA A A A  } is a set of triangular 
fuzzy judgment matrices given by T experts, where tA  
denotes the tth triangular fuzzy judgment matrix from 
the tth expert whose relative importance is assumed to 
be ( 1, 2, , )t t T   . tA  is defined as the following 
equation: 

12 12 12 1 1 1

21 21 21 2 2 2

1 1 1 2 2 2

( ) ( , , )

(1, 1, 1) ( , , ) ( , , )

( , , ) (1, 1, 1) ( , , )

( , , ) ( , , ) (1, 1, 1)

t t t t
t ij L L ij ij ij L L

t t t t t t
L L L

t t t t t t
L L L

t t t t t t
L L L L L L L L

A a l m u

l m u l m u

l m u l m u

l m u l m u

 



 

 
 
 
 
 
  




   


 

( 1,2, , )t T               (23) 

5.2. Generating the Aggregated Triangular Fuzzy 
Weights 

There are two ways for the generation of aggregated 
triangular fuzzy weights. One way is to generate a 
combined triangular fuzzy judgment matrix by 
aggregating the triangular fuzzy judgment matrices of all 
experts firstly, and then the combined triangular fuzzy 
weights of attributes can be calculated by FAHP from 

the combined judgment matrix. The other way is to use 
FAHP to calculate the triangular fuzzy weights of 
attributes from each triangular fuzzy judgment matrix 
firstly, and then the combined triangular fuzzy weights 
can be obtained by aggregating these calculated 
triangular fuzzy weights.  

In the first way, the weighted geometric mean 
complex judgment matrix (WGMCJM) method47, 48 can 
be used for the aggregation of multiple-matrices. Xu 
proved that WGMCJM satisfies the consistency 
theorem.47 The proof shows that if a judgment matrix 
presented by each expert is of acceptable consistency, 
then the aggregated judgment matrix calculated using 
the weighted geometric mean method (WGMM) is of 
acceptable consistency as well. In this approach, 
however, elements in each judgment matrix are all 
assumed to be crisp values. When elements are extended 
to triangular fuzzy numbers, this approach becomes 
complicated. 

In this paper, the second way is followed to generate 

aggregated triangular fuzzy weights from a group of 

experts. The FAHP approach is firstly used to calculate 

the triangular fuzzy weights of all L attributes from each 

expert. Suppose there are T experts involved in the 

process of assigning attributes’ weights. The weight 

assigned to the ith attribute by the tth expert calculated 

by FAHP is assumed to be ,i t ( 1,2, , )t T  , 

represented by , , ,( , , )l m u
i t i t i t   . Fig. 2 shows the matrix of 

triangular fuzzy weight assignment to all L attributes by 

all the T experts. For example, the weight assignment by 

the tth expert is shown in the tth row of Fig.2 which is 

calculated from the tth triangular fuzzy judgment matrix 

tA  by FAHP. 
The triangular fuzzy weight matrix can also be 

denoted by the following two vectors. 

  1,t 2,t i,t L,tω ω ω ω        (24) 

or 
T

  
' ' ' '
i,1 i,2 i,t i,Tω ω ω ω        (25) 

where ,1 ,2 , ,( , , , , , )T
i i i t i T   i,tω    represents the 

weight vector of ie  assigned by all experts, and 

1, 2, , ,( , , , , , )t t i t L t   '
i,tω    represents the weight 

vector assigned to all L attributes by the tth expert. 
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1e             2e       …      ie      …      Le  

Expert 1  1,1 1,1 1,1( , , )l m u     2,1 2,1 2,1( , , )l m u    … ,1 ,1 ,1( , , )l m u
i i i    … ,1 ,1 ,1( , , )l m u

L L L     '
i,1ω  

Expert 2  1,2 1,2 1,2( , , )l m u    2,2 2,2 2,2( , , )l m u    … ,2 ,2 ,2( , , )l m u
i i i   … ,2 ,2 ,2( , , )l m u

L L L    '
i,2ω  

……             ……               ……              ……       ... 

Expert t  1, 1, 1,( , , )l m u
t t t     2, 2, 2,( , , )l m u

t t t    …  , , ,( , , )l m u
i t i t i t    … , , ,( , , )l m u

L t L t L t     '
i,tω  

……             ……               ……              ……       ... 

 Expert T 1, 1, 1,( , , )l m u
T T T    2, 2, 2,( , , )l m u

T T T    … , , ,( , , )l m u
i T i T i T    … , , ,( , , )l m u

L T L T L T    '
i,Tω  

  1,tω             2,tω       …      i,tω       …     L,tω  

Fig. 2.  Triangular fuzzy weights matrix of all L attributes by T experts 

Let i  be the combined triangular fuzzy weight 

assigned to ie  generated from the weight assignments 

by T experts ( i,tω ), represented by ( , , )l m u
i i i   . In this 

paper, the method to obtain i  will be proposed and 

described in detail.  
Suppose ,1i  and ,2i  are the triangular fuzzy 

weights assigned to the ith attribute ie  by two different 

experts, represented by ,1 ,1 ,1( , , )l m u
i i i    and 

,2 ,2 ,2( , , )l m u
i i i    respectively as shown in Fig. 3. If 

,1 ,2
l l
i i  , ,1 ,2

m m
i i   and ,1 ,2

u u
i i  , then, ,1i  

equals to ,2i . In general, however, there is ,1 ,2i i   

because the judgements of two experts are often 
inconsistent to some extent due to their differences in 
background, expertise and interest. Suppose the joint 
middle region of weight assigned to ie  is denoted by 

,1 ,2[ , ]m m
i i  , the joint minimum region of weight assigned 

to ie  is denoted by ,1 ,2[ , ]l l
i i  , and ,1 ,2[ , ]u u

i i   

represents the joint maximum region of weight assigned 
to ie . Fig. 3 is just one of the cases in combining two 

triangular fuzzy weights. From Fig. 3, we could see that 

,1 ,2 ,1 ,2 ,1 ,2
l l m m u u
i i i i i i          .  

 

Fig. 3.  Combining triangular fuzzy weights of the ith attribute 
derived from two experts 

Another case is that the lower bound of the weight 
assigned to ie  by an expert (for instance ,2

l
i ) may be 

larger than the middle weight assignment with 
membership of 1 by another expert (for instance ,1

m
i ). 

In this case, the joint middle region of i  ( ,1 ,2[ , ]m m
i i  ) 

is overlapped with the joint minimum region of i  

( ,1 ,2[ , ]l l
i i  ) as shown in Fig. 4. The relative comparison 

of the three points in each of these two triangular fuzzy 
numbers in this case is ,1 ,1 ,2 ,2 ,1

l m l m u
i i i i i         

,2
u
i . 

 

Fig. 4.  One case of combining two triangular fuzzy weights 
from 2 experts 

Many other cases may also occur, for example 

,1 ,2 ,2 ,1 ,1 ,2
l l m m u u
i i i i i i           as shown in Fig. 5, 

,1 ,2 ,2 ,1 ,2 ,1
l l m m u u
i i i i i i           as shown in Fig. 6 

and so on.  
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Fig. 5.  One case of combining two triangular fuzzy weights 
from 2 experts 

 

 

Fig. 6.  One case of combining two triangular fuzzy weights 
from 2 experts 

In group decision situations, there may be more 
complicated cases than shown in Fig. 3-Fig. 6 due to the 
differences of experts’ judgments. A problem arises as to 
how to combine weights assigned to each attribute by all 
experts. Fig. 7 shows a triangular fuzzy weight assigned 
to ie  by T experts. 

 

 

Fig. 7.  Combining T triangular fuzzy weights from T different 
experts 

Let 
minl

i  and 
maxl

i be the minimum and maximum 
values of the pessimistic weight judgment assigned to 

ie  from all T experts respectively, or in mathematical 
expression 

min

,1, ,
minl l

i i tt T
 





, 

max

,
1, ,

maxl l
i i t

t T
 





          (26) 

The minimum and maximum values of the most likely 
weight judgment ,

m
i t  ( 1,2, , )t T   assigned to ie  

by T experts are denoted by 
minm

i  and 
maxm

i  

respectively, or 
min

,1, ,
minm m

i i tt T
 





, 

max

,
1, ,

maxm m
i i t

t T
 





         (27) 

And the minimum and maximum values of the most 
optimistic weight judgment ,

u
i t  ( 1, 2, , )t T   

assigned to ie  by T experts are calculated by 
min

,1, ,
minu u

i i tt T
 





, 

max

,
1, ,

maxu u
i i t

t T
 





         (28) 

Thus, in the case involving T experts shown in Fig. 7, 
the joint minimum, middle and maximum region of 

weight assigned to ie  are denoted by 
min max

[ , ]l l
i i  , 

min max

[ , ]m m
i i   and 

min max

[ , ]u u
i i   respectively. The 

combined pessimistic weight judgment assigned to ie  

represented by l
i  could be any value in the range of 

min max

[ , ]l l
i i   depending on real decision situations and 

decision maker’s preferences. m
i  and u

i  could be 

any values in the ranges of 
min max

[ , ]m m
i i   and 

min max

[ , ]u u
i i   respectively. However, the above ranges 

only represent the largest possible ranges of values that 
l
i , m

i  and u
i  can take. In this paper, we propose 

more realistic or likely ranges for l
i , m

i  and u
i . 

( )M x

minl
i    

maxl
i      

minm
i         

maxm
i     

minu
i    

maxu
i

x 

0

1

  ,i t ( 1, 2, , )t T 

l
i  

m
i  

u
i

( )M x  

x
0 

1 

 ,2i            ,1i  

,1
l
i     ,2

l
i       ,2

m
i       ,1

m
i       ,2

u
i   ,1

u
i

( )M x  

x

0 
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For example, l
i  is supposed to take the weighted 

arithmetic mean of ,
l
i t  ( 1, 2, , )t T   in the region of 

min max

[ , ]l l
i i   represented by l

i  with standard 

deviation of l
i . m

i  and u
i  are also supposed to 

take the weighted arithmetic mean of ,
m
i t  

( 1, 2, , )t T   and ,
u
i t  ( 1, 2, , )t T   respectively, 

represented by m
i  and u

i  with standard deviation of 
m
i  and u

i . Thus, we have 

,
1

T
l l
i t i t

t

 


  , 2
,

1

1
( )

T
l l l
i i t i

tT
  



        (29) 

,
1

T
m m
i t i t

t

 


  , 2
,

1

1
( )

T
m m m
i i t i

tT
  



      (30) 

,
1

T
u u
i t i t

t

 


  , 2
,

1

1
( )

T
u u u
i i t i

tT
  



       (31) 

1

1
T

t
t




                               (32) 

From Eq. (29)-(32), we can see that l
i  , m

i  and u
i  

are bounded in the intervals 
min max

[ , ]l l
i i  , 

min max

[ , ]m m
i i   

and 
min max

[ , ]u u
i i   respectively, and they may represent 

an average perspective on the weight assignment to ie . 
The calculated combined triangular fuzzy weights of ie  
can then be denoted by  

1 2( , , , , , )i L   ω           (33) 
where ( , , )l m u

i i i i    . 
In combining triangular fuzzy weights from several 

experts, l
i  can take the middle value of the interval 

min max

[ , ]l l
i i   as well. However, if ,

l
i t  assigned to ie  

by most experts are near 
minl

i , the middle triangular 

fuzzy weights will be irrational.  
l
i , m

i  and u
i  can also take the weighted 

geometric mean of ,
l
i t , ,

m
i t  and ,

u
i t ( 1, 2, , )t T   

respectively as follows: 

,
1

t

T
l l
i i t

t

 


 , ,
1

t

T
m m
i i t

t

 


 , ,
1

t

T
u u
i i t

t

 


   (34) 

1

1
T

t
t




                               (35) 

The results generated by the weighted geometric 
mean method of Eqs. (34), (35) are different from the 
combined triangular fuzzy weights generated by the 
weighted arithmetic mean method (Eq. (29)-(32)). For 
example, suppose the triangular fuzzy weights of the ith 
attribute assigned by expert 1, expert 2 and expert 3 are 
(0.1, 0.2, 0.3), (0.3, 0.4, 0.5) and (0.15, 0.25, 0.3) 

respectively. These three experts are considered to be 
equally important ( 1 2 3 1/ 3     ). Then the 
combined triangular fuzzy weight by the weighted 
arithmetic mean method illustrated above is (0.183, 
0.283, 0.367) with standard deviations of (0.085, 0.085, 
0.096). The result calculated by the weighted geometric 
mean method is (0.165, 0.271, 0.356).  

Such difference also occurs in sampling the three 
values l

i , m
i  and u

i  from the intervals 
min max

[ , ]l l
i i  , 

min max

[ , ]m m
i i   and 

min max

[ , ]u u
i i   using 

any other aggregation methods. Thus, sensitivity 
analysis needs to be conducted for different methods of 
combining triangular fuzzy weights for informative and 
reliable decision support.  

The combined triangular fuzzy weights ω  are then 
used in group evidential reasoning based programming 
models which is to be discussed in the next section. 

6. Group Evidential Reasoning Approach to 
Compute Global Belief Degrees under 
Triangular Fuzzy Weights 

6.1 Using α-cut to Transform Triangular Fuzzy 
Weights to Interval Weights 

In this paper, α-cut is proposed to transform to interval 
weights the combined triangular fuzzy weights 
calculated using the method proposed in the previous 
section. The concept of α-cut is briefly reviewed in the 
following.38 

The k-th α-cut kM   of triangular fuzzy number 
M  is defined as follows: 

{ | ( ) , }k
M kM x x x X      1, 2, ,k r   (36) 

where 0 1k  , r  denotes the number of α-cuts. For 
instance, Fig. 8 shows a triangular fuzzy weights 

( , , )l m u
i i i i     with 4 α-cuts ( 4r  ), where 

1 0.5  , 2 0.7  , 3 0.9   and 4 1  . 
 

 

Fig. 8.  Triangular fuzzy weights i  with four α-cuts 
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The minimum value kl
i  and the maximum value 

ku
i  of the k-th α-cut on the combined triangular fuzzy 

weight ( , , )l m u
i i i i     are defined as follows: 

{ | ( ) }kl
i M k

x X

Inf x x  


           (37) 

{ | ( ) }ku
i M k

x X

Sup x x  


          (38) 

Fig. 9 shows the minimum value kl
i  and the 

maximum value ku
i  of the k-th α-cut on triangular 

fuzzy weight ( , , )l m u
i i i i    . They can be calculated 

as follows: 
( )kl l m l

i i k i i                 (39) 
( )ku u u m

i i k i i                (40) 
 

 

Fig. 9.  Minimum and maximum value of the kth α-cut on 
triangular fuzzy weight i  

From the process of α-cut, we can see that if k  
(0 1)k   is selected, then an aggregated 
interval-valued weight assigned to an attribute ie  from 
a group of experts with a reliability of at least k  will 
be confirmed, represented by [ , ]k kl u

i i  . From Fig. 8, it 
is clear that different α-cuts lead to different kl

i  and 
ku

i . In other word, with the increase of the value of k , 
the uncertainty of the weight assignment to ie  
decreases because the interval region between kl

i  and 
ku

i  becomes smaller. In other words 
, | |k k k kl u u l

k i i i i         , and vice versa, 
where  indicates increase and   means decrease. So 
the sensitivity analysis of k  being assigned to 
different values between 0 and 1 should be conducted 
for the purpose of informative and reliable decision 
support to the decision maker. 

In the field of interval-valued D-S theory and ER 
approach, lots of research has been conducted. For 
instance, Lee and Zhu studied the combination of 
interval evidence.49 Denoeux and Yager systematically 

explored the combination and normalization of interval 
evidence.50, 51 But their approaches do not provide a 
satisfactory solution for dealing with interval-valued 
belief structures.52 Guo studied the ER approach under 
both interval weights and interval belief degrees28 based 
on Wang’s research27, 52 which was mentioned in section 
1 where interval belief degrees are considered. In the 
following, the models for calculating global belief 
degrees are constructed according to Wang and Guo’s 
models because the combination and normalization 
processes are optimized simultaneously which making 
the results more rational and appropriate. 

6.2. Group Evidential Reasoning Based 
Programming Models to Generate Global Belief 
Degrees under Fuzzy Weights 

Based on the analytical ER algorithm and the calculated 
interval weights from the combined triangular fuzzy 
weights by α-cut, several group evidential reasoning 
based programming models for computing the global 
fuzzy belief degrees are constructed below. 
Programming model <1> is constructed for the 
generation of the maximum value of ( )n la . 

<1>    
( )

( )
1 ( )

n l
n l

H l

m a
Max a

m a
 


          (41) 

( 1, 2, , )n N   

s.t.  EQS. (12)-(17), (23), (29)-(32), (39)-(40) 
k kl u

i i i      ( 1, 2, , )i L         (42) 

1
1

L

ii



                         (43) 

There are L  variables in the above programming 
model which can be solved using “Solver” in Excel. To 
calculate the minimum value of ( )n la ( 1,2, , )l S  , 
the following model is constructed: 

<2>   
( )

( )
1 ( )

n l
n l

H l

m a
Min a

m a
 


           (44) 

( 1, 2, , )n N   

s.t. EQS. (12)-(17), (23), (29)-(32), (39)-(40), (42)-(43). 

Let ( )ku
n la  and ( )kl

n la  ( 1, 2, , )n N   be the 
optimal value of the objective function in the above two 
models respectively. Then the aggregated fuzzy belief 
degree of la  assigned to nH  under the k-th α-cut of 
the combined fuzzy weights can be generated and 
presented by ( ) [ ( ), ( )]k kl u

n l n l n la a a   . 
For the generation of ( )H la ( 1,2, , )l S  , two 

programming models may also be constructed as 
follows: 

( )M x  

x

1 
 
αk 
 
 

0.5 
 

 
 

 
0 

M

l
i          kl

i   
m
i     ku

i                     
u
i  
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<3> 
( )

( )
1 ( )

H l
H l

H l

m a
Max a

m a
 




             (45) 

s.t. EQS. (12)-(17), (23), (29)-(32), (39)-(40), (42)-(43). 
 

<4> 
( )

( )
1 ( )

H l
H l

H l

m a
Min a

m a
 




             (46) 

s.t. EQS. (12)-(17), (23), (29)-(32), (39)-(40), (42)-(43). 

Let ( )ku
H la  and ( )kl

H la  be the optimal values of 
programming model <3> and <4> respectively. Then, 
we have ( ) [ ( ), ( )]k kl u

H l H l H la a a   . Based on 
programming models <1> to <4>, the global fuzzy 
belief degrees assigned to la  under the k-th α-cut of 
the combined triangular fuzzy weights in group decision 
situation can then be represented as follow 

( ( )) {( , ( ) [ ( ), ( )]),

1, 2, , ; , ( ) [ ( ), ( )]}

k k

k k

l u
l n n l n l n l

l u
H l H l H l

S y a H a a a

n N H a a a

  

  

 

 
 (47) 

where 

1

( ) ( ) 1
N

H l n l
n

a a 


   

Model <1> and model <2> each need to be solved N 
times to generate the maximum values of the combined 
fuzzy belief degrees of alternative la  on all N 
evaluation grades. Models <3> and <4> each only need 
to be solved once to calculate ( )ku

H la  and ( )kl
H la  

respectively. 

7. Group Evidential Reasoning Approach to 
Compute Overall Utility under Fuzzy 
Weights and Utilities 

7.1. Using Fuzzy Value to Represent Evaluation 
Grade Utility 

In the existent ER approach where weights and utilities 
are considered to be crisp values, the maximum, 
minimum and average utility are calculated to transform 
Eq. (21) to a single value for the purpose of comparing 
several alternatives clearly.6, 7 They are defined as 
follows: 

max
1

( ) ( ) ( ) ( ) ( )
N

l n l n H l N
n

u a a u H a u H 


     (48) 

min 1
1

( ) ( ) ( ) ( ) ( )
N

l n l n H l
n

u a a u H a u H 


     (49) 

max min( ) ( )
( )

2
l l

ave l

u a u a
u a


               (50) 

In the above formulae, a function needs to be defined 
for each evaluation grade nH ( 1, 2, , )n N  . Utility 

function represented by ( )nu H  is used in Refs. 6, 7, 8, 
13, 20, where ( )nu H  is defined to be the utility of the 
evaluation grade nH ( 1, 2, , )n N  . 1( )nu H   is 
assumed to be larger than ( )nu H  if 1nH   is preferred 
to nH . From the definition of utility function, we could 
see that an alternative will be judged to be of high level 
if it gets a larger utility value.  

In a utility function, the subjective judgment of the 
decision maker (DM) is taken into account. Risk 
preferences and utility functions are different for 
different DMs and decision situations. There are three 
basic types of utility functions which are risk taking, risk 
neutral and risk averse respectively. In real group 
assessment problems, the utility of an evaluation grade 
estimated by a group of experts is not a crisp value in 
general. In this paper, the utilities of all evaluation 
grades are assumed to be fuzzy (interval) numbers, 
whose values are represented below: 

( ) [ , ]l u
n n nu H u u  n=1, …, N       (51) 

7.2. Group Evidential Reasoning Based 
Programming Models for Utility Function under 
Both Fuzzy Weights and Fuzzy Utilities 

Given that weights are presented as fuzzy numbers and 
utility estimation may be uncertain or ambiguous, if we 
use programming model <1>-<4> under fuzzy weights 
to generate a global belief degrees as Eq. (47) firstly and 
then utilize equation Eqs. (48)-(50) for the generation of 
overall utility values, the real utility intervals assessed 
on an alternative could not be obtained.27, 28 

So, based on the analytical ER algorithm, fuzzy 
weights and utilities, the group ER based programming 
models for utility function could be constructed 
according to Wang and Guo’s model as follows.  

<5> max
1

( ) ( ) ( ) ( ) ( )
N

l n l n H l N
n

Max u a a u H a u H 


     

s.t. EQS. (12)-(19), (23), (29)-(32), (39)-(40), (42)-(43) 
( )l u

n n nu u H u   1, 2, ,n N   

<6> min 1
1

( ) ( ) ( ) ( ) ( )
N

l n l n H l
n

Min u a a u H a u H 


     

s.t. EQS. (12)-(19), (23), (29)-(32), (39)-(40), (42)-(43) 
( )l u

n n nu u H u   1, 2, ,n N   

From the two group ER based programming models 
above, the overall maximum and minimum expected 
utilities under the kth α-cut of weights can then be 
generated as ( )ku

lU a  and ( )kl
lU a  respectively. Then 

the overall fuzzy utility assessed for la  can be 
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represented as follows: 

( ) [ ( ), ( )]k kl u
l l lU a U a U a         (52) 

The whole process of this group evidential reasoning 

approach proposed in section 5-7 is shown in Fig. 10 as 
follows. 

 

 

Fig. 10.  Process of group evidential reasoning approach under fuzzy weights and utilities 

8. Application 

In this section, the group ER approach is applied to 
assess the performance of products in a manufacturing 
factory. In the life cycle of a project, our assessment is in 
the period that the development of a project has been 
completed or already in market for some time. As the 
result of assessment, the score assigned to a product can 
be obtained on the general level that could reflect the 
performance of completion or operation. A product can 
spread its performance in design and development 

whereas poor performance should be identified and 
discussed for future improvements. Five steps are 
involved in this process, summarized as follows: 

8.1. Construction of the assessment framework 

The research was conducted in close collaboration with 
the managers and faculties in the departments of a 
factory in China whose name is not mentioned here due 
to its business confidentiality. The constructed attribute 
framework is shown in Fig. 11. 

 
 

Constructing T triangular fuzzy judgment matrices from T experts 

Generating T groups of triangular fuzzy weights of attributes by FAHP 

See Eq. (23) 

Using weighted arithmetic mean method to combine T groups of triangular fuzzy weights 

Results shown in Fig. 2 

Using α-cut to transform combined triangular fuzzy weights to interval weights, Eqs. (37)-(40), Fig. 9 

Fig. 7, Eqs. (29)-(32) 

Generating the overall fuzzy belief degrees and utilities in performance 

Models <1>-<6> 

Constructing group evidential reasoning based programming models based on fuzzy weights and utilities 
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Fig. 11.  Attribute framework for the assessment of product performance 

8.2. Assignment of belief degrees in performance 

Five evaluation grades are involved for the assessment 
of a product. They are Bad, Poor, Average, Good and 
Very good, which form the frame of discernment 

together as follows:  

1 2 3 4 5{ , , , , }H H H H H H ={Bad, Poor, Average, 
Good, Very good}                     (53) 

Table 2.  Generalized decision matrix for product assessment and belief degrees of attributes 

Belief degrees 
General attributes Sub-attributes 

a1 a2 

Workload 11e (ω11) (H2, 0.6; H3, 0.4) (H4, 0.5; H5, 0.5) 

Origin of person 12e (ω12) (H4, 0.9; H5, 0.1) (H5, 0.8) 

Scale and 
importance 

1E (ω1) 
Importance of project 13e (ω13) (H2, 04.; H3, 0.4) (H2, 0.3; H3, 0.7) 

Advance of critical techniques 

21e (ω21) 
(H5,0.9) 

(H2, 0.1; H3, 0.4; 
H4, 0.5) 

Ratio between quality and price 22e (ω22) (H4,1.0) 
(H3, 0.2; H4, 0.7; 

H5, 0.1) 

Reliability of product 23e (ω23) 
(H3, 0.2; H4, 0.3;

H5, 0.5) 
(H4, 1.0) 

Content of technique 

2E (ω2) 

Economy 24e (ω24) (H2, 0.2; H3, 0.8)
(H1, 0.1; H2, 0.2; 
H3,0.4; H4,0.3) 

Theoretical standard 31e (ω31) 
(H3, 0.3; H4, 0.5;

H5, 0.2) 
(H3,0.2; H4,0.7) 

Degree of innovation 32e (ω32) 
(H2, 0.1; H3, 0.1;
H4, 0.2; H5, 0.6)

(H4, 0.7;H5, 0.3) 

 Theoretical value 
and level of 
innovation 

3E (ω3) Ratio of individual design 33e (ω33) (H3, 0.3, H4, 0.6) (H3,0.9) 

Project team 41e (ω41) 
(H1, 0.3; H2, 0.2;

H3, 0.5) 
(H4,0.7; H5,0.3) Added value 

4E (ω4) Continuity of technique 42e (ω42) (H4, 1.0) (H2,0.2; H3, 0.7) 

Quality of project 51e (ω51) (H3, 0.4; H4, 0.6)
(H3,0.3; H4, 0.5; 

H5, 0.2) 

Completion time for a project 52e (ω52) 
(H1, 0.1; H2, 0.1; 
H3, 0.5; H4, 0.3)

(H3,0.3; H4, 0.7) 
Process control 

5E (ω5) 

Investment 53e (ω53) (H4, 0.9) 
(H2,0.3; H3, 0.3; 

H4, 0.3) 

Product Performance 

 Workload 
 Origin of person 
 Importance of 

project 
 

 Theoretical 
standard 

 Degree of 
innovation 

 Ratio of 
individual design 

 

 Advance of 
critical 
techniques 

 Ratio between 
quality and price 

 Reliability of 
product 

 Economy 

 Project team 
 Continuity of 

technique 
 

Scale and 
importance 

Content of 
technique 

Theoretical 
value and level 
of innovation 

Added value Process control

 Quality of project
 Completion time 

for a project 
 Investment 
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Two products which form the set of alternatives 

1 2{ , }A a a  are involved in the case study. The belief 
degrees assigned to the two products on each attribute 
are shown in Table 2.  

Table 2 shows a distributed view of the assessment 
of each product on every attribute. For example, 
“workload” for a1 is assessed to be poor with a belief 
degree of 0.6 and to be average with a belief degree of 
0.4”. The above statement can also be represented by the 
following expectation: 

11 1( ( ))S e a = {(Poor, 0.6), (Average, 0.4)}   (54) 

8.3. Generating the combined triangular fuzzy 
weight of each attribute 

Just as discussed in section 5.1, a group of experts who 
may have different backgrounds or expertise and may 
represent conflicting interests are involved in assigning 
the weights of attributes.  

Firstly, pairwise comparisons between every two 
attributes associated with their upper level attribute are 
provided by each expert in the form of triangular fuzzy 
number to construct his judgment matrix. For example, a 

five-dimensional triangular fuzzy judgment matrix can 
be generated to compare the relative importance of the 
five general level attributes (E1, E2, E3, E4 and E5) by an 
expert. For the comparison of the importance of the 
three sub-level attributes (e11, e12, e13) associated with 
their upper level attribute (E1), a three-dimensional 
triangular fuzzy judgment matrix can be constructed. 
Similarly, a four-dimensional matrix, three-dimensional 
matrix, two-dimensional matrix and three-dimensional 
matrix can be formed for comparing the importance of 
the sub-level attributes associated with E2, E3, E4 and E5. 
So, six triangular fuzzy judgment matrices are generated 
by each expert.  

Secondly, FAHP is used to calculate the triangular 
fuzzy weights of attributes by each expert. In this case 
study, there are 4 experts involved in generating the 
combined triangular fuzzy weights of attributes. Due to 
the limited space of this paper, the detailed process to 
calculate triangular fuzzy weights from each expert 
using FAHP is not described here. The triangular fuzzy 
weights calculated from these 4 experts are presented in 
Table 3. 

Table 3.  The abstract triangular fuzzy weights of attributes generated from 4 experts by FAHP 

Expert 1 11e  12e  13e  21e  22e  23e 24e 31e  32e 33e 41e  42e  51e  52e 53e

,1
l
i  

0.0231 0.0277 0.0525 0.0242 0.0267 0.0409 0.0277 0.0231 0.0351 0.0234 0.0899 0.0955 0.1220 0.0522 0.0698

,1
m
i  

0.0298 0.0362 0.0660 0.0346 0.0407 0.0578 0.0409 0.0328 0.0503 0.0349 0.1215 0.1255 0.1658 0.0776 0.0855

,1
u
i  

0.0422 0.0493 0.0915 0.0457 0.0543 0.0753 0.0508 0.0443 0.0654 0.0475 0.1511 0.1578 0.1971 0.1006 0.1068

 

Expert 2 11e  12e  13e  21e  22e  23e 24e 31e  32e 33e 41e  42e  51e  52e 53e

,2
l
i  

0.0214 0.0197 0.0403 0.0219 0.0283 0.0545 0.0183 0.0190 0.0281 0.0253 0.0696 0.0994 0.1173 0.0664 0.0503

,2
m
i  

0.0310 0.0284 0.0537 0.0353 0.0442 0.0779 0.0316 0.0291 0.0380 0.0339 0.1058 0.1443 0.1617 0.0992 0.0861

,2
u
i  

0.0436 0.0398 0.0686 0.0484 0.0630 0.1007 0.0432 0.0464 0.0591 0.0533 0.1363 0.1779 0.1998 0.1287 0.1146

 

Expert 3 11e  12e  13e  21e  22e  23e 24e 31e  32e 33e 41e  42e  51e  52e 53e

,3
l
i  

0.0211 0.0070 0.0409 0.0324 0.0231 0.0491 0.0223 0.0338 0.0400 0.0301 0.0746 0.1189 0.1092 0.0474 0.0870

,3
m
i  

0.0316 0.0117 0.0548 0.0473 0.0352 0.0701 0.0344 0.0427 0.0500 0.0403 0.1029 0.1631 0.1375 0.0673 0.1112

,3
u
i  

0.0539 0.0217 0.0796 0.0697 0.0591 0.0968 0.0569 0.0654 0.0734 0.0613 0.1333 0.2012 0.1870 0.1048 0.1591

 
Expert 4 11e  12e  13e  21e  22e  23e 24e 31e  32e 33e 41e  42e  51e  52e 53e

,4
l
i  

0.0165 0.0187 0.0568 0.0453 0.0280 0.0642 0.0232 0.0132 0.0300 0.0195 0.0895 0.0507 0.1069 0.0187 0.0620

,4
m
i  

0.0310 0.0329 0.0920 0.0672 0.0479 0.0858 0.0341 0.0234 0.0483 0.0293 0.1391 0.0849 0.1644 0.0321 0.0875

,4
u
i  

0.0542 0.0665 0.1562 0.0975 0.0695 0.1199 0.0550 0.0416 0.0881 0.0596 0.1932 0.1200 0.2117 0.0504 0.1210
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Thirdly, the weighted arithmetic mean method 
introduced in section 5.2 is to be used to aggregate the 
triangular fuzzy weights of each attribute generated by 
all the four experts. Suppose the relative importance of 

each expert is t ( 1, 2,3, 4)t  , and 

1 2 3 4 0.25       . The combined triangular fuzzy 
weight of each attribute is shown in Table 4.  

Table 4.  The combined triangular fuzzy weights of attributes 

Combined 
weights 11e  12e  13e  21e  22e  23e 24e

31e 32e 33e 41e 42e  51e  52e  53e

l
i  0.0205 0.0183 0.0476 0.0310 0.0265 0.0522 0.0229 0.0223 0.0333 0.0246 0.0809 0.0911 0.1139 0.0462 0.0673
m
i  0.0309 0.0273 0.0666 0.0461 0.0420 0.0729 0.0353 0.0320 0.0467 0.0346 0.1173 0.1295 0.1574 0.0691 0.0926
u
i  0.0485 0.0443 0.0990 0.0653 0.0615 0.0982 0.0515 0.0494 0.0715 0.0554 0.1535 0.1642 0.1989 0.0961 0.1254

 

8.4. Generating the global fuzzy belief degrees 

After the generation of combined triangular fuzzy 
weights, the group ER based programming model 
described in section 6 and 7 can then be used to calculate 
the global fuzzy belief degrees. For the convenience of 

constructing models, α-cut is used to transform the 
combined triangular fuzzy weights to interval-valued 
weights. Here, ( 1)k k   is firstly assumed to be 0.5. 
The calculated interval weights generated under this α-cut 
are shown in the first chart of Table 5. 

Table 5.  Interval weights generated under the three α-cuts 

α1=0.5 11e  12e  13e  21e  22e  23e 24e 31e 32e 33e 41e 42e 51e  52e  53e SUM

1l
i  0.0257 0.0228 0.0571 0.0385 0.0343 0.0625 0.0291 0.0271 0.0400 0.0296 0.0991 0.1103 0.1356 0.0576 0.0799 0.8492

1u
i  0.0397 0.0358 0.0828 0.0557 0.0517 0.0855 0.0434 0.0407 0.0591 0.0450 0.1354 0.1468 0.1781 0.0826 0.1090 1.1914

 

α2=0.7 11e  12e  13e  21e  22e  23e 24e 31e 32e 33e 41e 42e 51e  52e  53e SUM

2l
i  0.0278 0.0246 0.0609 0.0416 0.0374 0.0667 0.0315 0.0291 0.0426 0.0316 0.1064 0.118 0.1443 0.0622 0.0850 0.9095

2u
i  0.0361 0.0324 0.0763 0.0519 0.0478 0.0805 0.0401 0.0372 0.0541 0.0408 0.1282 0.1399 0.1698 0.0772 0.1024 1.1148

 

α3=0.9 11e  12e  13e  21e  22e  23e 24e 31e 32e 33e 41e 42e 51e  52e  53e SUM

3l
i  0.0298 0.0264 0.0647 0.0446 0.0405 0.0708 0.0340 0.0310 0.0453 0.0336 0.1137 0.1256 0.1530 0.0668 0.0900 0.9699

3u
i  0.0326 0.0290 0.0699 0.0480 0.0439 0.0754 0.0369 0.0337 0.0491 0.0367 0.1209 0.1329 0.1615 0.0718 0.0959 1.0383

 
The combined fuzzy belief degrees of the two 

assessed products under this α-cut can then be generated 
and shown in the first chart of Table 6 and Fig. 12-13 as 
follows:  

Table 6.  The global fuzzy belief degrees of the 2 assessed 
products under α1=0.5 

a1 a2 
 

1l
n  1u

n  1l
n  1u

n  

H1 0.029496 0.044523 0.002289 0.003590
H2 0.061066 0.097372 0.061672 0.092249
H3 0.194210 0.267619 0.263761 0.354351
H4 0.432373 0.568410 0.411473 0.521357
H5 0.081055 0.127194 0.091288 0.135941

H 0.04604 0.06461 0.02925 0.04131
 

  The global fuzzy belief degrees of the 2 assessed products 
under α2=0.7 

a1 a2 
 

2l
n  2u

n  2l
n  2u

n  

H1 0.032358 0.041397 0.002506 0.003287
H2 0.066920 0.088611 0.066975 0.085295
H3 0.208799 0.252852 0.281409 0.335707
H4 0.460531 0.542142 0.434727 0.500593
H5 0.088566 0.116182 0.098888 0.125663
H 0.04928 0.06041 0.03129 0.03851

 
The global fuzzy belief degrees of the 2 assessed products 

under α3=0.9 
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a1 a2 
 

3l
n  3u

n  3l
n  3u

n  

H1 0.035278 0.038275 0.002732 0.002995
H2 0.072862 0.080107 0.072320 0.078472
H3 0.223644 0.238381 0.299187 0.317299
H4 0.488291 0.515555 0.457746 0.479725
H5 0.096130 0.105261 0.106546 0.115452
H 0.05250 0.05622 0.03330 0.03572
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Fig. 12.  Global fuzzy belief degrees of a1 under 1 0.5   
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Fig. 13.  Global fuzzy belief degrees of a2 under 1 0.5   

Table 6 provides us a general distributed assessment on 
each product under a given α-cut. For example, with 
more than 50% confidence of the weight assignments, 
the global assessment to a1 is generated to be bad (H1) 
with belief degree between 0.029496 and 0.044523, poor 
(H2) with belief degree between 0.061066 and 0.097372, 
average (H3) with belief degree between 0.19421 and 
0.267619, good (H4) with belief degree between 
0.432373 and 0.56841, very good (H5) with belief 
degree between 0.081055 and 0.127194, and the belief 
degree not assigned to any evaluation grade is between 
0.04604 and 0.06461. 

8.5. Generating the overall fuzzy utility of 
performance 

As mentioned in section 7.1, the global fuzzy belief 

degrees generated above are not easy to be used for the 
comparison of the performance of all products. From the 
group ER based programming models for utility function 
discussed in section 7.2, the fuzzy utility of each 
assessed product can be obtained on a general level. 
Here, the utility value is assumed to be in the interval 
between 0 and 100, and the bounds of all the 5 
evaluation grades are shown below: 

117 ( ) 23u H  , 235 ( ) 43u H  , 358 ( ) 65u H  , 

476 ( ) 82u H  , 595 ( ) 100u H   
After calculation, we can obtain the overall fuzzy 
utilities of all assessed products which are shown in 
Table 7 and Fig. 14 below. 

Table 7.  Overall fuzzy utilities of the two assessed products 
under α= 0.5, 0.7, and 0.9 

a1 a2 
k αk

klU  kuU  klU  kuU  
1 0.5 62.84451 77.46958 65.14661 77.87031
2 0.7 63.82331 76.77284 66.00637 77.21913
3 0.9 64.78698 76.06942 66.85651 76.59481
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Fig. 14.  Overall fuzzy utilities of the 2 products under 

1 0.5   

Based on the overall fuzzy expected utility generated, 
the ranking of the two products can then be conducted 
next. Let ( )

k s tP a a   be the degree that as prefers to at 

under the interval weights calculated by the k-th α-cut 
( k ), then we will have: 

( ) max{1

( ) ( )
max ,0 ,0}

[ ( ) ( )] [ ( ) ( )]

k

k k

k k k k

s t

u l
t s

u l u l
t t s s

P a a

U a U a

U a U a U a U a

  

 
    



 

(55) 
where the symbol “  ” means “better than”. From 
formula (55), the comparison between a1 and a2 under 

1 0.5   can be generated as follows: 
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0.5 1 2( )P a a =45.1% 
The final assessment results still need further 

consideration, but the information provided by the result 
is valuable and supportive to the leader in a company for 
his future decision and plan. 

In the above case study, the sensitivity analysis of 
fuzzy weights and fuzzy utilities are also conducted. 
When k  increases, the fuzziness of interval weight 
assigned to each attribute decreases, and the fuzziness of 
global belief degrees on each evaluation grade for a 
product generated by the programming model becomes 
more accurate. In other words, if k  , then 

(1,2, , )i L   , k ku l
i i   reduces, and 

(1,2, , )n N   , | ( ) ( ) |k ku l
n l n la a   will decrease. 

Another two different α-cuts ( 2 0.7  , 3 0.9  ) are 
introduced for the transformation of triangular fuzzy 
weights to interval weights which are shown in the 
second and third chart of table 5. Based on them the 
global fuzzy belief degrees assessed on each alternative 
are calculated and shown in the second and third chart of 
table 6. The fuzziness of the overall utility assessed on 
an alternative will also decrease when k  increases or 
utility interval | | ( 1, 2, , )u l

n nu u n N     reduces. 
From the analysis of the result, we could see that for 

the purpose of providing the decision maker a more 
accurate result, it is important to minimize the 
uncertainties or ambiguities of information provided by 
experts in the condition that the information are used 
sufficiently and not distorted. It is really an opposition to 
the fuzzy decision making environment, and the balance 
between certainty and uncertainty/fuzziness should be 
operated according to real decision making problems. 
The choice of k  is also significant because it 
influences the fuzziness of assessment result directly. So 
several or more different α-cuts can be conducted, from 
which the real satisfactory assessment results can be 
selected according to real decision making 
circumstances. 

9. Concluding remarks 

Due to the complexity of real life decision environments, 
the decision made by an individual is not always reliable 
or rational. It is common that a group of DMs are 
involved in a decision making process to reduce the risk 
of making poor decisions. On the other hand, a DM’s 
judgement may be inaccurate due to various types of 
uncertainties. So, there is a need to represent fuzzy or 
inaccurate information of an expert. In this paper, both 

attribute weights and evaluation grade utilities are 
considered to be fuzzy numbers. In our approach, FAHP 
is firstly used to compute the triangular fuzzy weights of 
attributes from each triangular fuzzy judgment matrix 
constructed by an expert. Then, the weighted arithmetic 
mean method is used to generate combined triangular 
fuzzy weights for a group of experts. Thirdly, α-cut is 
used to transform the combined triangular fuzzy weights 
to interval weights in a reliable and rational way. Finally, 
both the interval weights under α-cut and interval 
utilities are considered together to construct several 
group ER based programming models for the generation 
of the global fuzzy belief degrees and overall fuzzy 
utility values of each assessed alternative. Sensitivity 
analysis is also conducted on α-cuts of fuzzy weights 
with different α values. A numerical example to assess 
the performance of product is introduced for the 
illustration of the group ER approach under 
uncertainties. 
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