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Abstract 

The success and proliferation of the Semantic Web depends heavily on construction of Web ontologies. However, 
classical ontology construction approaches are not sufficient for handling imprecise and uncertain information that 
is commonly found in many application domains. Therefore, great efforts on construction of fuzzy ontologies have 
been made in recent years. In this paper, we propose a formal approach and develop an automated tool for 
constructing fuzzy ontologies from fuzzy UML models. Firstly, we propose formalization methods of fuzzy UML 
models and fuzzy ontologies, where fuzzy UML models and fuzzy ontologies can be represented and interpreted by 
their respective formal definitions and semantic interpretation methods. Then, we propose an approach for 
constructing fuzzy ontologies from fuzzy UML models, i.e., transforming fuzzy UML models (including the 
structure and instance information of fuzzy UML models) into fuzzy ontologies. Furthermore, following the 
proposed approach, we implement a prototype transformation tool called FUML2FOnto that can construct fuzzy 
ontologies from fuzzy UML models. Constructing fuzzy ontologies from fuzzy UML models will facilitate the 
development of Web ontologies. Moreover, in order to show that the constructed fuzzy ontologies may be useful 
for reasoning on fuzzy UML models, we investigate how to reason on fuzzy UML models based on the constructed 
fuzzy ontologies, and it turns out that the reasoning tasks of fuzzy UML models can be checked by means of the 
reasoning mechanism of fuzzy ontologies. 
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1. Introduction 

The Semantic Web aims at creating ontology-based and 
machine-processable Web content, and thus the success 
and proliferation of the Semantic Web depends largely 
on construction of Web ontologies1,2,3. On this basis, 

many approaches and tools have been developed to 
construct ontologies from various data resources such as 
texts, dictionaries, XML documents, and database 
models (see Ref. 4 for an overview). Among these kinds 
of data resources, constructing ontologies from database 
models (e.g., ER model5, UML model6, and relational 
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database model7) has attracted considerable attention 
because of the wide utilization of database models in 
information modeling and management8. In particular, 
the Unified Modeling Language (UML)9,10 has become a 
de facto industry standard for modeling applications in 
data and software engineering communities. Many data 
sources have been modeled in UML, in which abundant 
domain knowledge has been specified. Thus it is not 
surprising that constructing ontologies from UML 
models6,11,12,13,14, which are helpful to the development 
of Web ontologies. 

However, the classical ontologies and ontology 
construction approaches as mentioned above were not 
sufficient for handling imprecise and uncertain 
information that is commonly found in various 
application domains such as databases, information 
systems, and the Semantic Web15,16,17. In order to 
provide the necessary means to handle imprecise and 
uncertain information in the Semantic Web there are 
today many proposals for fuzzy extensions to 
ontologies18,19,20,21,22,23,24. Also, how to construct fuzzy 
ontologies has increasingly attracted attention and 
several strategies for constructing fuzzy ontologies were 
proposed in25,26,27,28,29,30,31. Being similar to the 
requirement of handling imprecise and uncertain 
information in the context of the Semantic Web, the 
incorporation of imprecise and uncertain information in 
UML models has been an important topic of data 
modeling research because such information extensively 
exists in many real-world applications. Consequently, 
fuzzy UML models were widely investigated for 
modeling imprecise and uncertain information32,33,34,35. 
The detailed introduction about fuzzy UML models, 
fuzzy ontologies, and construction of fuzzy ontologies 
can be found in Section 6 of this paper. 

Therefore, with the requirement of constructing 
fuzzy ontologies and the appearance of fuzzy UML 
models, it is possible and meaningful to construct fuzzy 
ontologies from fuzzy UML models. On one hand, 
being similar to the construction of ontologies from 
UML models, constructing fuzzy ontologies from fuzzy 
UML models will facilitate fuzzy ontology development 
in the Semantic Web. On the other hand, it is possible to 
make use of fuzzy ontology techniques to reason on 
fuzzy UML models on the basis of the constructing 
work. The current-day fuzzy UML models still suffer 
from some deficiencies such as inconsistency and 
complexity, which may result in a degradation of the 

quality of the design and/or increased development 
times and costs. Hence, during the design phase, it 
would be highly desirable to improve the ability of 
reasoning on fuzzy UML models. Constructing fuzzy 
ontologies from fuzzy UML models makes it possible 
that the reasoning tasks of fuzzy UML models (such as 
whether a fuzzy class is the subclass of another fuzzy 
class, or whether there is redundancy in a fuzzy UML 
model) can be detected automatically through the 
reasoning mechanism of fuzzy ontologies in stead of 
being checked by hand. However, less research has been 
done in constructing fuzzy ontologies from fuzzy UML 
models.  

To this end, in this paper we propose a complete 
formal approach and develop an automated tool for 
constructing fuzzy ontologies from fuzzy UML models. 
Additionally, we investigate how to reason on fuzzy 
UML models based on the constructed fuzzy ontologies. 
In brief, the paper makes the following main 
contributions: 
• How to formalize fuzzy UML models and fuzzy 

ontologies? In order to establish the precise 
correspondences between fuzzy UML models and 
fuzzy ontologies, in Section 3, we propose 
formalization methods of fuzzy UML models and 
fuzzy ontologies, where fuzzy UML models and 
fuzzy ontologies can be represented and interpreted 
by their respective formal definitions and semantic 
interpretation methods. 

• How to construct fuzzy ontologies from fuzzy 
UML models? In Section 4, we propose a formal 
approach and develop an automated tool for 
constructing fuzzy ontologies from fuzzy UML 
models, including: (i) transforming a fuzzy UML 
model into fuzzy ontology structure at conceptual 
level; (ii) transforming a set of object instances 
(w.r.t. the fuzzy UML model) into fuzzy ontology 
instance (w.r.t. the fuzzy ontology structure) at 
instance level. The fuzzy ontology structure and 
instance form a target fuzzy ontology; (iii) 
implementing a prototype transformation tool 
called FUML2FOnto that can automatically 
construct fuzzy ontologies from fuzzy UML models. 

• How to reason on fuzzy UML models based on 
the constructed fuzzy ontologies? To demonstrate 
the constructed fuzzy ontologies may be useful for 
reasoning on fuzzy UML models, in Section 5, we 
investigate how to reason on fuzzy UML models 
based on the constructed fuzzy ontologies, and it 
turns out that reasoning tasks of fuzzy UML models 
(e.g., consistency, satisfiability, subsumption, and 
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redundancy) can be checked by means of the 
reasoning mechanism of fuzzy ontologies. 

The remainder of this paper is organized as follows. 
Section 2 introduces some preliminaries on fuzzy UML 
models and fuzzy ontologies. Section 3 gives formal 
definitions and semantic interpretation methods of fuzzy 
UML models and fuzzy ontologies. Section 4 proposes 
an approach and implements a prototype tool for 
constructing fuzzy ontologies from fuzzy UML models. 
How to reason on fuzzy UML models with the 
constructed fuzzy ontologies is investigated in Section 5. 
Section 6 introduces related work. Section 7 shows 
conclusions and the future work. 

2. Preliminaries on Fuzzy UML Models and 
Fuzzy Ontologies 

In this section, some preliminaries on fuzzy UML 
models and fuzzy ontologies are recalled briefly. Before 
that we first introduce some basic knowledge 
concerning fuzzy sets and possibility distributions. 

2.1. Fuzzy sets and possibility distributions 

In real-world applications, information is often 
imprecise and uncertain. The imprecision is relevant to 
the content of an attribute value, and it means that a 
choice must be made from a given range (interval or set) 
of values but we do not know exactly which one to 
choose at present, and the uncertainty is related to the 
degree of truth of its attribute value, and it means that 
we can apportion some, but not all, of our belief to a 
given value or a group of values, for example, a set, say 
{0.7/18, 0.95/19, 0.98/20, 0.85/21} for the age of 
Michael, which contains information imprecision (the 
age may be 18, 19, 20, or 21 and we do not know which 
one is true) and uncertainty (the degrees of truth of all 
possible age values are respectively 0.7, 0.95, 0.98, and 
0.85) simultaneously. In order to deal with imprecise 
and uncertain information, the fuzzy set theory36 
addressed by Zadeh has been identified as a successful 
technique for modeling the imprecise and uncertain 
information in various application domains such as 
databases, information systems, and the Semantic 
Web15,16,17.  

A fuzzy set F with respect to a universe of discourse 
U is characterized by a membership function µF : U → 
[0, 1], assigning a membership degree μF(u) to each u ∈ 
U. Membership function μF(u) provides a measure of 
the degree of the belonging of u to F. For example, μF(u) 

= 0.8 means that u is “likely” to be an element of F by a 
degree of 0.8. For ease of representation, a fuzzy set F 
over universe U is organized into a set of ordered pairs:  

F = {u1/μF(u1), u2/μF(u2),…, un/μF(un)} 
When µF(u) is explained to be a measure of the 

possibility that a variable X has the value u, where X 
takes values in U, a fuzzy value is described by a 
possibility distribution πX

37: 
πX = {u1/πX(u1), u2/πX(u2),…, un/πX(un)} 
Here, πX(ui), ui ∈ U, denotes the possibility that X = 

ui is true. A fuzzy set is a representation of a concept 
while possibility distribution relates with the possibility 
of occurring a value within a distribution. Let πX and F 
be the possibility distribution representation and the 
fuzzy set representation for a fuzzy value, respectively. 
It is clear that as soon as we assume that X is F then πX 
= F is true37. By means of fuzzy sets and possibility 
distributions, a fuzzy value on U can be characterized 
by a fuzzy set or a possibility distribution in U. 

For more concepts and operations about fuzzy sets 
and possibility distributions, please refer to Refs. 36, 37. 

2.2. Fuzzy UML Models 

The fuzzy UML model is a fuzzy extension of UML 
model based on fuzzy set and possibility distribution 
theory. Based on Refs. 30, 32, 33, 34, 35, 38, and 39, in 
the following we introduce some basic notions of fuzzy 
UML models, including fuzzy class, fuzzy 
generalization, fuzzy aggregation, fuzzy dependency, 
and fuzzy association, where both of the structural and 
dynamic aspects of fuzzy UML models are considered. 

2.2.1.  Fuzzy Class 

An object, which is an entity of the real world, is fuzzy 
because of a lack of information. Formally, objects that 
have at least one attribute whose value is a fuzzy set are 
fuzzy objects. The objects with the same structure and 
behavior are grouped into a class, and classes are 
organized into hierarchies. Theoretically, a class can be 
considered from two different viewpoints: 
• An extensional class, where the class is defined by 

a list of its object instances; 
• An intensional class, where the class is defined by a 

set of attributes and their admissible values. 
In a fuzzy UML model, a class is fuzzy because of 

the following several reasons: 
• A class is extensionally defined, where some 

objects with similar properties are fuzzy ones. The 
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class defined by these objects may be fuzzy, and 
these objects belong to the class with degree of [0, 
1]. 

• When a class is intensionally defined, the domains 
of some attributes may be fuzzy, and thus a fuzzy 
class is formed.  

• The subclass produced by a fuzzy class by means of 
specialization, and the superclass produced by some 
classes (in which there is at least one class who is 
fuzzy) by means of generalization, are fuzzy.  

Fig. 1 shows a fuzzy UML class Old-Employee, 
where a fuzzy class is denoted by using a dashed-
outline rectangle to differentiate a classical class. Here: 
• A fuzzy keyword FUZZY is appeared in front of an 

attribute indicating the attribute may take fuzzy 
values. For example, FUZZY Age or FUZZY Email. 
Moreover, for an attribute a of type T in a class C, 
an optional multiplicity [i…j] for a specifies that a 
associates to each instance of C at least i and most j 
instances of T. When the multiplicity is missing, 
[1…1] is assumed, i.e., the attribute is single-valued. 
For example, the attribute “FUZZY Email [1…∞]” 
in Fig. 1 means that each object instance of the 
class Old-Employee has at least one email, and 
possibly more. 

• The method IsDepartment( ):String denotes the 
dynamic aspect of fuzzy UML models. It returns a 
possibility distribution value {Department/ui} 
denoting that an Old-Employee works in the 
Department with degree ui ∈ [0, 1]. The type of the 
parameter is null. 

• An additional attribute u ∈ [0, 1] in the class is 
defined for representing the object instance 
membership degree to the class. 

2.2.2.  Fuzzy Class 

The concept of generalization is one of the basic 
building blocks of the fuzzy UML model. A 
generalization is a taxonomic relationship between a 
more general classifier named superclass and a more 
specific classifier named subclass. The subclass is 
produced from the superclass by means of inheriting all 
attributes and methods of the superclass, overriding 
some attributes and methods of the superclass, and 
defining some attributes and methods.  

A class produced from a fuzzy class must be fuzzy. 
If the former is still called subclass and the latter 
superclass, the subclass/superclass relationship is fuzzy. 
If a fuzzy class is a subclass of another fuzzy class, for 
any object, say o, let the membership degree that it 
belongs to the subclass, say B, be uB(o) and the 
membership degree that it belongs to the superclass, say 
A, be uA(o). Then uB(o) ≤ uA(o). This characteristic can 
be used to determine if two classes have a 
subclass/superclass relationship. 

Several generalizations can be grouped together to 
form a class hierarchy as shown in Fig. 2. Fig. 2 shows 
a fuzzy generalization relationship, where a dashed 
triangular arrowhead is used to represent a fuzzy 
generalization relationship. The disjointness and 
completeness constraints, which are optional, can be 
enforced on a class hierarchy. The disjointness means 
that all the specific classes are mutually disjoint, and 
completeness means that the union of the more specific 
classes completely covers the more general class. That 
is, the union of object instances of several subclasses 
completely covers the object instances of the superclass, 
and the membership degree that any object belongs to 
the subclass must be less than or equal to the 
membership degree that it belongs to the superclass. 

 

Fig. 1. Representation of a fuzzy class Old-Employee in a 
fuzzy UML model. 

 

Fig. 2. Representation of a fuzzy generalization in a fuzzy 
UML model. 
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2.2.3.  Fuzzy Aggregation 

An aggregation captures a whole-part relationship 
between a class named aggregate and a group of classes 
named constituent parts. The constituent parts can exist 
independently. Aggregate class New-Computer, for 
instance, is aggregated by constituent parts Monitor, 
New CPU box, and Keyboard. Each object of an 
aggregate can be projected into a set of objects of 
constituent parts. Formally, Let C be an aggregate of 
constituent parts C1, C2, …, Cn. For o ∈ C, the 
projection of o to Ci is denoted by o↓Ci. Then we have 
(o↓C1) ∈ C1, (o↓C2) ∈ C2, …, and (o↓Cn) ∈ Cn. 

A class aggregated from fuzzy constituent parts 
must be fuzzy. For any object, say o, let the membership 
degree that it belongs to the aggregate, say C, be uC(o). 
Also, let the projection of o to the constituent parts, say 
C1, C2, …, Cn, be o↓C1, o↓C2, …, o↓Cn. Let the 
membership degrees that these projections belong to C1, 
C2, …, Cn be uC1(o↓C1), uC2(o↓C2), …, uCn(o↓Cn), 
respectively. Then it follows uC(o) ≤ uC1(o↓C1), uC(o) ≤ 
uC2(o↓C2), ..., and uC(o) ≤ uCn(o↓Cn). This characteristic 
can be used to determine if several classes have a fuzzy 
aggregation relationship. 

Fig. 3 shows a fuzzy aggregation relationship, 
where a dashed open diamond is used to denote a fuzzy 
aggregation relationship. Here: 
• The class New CPU box is a fuzzy class, and thus 

the class New-Computer aggregated by Monitor, 
New CPU box, and Keyboard is also fuzzy.  

• The multiplicity [mi, ni] specifies that each instance 
of the aggregate class consists of at least mi and at 
most ni instances of the i-th constituent class. For 
example, a New-Computer may contain at least one 
Monitor, and possibly more. 

2.2.4.  Fuzzy Dependency 

A dependency, which is a relationship between a source 
class and a target class, denotes that the target class 
exists dependently on the source class. In addition, the 
dependency between the source class and the target 

class is only related to the classes themselves and does 
not require a set of instances for its meaning.  

A fuzzy dependency relationship is a dependency 
relationship with a degree of possibility η as shown in 
Fig. 4, which can be indicated explicitly by the 
designers or be implied implicitly by the source class 
based on the fact that the target class is decided by the 
source class.  

Fig. 4 shows a fuzzy dependency relationship, 
which is denoted by a dashed line with an arrowhead. It 
is clear that Employee Dependent is dependent on fuzzy 
class Employee with membership degree η ∈ [0, 1]. 

2.2.5.  Fuzzy Association / Fuzzy Association Class 

An association is a relation between the instances of 
two or more classes. Names of associations are unique 
in a fuzzy UML model. An association has a related 
association class that describes properties of the 
association. Three kinds of fuzziness can be identified 
in an association relationship: 
• The association is fuzzy itself, it means that the 

association relationship fuzzily exists in n classes, 
namely, this association relationship occurs with a 
degree of possibility. 

• The association is not fuzzy itself, i.e., it is known 
that the association relationship must occur in n 
classes. But it is not known for certain if n class 
instances (i.e., n objects) respectively belonging to 
the n classes have the given association relationship. 

• The association is fuzzy caused by such fact that (1) 
and (2) occur in the association relationship 
simultaneously.  

A fuzzy association relationship is an association 
relationship with a degree of possibility. We introduce a 
symbol β, as shown in Fig. 5, into a fuzzy UML model 
to denote the degree of possibility of a fuzzy association, 
and the calculating methods of β with respect to the 
three kinds of fuzziness above have been introduced in 
Ref. 33. 

Fig. 5 shows a fuzzy association class Use between 
two classes Old-Employee and New-Computer. A single 
line with an arrowhead is used to denote a fuzzy 
association, and the association class is connected with 

η

 

Fig. 4. Representation of a fuzzy dependency in a fuzzy UML 
model. 

 

Fig. 3. Representation of a fuzzy aggregation in a fuzzy UML 
model. 
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the association by a dashed-outline. Here: 
• Date is an attribute of the association class Use, 

which describes the start date that an Old-Employee 
uses a New-Computer. 

• The additional symbol β denotes the membership 
degree of the fuzzy association occurring in several 
classes as mentioned above. 

• The participation of a class in a fuzzy association is 
called a role which has a unique name. For example, 
Uby and Uof in Fig. 5. 

• The cardinality constraint (m, n) on an association S 
specifies that each instance of the class Ci can 
participate at least m times and at most n times to S. 
For example, in Fig. 5, (1, 1) and (1, 2) denote that 
each Old-Employee can use at least 1 and at most 2 
New-Computers and each New-Computer can be 
used by exactly one Old-Employee. 

The main notions of a fuzzy UML model are 
introduced above. Based on these notions, a complete 
formal definition and semantic interpretation method of 
fuzzy UML models will be proposed in Section 3. In the 
following section, some basic notions of fuzzy 
ontologies will be recalled in order to represent the 
fuzzy UML models above. 

2.3. Fuzzy Ontologies 

Ontologies, which enable formal, explicit and common 
descriptions of application domains, can be defined by 
ontology definition languages such as RDFS, OIL, 
DAML+OIL, or OWL40. OWL (Web Ontology 
language), a W3C recommendation, is to be de-facto 
standard language for representing ontologies in the 
Semantic Web. OWL consists of three languages of 
increasing expressive power: OWL Lite, OWL DL and 
OWL Full. Although OWL is a quite expressive 
language it features limitations, mainly with what can 
be said about fuzzy information. Such information is 
apparent in many applications and tasks both of the 
Semantic Web as well as of applications using OWL. 

Therefore, a fuzzy ontology language called fuzzy 
OWL18,41,42 was developed.  

Being similar to OWL, fuzzy OWL has three 
increasingly expressive sublanguage fuzzy OWL Lite, 
fuzzy OWL DL, and fuzzy OWL Full. Fuzzy OWL Lite 
and fuzzy OWL DL are are almost equivalent to f-
SHIF(D) and f-SHION(D) DLs42. Further, fuzzy 
OWL has two types of syntactic form: the RDF/XML 
syntax and the frame-like style abstract syntax, and they 
are interchangeable. Moreover, fuzzy OWL DL is the 
language chosen by the major fuzzy ontology editors 
because it supports those users who want the maximum 
expressiveness without losing computational 
completeness and decidability of reasoning systems. 
Therefore, when we mention fuzzy OWL in this paper, 
we usually mean fuzzy OWL DL. 

Table 1 gives the fuzzy OWL abstract syntax, the 
respective fuzzy Description Logic syntax, and the 
semantics41,42. The semantics for fuzzy OWL is based 
on the interpretation of f-SHION(D)43. In detail, the 
semantics is provided by a fuzzy interpretation FI = (ΔFI, 
ΔD, •FI, •D), where the abstract domain ΔFI is a set of 
objects, and the datatype domain ΔD is the domain of 
interpretation of all datatypes (disjoint from ΔFI) 
consisting of data values, and •FI and •D are two fuzzy 
interpretation functions, which map: An abstract 
individual o to an element oFI ∈ ΔFI, For individuals o1 
and o2, if o1≠ o2, o1

FI ≠ o2
FI, A concrete individual v to an 

element vD ∈ ΔD, A concept name A to a membership 
degree function AFI: ΔFI → [0, 1], An abstract role name 
R to a membership degree function RFI: ΔFI×ΔFI → [0, 1], 
A concrete datatype D to a membership degree function 
DD: ΔD

 → [0, 1], A concrete role name T to a 
membership degree function TFI : ΔFI×ΔD

 → [0, 1]. 
Based on the fuzzy interpretation FI, the complete 
semantics of fuzzy OWL abstract syntax is depicted in 
Table 1. In Table 1, C denotes fuzzy class description 
(i.e., fuzzy DL concept); D denotes fuzzy data range 
(i.e., fuzzy DL concrete datatype); E ∈ {C, D}; R 
denotes fuzzy ObjectProperty identifier (i.e., fuzzy DL 
abstract role); T denotes fuzzy DatatypeProperty 
identifier (i.e., fuzzy DL concrete role); P ∈ {R , T}; d 
and o are abstract individuals; v is a concrete individual; 
a ∈ {d, v}; #S denotes the cardinality of a set S, and ⋈ 
∈ {≥, >, ≤, <}.  

A fuzzy ontology can be represented by fuzzy OWL 
language. In brief, a fuzzy OWL ontology is a set of 
fuzzy OWL axioms in Table 1. 

β
 

Fig. 5. Representation of a fuzzy association (class) in a fuzzy 
UML model. 
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Table 1.  Fuzzy OWL abstract syntax, fuzzy Description Logic (DL) syntax, and semantics. 
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3. Formalizations of Fuzzy UML Models and 
Fuzzy Ontologies 

In order to well establish correspondences between 
fuzzy UML models and fuzzy ontologies, it is necessary 
to give formalization methods of fuzzy UML models 
and fuzzy ontologies. In this section, we propose formal 
definitions and semantic interpretations of fuzzy UML 
models and fuzzy ontologies, respectively. 

3.1.  Formalization of Fuzzy UML Models 

In this section we first propose a complete formal 
definition of fuzzy UML models, where both the 
structural and dynamic aspects of fuzzy UML models 
are considered, and the most important features of fuzzy 
UML models are included. Furthermore, we give the 
semantic interpretation of fuzzy UML models. Finally, 
an example of a full fuzzy UML model is provided. 

3.1.1.  Formal definition of fuzzy UML models 

The fuzzy UML model is a fuzzy extension of the 
traditional UML model. Some notions of fuzzy UML 
models have been introduced in Refs. 30, 32, 33, 34, 35, 
and 39, which differ in minor aspects in expressiveness 
and in notation. In this paper it is necessary for us to 
give a formalization of the fuzzy UML model which 
abstracts with respect to the most important features and 
allows us to develop the correspondence to the fuzzy 
ontology. In general, the most important features of 
fuzzy UML models are fuzzy object, fuzzy attribute, 
fuzzy class, fuzzy generalization, fuzzy aggregation, 
fuzzy dependency, and fuzzy association as mentioned 
in Section 2.2.  

In the following we propose a complete formal 
definition of fuzzy UML models. Here, based on the 
definitions of fuzzy UML models30,35,38, we further 
consider both the structural and dynamic aspects of 
fuzzy UML models, and also add several new functions 
and redefine some components for capturing some 
important features of fuzzy UML models (see Definition 
1 in detail). 

Firstly, for two finite sets X and Y we call a function 
from a subset of X to Y an X-labeled tuple over Y. The 
labeled tuple T that maps xi ∈ X to yi ∈ Y, for i ∈ {1, …, 
k}, is denoted [x1 : y1, …, xk : yk]. We also write T[xi] to 
denote yi. 

Definition 1 (fuzzy UML models). A fuzzy UML 
model is a tuple FUML = (LF, ≼F, attF, aggF, depF, assF, 

cardF, multF, mult'F), where: 
• LF = FOF ∪ FAF ∪ FMF ∪ FTF ∪ FCF ∪ FHF ∪ 

FGF ∪ FDF ∪ FSF ∪ FRF is a finite alphabet 
partitioned into a set FOF of fuzzy object symbols, a 
set FAF of fuzzy attribute symbols (i.e., static 
attributes), a set FMF of fuzzy method symbols (i.e., 
dynamic attributes), a set FTF of datatype symbols, 
a set FCF of fuzzy class symbols, a set FHF of fuzzy 
hierarchy symbols, a set FGF of fuzzy aggregation 
symbols, a set FDF of fuzzy dependency symbols, a 
set FSF of fuzzy association symbols, and a set FRF 
of role symbols. Here it should be noted that: 
− A method in FMF is the form of f(P1, …, Pm) : R, 

where f is the name of the method, P1,…,Pm are 
types of m parameters, and R is the type of the 
result.  

− Each attribute FA ∈ FAF is associated with a 
domain FT ∈ FTF, and each fuzzy domain 
symbol FT has an associated predefined basic 
domain and the various basic domains are 
usually assumed to be pairwise disjoint. A fuzzy 
keyword FUZZY is appeared on the front of 
attributes indicating these attributes are fuzzy 
attributes. 

• ≼F(FC) = FC1×FC2×…×FCn is a relation that 
models the hierarchy (several generalizations can 
be grouped together to form a class hierarchy) 
between a superclass FC and several subclasses 
FC1, …, FCn. Moreover, there may be an optional 
constraint (disjointness, completeness) in the 
hierarchy relation. 

• attF : FC → T(FA, FT) is a function that maps each 
fuzzy class symbol in FCF to a FAF-labeled tuple 
over FTF, i.e., attF(FC) → [FA1 : FT1, …, FAn : 
FTn].  

• aggF(FG) = FC × (FC1∪FC2∪…∪FCm) is a 
relation that models the aggregation between an 
aggregate class FC and a group of constituent 
classes FCi, i = 1, 2, …, m. 

• depF ⊆ FC1×FC2 is a binary relation over FCF, 
which models the dependency between a source 
class FC1 and a target class FC2. 

• assF : FS → T(FR, FC) is a function that maps each 
fuzzy association symbol in FSF to a FRF-labeled 
tuple over FCF, i.e., assF(FS) = [FR1 : FC1, …, FRk : 
FCk]. The function assF actually associates a set of 
roles to each fuzzy association, determining 
implicitly also the arity of the fuzzy association. 
We assume without loss of generality that:  
− Each role is specific to exactly one fuzzy 

association, i.e., for two fuzzy associations FS, 
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FS'∈ FSF with FS ≠ FS', if assF(FS) = [FR1 : 
FC1, …, FRk : FCk] and assF(FS') = [FR1' : 
FC1', …, FRk' : FCk'], where roles FRi, FRi' ∈ 
FRF, fuzzy classes FCi, FCi' ∈ FCF, and i ∈ 
{1, …, k}, then  {FR1, …, FRk} ∩ {FR1', …, 
FRk'} = ∅. 

− For each role FR ∈ FRF there is a fuzzy 
association FS ∈ FSF and a fuzzy class FC ∈ 
FCF such that assF(FS) = […, FR : FC, …]. 

• cardF is a function from FCF × FSF × FRF to ℕ0 × 
(ℕ0 ∪ {∞}) that satisfies the following condition 
(where ℕ0 denotes non-negative integers): for a 
fuzzy association FS ∈ FSF such that assF(FS) = 
[FR1 : FC1, …, FRk : FCk], defining cardF(FCi, FS, 
FRi) = (cardmin(FCi, FS, FRi), cardmax(FCi, FS, 
FRi)). The function cardF is used to specify the 
cardinality constraints on the minimum and 
maximum number of times an object instance of a 
fuzzy class may participate in a fuzzy association 
via some role. If not stated otherwise, cardmin(FCi, 
FS, FRi) is assumed to be 0 and cardmax(FCi, FS, 
FRi) is assumed to be ∞. 

• multF is a function from FTF × FCF × FAF to ℕ1 × 
(ℕ1 ∪ {∞}) (where ℕ1 denotes positive integers). 
The function multF is used to specify multiplicities, 
i.e., constraints on the minimum and maximum 
number of values that an attribute of an object may 
have. In detail, for an attribute FAi ∈ FAF of type 
FTi ∈ FTF in a class FC ∈ FCF such that attF(FC) 
→ [FA1 : FT1, …, FAn : FTn], defining multF(FTi, 
FC, FAi) = (multmin(FTi, FC, FAi), multmax(FTi, FC, 
FAi)). If not stated otherwise, multmin(FTi, FC, FAi) 
is assumed to be 1 and multmax(FTi, FC, FAi) is also 
assumed to be 1, i.e., the attribute is mandatory and 
single-valued. 

• mult'F is a function from FCF × FCF to ℕ0 × (ℕ0 ∪ 
{∞}), which is used to specify multiplicities, i.e., 
constraints on the minimum and maximum number 
of times that an object instance of a constituent 
class may participate in a fuzzy aggregation. In 
detail, for a fuzzy aggregation aggF(FG) = FC × 
(FC1∪FC2∪…∪FCm), where FC ∈ FCF is an 
aggregate class, FCi ∈ FCF is a constituent class, 
and i ∈ {1, …, m}, defining mult'F(FCi, FC) = 
(mult'min(FCi, FC), mult'max(FCi, FC)). If not stated 
otherwise, mult'min(FCi, FC) is assumed to be 0 and 
mult'max(FCi, FC) is assumed to be ∞. 

From Definition 1, it is shown that the features of a 
fuzzy UML model mentioned in Section 2.2 can be 
represented in the formal definition. In the following 
section we give the semantics of fuzzy UML models. 

3.1.2.  Semantics of fuzzy UML models 

In the following we give the semantic interpretation of 
fuzzy UML models. The semantics of a fuzzy UML 
model can be given by fuzzy object states (see 
Definition 2), i.e., by specifying which fuzzy object 
state is consistent with the information structure of the 
fuzzy UML model.  

Definition 2. A fuzzy object state FB with respect 
to a fuzzy UML model FUML is constituted by a 
nonempty finite set ΔFB, and a function •FB that maps:  
• Every domain symbol FT ∈ FTF to a set FTFB ∈ 

FTFFB, where FTFFB is a set of domains. For non-
fuzzy attributes, each domain is associated with the 
basic types such as Integer, Real, and String; for 
fuzzy attributes, each fuzzy domain is a fuzzy set or 
a possibility distribution. 

• Every fuzzy class FC ∈ FCF to a membership 
degree function FCFB: ΔFB → [0, 1]. That is, each 
fuzzy class FC is mapped into a possibility 
distribution {o1/u1, …, on/un}, where oi is an object 
identifier denoting a real world object belonging to 
FC, and each oi is associated with a membership 
degree ui denoting the object oi membership degree 
to the fuzzy class FC. 

• Every fuzzy attribute FA ∈ FAF or FMF to a set 
FAFB ⊆ ΔFB× FT FT FT∈∪

F

FB . 
• Every fuzzy association FS ∈ FSF to a set FSFB of 

FRF-labeled tuples over ΔFB, i.e., FSFB ⊆ T(FR, 
ΔFB). 

The elements of FCFB, FAFB and FSFB are called 
instances of FC, FA, and FS respectively.  

A fuzzy object state is considered acceptable if it 
satisfies all integrity constraints of the fuzzy UML 
model. This is captured by the definition of legal fuzzy 
object state (see Definition 3). 

Definition 3. A fuzzy object state FB is said to be 
legal for a fuzzy UML model FUML, if it satisfies the 
following conditions: 
• For each pair of fuzzy classes FC1, FC2 ∈ FCF such 

that ≼F(FC2) = FC1, it holds that FC1
FB ⊆ FC2

FB. 
• For each fuzzy hierarchy ≼F(FC) = FC1 × FC2 × … 

× FCn, it hold that FCi
FB ⊆ FCFB; if there are 

disjointness and completeness constraints, then it 
follows FCFB = FCi

FB ∪…∪ FCn
FB and FCi

FB ∩ 
FCj

FB = ∅, i ≠ j, i, j ∈ {1, …, n}. 
• For each fuzzy class FC ∈ FCF, if attF(FC) = [FA1 : 

FT1, …, FAn : FTn], then for each instance c ∈ 
FCFB and for each i ∈ {1, …, n} the following 
holds: (i) there is at least one element ai ∈ FAi

FB 
whose first component is c, and the second 
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component of ai is an element ti ∈ FTi
FB; (ii) 

multmin(ti, c, ai) ≤ #{c ∈ FCFB | c[ai] = ti} ≤ 
multmax(ti, c, ai), where #{ }denotes the base of set 
{ }. 

• For each fuzzy aggregation FG ∈ FGF such that 
aggF(FG) = FC × (FC1∪FC2∪…∪FCm), for each 
instance c ∈ FCFB and ci ∈ FCi

FB, where i ∈ {1, …, 
m}, it holds that: mult'min(ci, c) ≤ #{c ∈ FCFB | c[FG] 
= ci} ≤ mult'max(ci, c), where #{ }denotes the base of 
set { }. 

• For each pair of fuzzy classes FC1, FC2 ∈ FCF such 
that depF ⊆ FC1×FC2, it holds that: if FC1

FB = ∅, 
then FC2

FB = ∅. 
• For each fuzzy association FS ∈ FSF such that 

assF(FS) = [FR1 : FC1, …, FRk : FCk], all instances 
of FS are of the form [r1 : c1, …, rk : ck], where ri ∈ 
FRi

FB, ci ∈ FCi
FB, i ∈ {1, …, k}. 

• For each fuzzy association FS ∈ FSF such that 
assF(FS) = […, FR : FC, …], for each instance c ∈ 
FCFB, it holds that: cardmin(FC, FS, FR) ≤ #{s ∈ 
FSFB | s[FR] = c} ≤ cardmax(FC, FS, FR), where 
#{ }denotes the base of set { }. 

3.1.3.  An example of fuzzy UML model 

In the following we provide an example of a full fuzzy 
UML model, which will be used to construct fuzzy 
ontology in the later sections. 

Fig. 6 shows a graphic fuzzy UML model FUML1 
(the fuzzy UML model is similar with the model in Ref. 
30 and some new constraints such as methods and 
multiplicities are added). Furthermore, Fig. 7 gives 
formal representation of the fuzzy UML model FUML1 in 
Fig. 6 according to the formal definition of fuzzy UML 
models (i.e., Definition 1 proposed in Section 3.1.1). 
The detailed instruction is as follows: 
• A fuzzy class is denoted by using a dashed-outline 

rectangle to differentiate a classical class, e.g., Old-
Employee as shown in Fig. 6. A fuzzy class may 
contain four parts, i.e., crisp attributes, fuzzy 
attributes, methods, or an additional attribute u as 
shown in Fig. 6, where: 
− A fuzzy keyword FUZZY is appeared in front of 

an attribute indicating the attribute may take 
fuzzy values. For example, FUZZY Age or 
FUZZY Email. Moreover, the multiplicity [1…∞] 
of the attribute “FUZZY Email [1…∞]” means 
that each object instance of the fuzzy class Old-
Employee has at least one email, and possibly 

more. 
− An additional attribute u ∈ [0, 1] in a fuzzy 

class is defined for representing an object 
membership degree to the fuzzy class. 

− The method IsDepartment( ):String returns a 
possibility distribution value {Department/ui}, 
which denotes that an Old-Employee works in 
the Department with degree ui ∈ [0, 1]. The 
type of the parameter is null. 

• A fuzzy generalization is denoted by using a dashed 
triangular arrowhead, e.g., the class Employee is a 
generalization of classes Young-Employee and Old-
Employee, and two classes Young-Employee and 
Old-Employee are disjoint and the union of them 
completely covers the class Employee. 

• A fuzzy dependency is denoted by using a dashed 
line with an arrowhead, e.g., there is a fuzzy 
dependency relationship between the target class 
Employee Dependent and the source class 
Employee. 

• A fuzzy association is denoted by using a single line 
with an arrowhead and the association class is 
connected with the association by a dashed-outline, 
e.g., Use is a fuzzy association class between two 
classes Old-Employee and New-Computer. Here: 
− Date is an attribute of the association class Use, 

which describes the start date that an Old-
Employee uses a New-Computer. 

− The additional attribute β denotes the degree of 
possibility that an association relationship 
occurs in n classes. 

− The participation of a class in a fuzzy 
association is called a role which has a unique 
name. For example, Uby and Uof. The 
cardinality constraints (1, 1) and (1, 2) denote 
that each Old-Employee can use at least 1 and at 
most 2 New-Computers and each New-
Computer can be used by exactly one Old-
Employee. 

• A fuzzy aggregation is denoted by using a dashed 
open diamond, e.g., the class New-Computer is 
aggregated by Monitor, New CPU box, and 
Keyboard. The multiplicity [mi, ni] specifies that 
each instance of the aggregate class consists of at 
least mi and at most ni instances of the i-th 
constituent class. For example, a New-Computer 
may contain at least one Monitor, and possibly 
more. 
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Fig. 6. A graphic fuzzy UML model FUML1. 

 

Fig. 7. The formal syntax of the fuzzy UML model FUML1 in Fig. 6. 

According to Definition 1, the formal syntax of the fuzzy UML model FUML1 in Fig. 6 is as follows: 
FUML1 = (L

F
, ≼

F
, att

F
, agg

F
, dep

F
, ass

F
, card

F
, mult

F
, mult'

F
), where 

L
F
 is a set of symbols partitioned into: 

FC
F
 = {Employee, Young-Employee, Old-Employee, Computer, New-Computer, …, Keyboard} 

FA
F
= {ID, Name, FUZZY Age, FUZZY Email, Date, u, β, ComID, Brand, Year} 

FT
F
 = {String, Integer, Real} 

FM
F
 = {FUZZY IsDepartment()} 

… 
FR

F
 = {Uby, Uof} 

The set of functions/relations over the above symbols consists of:  
att

F
(Old-Employee) = [ID: String, Name: String, FUZZY Age: Integer, FUZZY Email: String,  

FUZZY IsDepartment(): String, u: Real] 
att

F
(New-Computer) = [ComID: String, Brand: String, Year: Integer, u : Real] 

att
F
(Use) = [Date: String, β : Real] 

≼
F
(Employee) = Young-Employee × Old-Employee (disjointness, completeness) 

≼
F
(Computer) = New-Computer 

agg
F
(FG) = New-Computer × (Monitor ∪ New CPU box ∪ Keyboard) 

dep
F
 ⊆ Employee × Employee-Department 

ass
F
(Use) = [Uby : Old-Employee, Uof : New-Computer] 

mult
F
(String, Old-Employee, FUZZY Email) = (1, ∞) 

mult'
F
(Monitor, New-Computer) = (1, ∞) 

mult'
F
(New CPU box, New-Computer) = (1, 1) 

mult'
F
(Keyboard, New-Computer) = (1, ∞) 

card
F
(Old-Employee, Use, Uby) = (1, 1) 

card
F
(New-Computer, Use, Uof) = (1, 2). 
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Fig. 8 gives a fuzzy UML instantiation (i.e., object 
diagram) with respect to the fuzzy UML model FUML1 in 
Fig. 6, which includes some objects and the detailed 
information of several objects only. Here:  
• Employee is a generalization of classes Young-

Employee and Old-Employee with disjointness and 
completeness constraints as shown in Fig. 6. 
Therefore, the union of object instances of two 
subclasses Young-Employee and Old-Employee 
completely covers the object instances of the 
superclass Employee, and the membership degree 
that any object belongs to the subclass must be less 
than or equal to the membership degree that it 
belongs to the superclass as shown in Fig. 8. 

• The attributes such as Age and Email are fuzzy, e.g., 
the age of Tom is represented by a possibility 
distribution: {51/0.7}. 

• u = 0.6 denotes that the object o1' belongs to the 
class Old-Employee with degree 0.6.  

• β = 0.7 denotes that the object o1' uses the object o3 
with degree 0.7. Here, the attribute Date of the 
association class Use is omitted. 

As mentioned in Section 3.1.2, the semantics of a 
fuzzy UML model can be given by legal fuzzy object 
states. Based on the definition of semantics of fuzzy 
UML models in Section 3.1.2 and the fuzzy UML 
instantiation in Fig. 8, now let us explain some 
conditions of the legal fuzzy object state for a fuzzy 
UML model using several elements of the fuzzy UML 
model FUML1 in Fig. 7. With regard to the condition (1) 
in Definition 3 of Section 3.1.2, for pair of fuzzy classes 

New-Computer and Computer such that ≼F(Computer) 
= New-Computer as shown in Fig. 7 (i.e., New-
Computer is a subclass of Computer), from Fig .8 we 
can know that New-ComputerFB = {o3/0.65, o4/0.95} 
and ComputerFB = {o3/1.0, o4/0.95}, thus it is shown 
that FB satisfies New-ComputerFB ⊆ ComputerFB, that 
is, FB is a legal fuzzy object state of the fuzzy UML 
model FUML1 in Fig. 7, and this is consistent with the 
condition (1) in Definition 3. With regard to the 
condition (6) in Definition 3, for fuzzy association Use 
such that assF(Use) = [Uby : Old-Employee, Uof : New-
Computer] as shown in Fig. 7, from Fig .8 we know that 
assF(Use) = [Uby : o1', Uof : o3] and assF(Use) = [Uby : 
o1', Uof : o4], that is, the instances of Use are of the form 
[Uby : oi, Uof : oj], where oi ∈ Old-EmployeeFB, oj ∈ 
New-ComputerFB, and this is consistent with the 
condition (6) in Definition 3. The other conditions of the 
legal fuzzy object state in Definition 3 can be illustrated 
analogously following the procedures above. 

3.2. Formalization of Fuzzy Ontologies 

In the following we give a formal definition of fuzzy 
ontologies for representing the constructed fuzzy 
ontology knowledge from fuzzy UML models, and the 
formal definition considers as many fuzzy ontology 
constructors as possible that usually mentioned in the 
literature. 

A fuzzy ontology, which is simply an ontology that 
uses fuzzy logic to provide a natural representation of 
imprecise and uncertain knowledge, may be usually 
represented by fuzzy OWL language (a fuzzy extension 
of the standard Web Ontology Language OWL) as 
mentioned in Section 2.3. A fuzzy ontology formulated 
in fuzzy OWL language is called fuzzy OWL ontology. 
Currently, there have been several definitions of fuzzy 
ontology by considering different features in Refs. 18, 
21, 23, 30, 31, 44, 45, etc (a list of definitions is 
summarized in Ref. 46 in detail). In summary, there are 
three categories of definitions, a group of the existing 
definitions (e.g., Refs. 18, 23) formalize the notion of 
fuzzy ontologies by means of an enumeration of the 
elements of fuzzy ontologies (e.g., a fuzzy ontology is 
defined as a quintuple (C, R, T, A, X)23, where C is a set 
of fuzzy concepts, R is a set of fuzzy relations between 
fuzzy concepts, T is a concept hierarchy, A is a set of 
non-taxonomic fuzzy associative relationships, and X is 
a set of fuzzy axioms), and these definitions do not 
allow other fuzzy elements than the explicitly 

β

β

 

Fig. 8. A fragment of a fuzzy UML instantiation (i.e., object 
diagram) w.r.t. the fuzzy UML model FUML1 in Fig. 6. 
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mentioned such as individuals and fuzzy role hierarchy; 
Moreover, several definitions of fuzzy ontologies are 
proposed based on the language fuzzy OWL (e.g., Refs. 
30, 31, and 45), but there are still some features which 
cannot be represented in these definitions such as 
individuals or fuzzy individual axioms; In addition, 
some definitions of fuzzy ontologies are proposed for 
particular application domains (e.g., Refs. 21, 44), and 
these definitions are even more restrictive and are 
considered as the minimal extensions which are 
sufficient to cover some particular applications such as 
news summarization in Ref. 44. As mentioned in the 
literature, we also understand that a universal fuzzy 
ontology definition which can be suitable for each 
application domain is difficult. All of the definitions 
above are not well-suited and not sufficient for 
representing both the structure and instance information 
of fuzzy UML models. Therefore, based on the existing 
definitions above, the following Definition 4 gives a 
formal definition of fuzzy OWL ontologies, which 
considers both the structure and instance information of 
fuzzy ontologies. Here, we want to stress out that we do 
not expect our fuzzy ontology definition to become a 
standard now, but it considers most of general and 
important features of fuzzy ontologies as usually 
mentioned in the literature. 

Definition 4 (fuzzy OWL ontologies). A fuzzy 
OWL ontology FO, which consists of the fuzzy 
ontology structure FOS and the fuzzy ontology instance 
FOI defined over FOS, can be defined as a tuple FO = 
(FOS, FOI): 
(1) FOS = FID0 ∪ FAxiom0, where FID0 = FCID0 ∪ 

FDRID0 ∪ FOPID0 ∪ FDPID0 is a set of fuzzy class 
descriptions, and FAxiom0 is a set of fuzzy class and 
property axioms defined over FID0 (see Table 1 in 
Section 2.3):  

• FCID0 is a set of fuzzy class identifiers. Each fuzzy 
class may be a user-defined fuzzy class or one of 
two predefined fuzzy classes owl: Thing and owl: 
Nothing; 

• FDRID0 is a set of fuzzy datatype identifiers. Each 
fuzzy datatype may be a predefined fuzzy XML 
Schema datatype47;  

• FOPID0 is a set of fuzzy object property identifiers. 
Each fuzzy object property links individuals to 
individuals, and each property may have its 
characters (e.g., Symmetric and InverseOf) and its 
restrictions (e.g., someValuesFrom and Cardinality); 

• FDPID0 is a set of fuzzy datatype property 
identifiers. Each fuzzy datatype property links 

individuals to data values, and the domain of the 
property may be a fuzzy datatype in FDRID0. Each 
fuzzy datatype property also may have its 
characters and restrictions; 

• FAxiom0, which is a set of fuzzy class and property 
axioms defined over FID0, is used to represent the 
fuzzy ontology structure information. 

(2) FOI = FIID0 ∪ FAxiom0, where FIID0 is a set of 
individual identifiers, and FAxiom0 is a set of fuzzy 
individual axioms (see Table 1 in Section 2.3): 

• FIID0 is a set of individual identifiers; 
• FAxiom0 is a set of fuzzy individual axioms to 

represent the fuzzy ontology instance information. 

In summary, a fuzzy OWL ontology FO includes 
two parts: the structure (a set of fuzzy class and property 
axioms defined over fuzzy class descriptions in Table 1) 
and the instance associated with the structure (a set of 
fuzzy individual axioms in Table 1). If a fuzzy 
interpretation FI = (ΔFI, ΔD, •FI, •D) mentioned in Section 
2.3 satisfies all axioms in a fuzzy ontology FO, then we 
say that FI is a model of FO.  

Based on the formalization of fuzzy UML models 
and fuzzy OWL ontologies above, in the following 
sections we study how to establish correspondences 
between the two knowledge representation models, i.e., 
how to construct fuzzy OWL ontologies from fuzzy 
UML models (see Section 4), and how to apply the 
constructed fuzzy OWL ontologies to reason on fuzzy 
UML models in a intelligent and automatic way (see 
Section 5). 

4. Construction of Fuzzy OWL Ontologies from 
Fuzzy UML Models 

This section proposes a formal approach and develops 
an automated tool for constructing fuzzy OWL 
ontologies from fuzzy UML models, including: (i) 
transforming a fuzzy UML model into fuzzy OWL 
ontology structure (see Section 4.1). (ii) transforming a 
fuzzy UML instantiation (w.r.t. the fuzzy UML model) 
into fuzzy OWL ontology instance (w.r.t. the fuzzy 
OWL ontology structure) (see Section 4.2). The fuzzy 
ontology structure and instance form a target fuzzy 
OWL ontology; The correctness of the approach is 
proved and a transformation example is provided; (iii) 
implementing a prototype transformation tool called 
FUML2FOnto, which can construct fuzzy OWL 
ontologies from fuzzy UML models (see Section 4.3). 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    454



Fu Zhang and Z. M. Ma 
 

4.1. Transforming Fuzzy UML Model into Fuzzy 
OWL Ontology Structure 

In the following, Definition 5 first proposes a formal 
approach for transforming a fuzzy UML model into the 
fuzzy OWL ontology structure. Then, Theorem 1 proves 
the correctness of the approach. Finally, we provide a 
transformation example. All of these will help to well 
understand how to construct fuzzy OWL ontologies 
from fuzzy UML models. 

Giving a fuzzy UML model FUML = (LF, ≼F, attF, 
aggF, depF, assF, cardF, multF, mult'F), starting with the 

construction of fuzzy OWL class descriptions from the 
alphabet set LF, Definition 5 induces a set of fuzzy class 
and property axioms from the rest of the fuzzy UML 
model FUML. 

Definition 5 (structure transformation). Given a 
fuzzy UML model FUML = (LF, ≼F, attF, aggF, depF, 
assF, cardF, multF, mult'F). The fuzzy OWL ontology 
structure FOS = ϕ(FUML) can be derived by 
transformation function ϕ as shown in Table 2. 

Table 2. Transforming rules from a fuzzy UML model to fuzzy OWL ontology structure. 

Fuzzy UML model FUML  Fuzzy OWL ontology structure FOS = ϕ(FUML) = (FID0, FAxiom0)  

Alphabet set LF Fuzzy OWL class description set FID0 

Each fuzzy class FC ∈ FCF A fuzzy class identifier ϕ(FC) ∈ FCID0 
Each fuzzy attribute symbol FA ∈ FAF A fuzzy datatype property identifier ϕ(FA) ∈ FDPID0 

Each method without parameters f(): R ∈ FMF 
A fuzzy datatype property identifier ϕ(f) ∈ FDPID0  
A fuzzy data range identifier ϕ(R) ∈ FDRID0  

Each method with parameters f(P1,…,Pm): R ∈ 
FMF 

A fuzzy class identifier ϕ(FCf(P1, …, Pm)) ∈ FCID0 

m fuzzy data range identifiers ϕ(P1)…ϕ(Pm) ∈ FDRID0 

A fuzzy data range identifier ϕ(R) ∈ FDRID0 

A fuzzy object property identifier ϕ(r1) ∈ FOPID0 

(m+1) fuzzy datatype property identifiers ϕ(r2)…ϕ(rm+2) ∈ FDPID0 

Note that: ϕ(r1) represents the object of invocation, the next m ϕ(r2)…ϕ(rm+1) 
represent the parameters, and the last one ϕ(rm+2) represents the return result. 

Each fuzzy datatype symbol FT ∈ FTF A fuzzy data range identifier ϕ(FT) ∈ FDRID0 
Each fuzzy association (class) symbol FS ∈ FSF A fuzzy class identifier ϕ(FS) ∈ FCID0 

Each role symbol FR ∈ FRF 
A pair of inverse fuzzy object property identifiers:  
ϕ(FR) ∈ FOPID0 and v = invof_ϕ(FR) ∈ FOPID0 

Each fuzzy aggregation FG ∈ FGF such that 
aggF(FG) = FC × (FC1∪…∪FCm) 

m pairs of fuzzy object property identifiers: 
ϕ(is_part_of_g1), ϕ(is_whole_of_g1), …,  
ϕ(is_part_of_gm), ϕ(is_whole_of_gm) 

Each extensionally defined class FC ∈ FCF such 
that FC = {o1, …, on}, where oi ∈ FOF n fuzzy individual identifiers ϕ(o1), …, ϕ(on) ∈ FIID0 

Constraints  Fuzzy OWL axiom set FAxiom0 

Each enumeration class FC = {o1, …, on}, where 
FC ∈ FCF, oi ∈ FOF 

Creating a fuzzy class axiom: 
EnumeratedClass ( ϕ(FC) ϕ(o1)…ϕ(on) ) . 

Each fuzzy generalization ≼F(FC2) = FC1, where 
FC1, FC2∈ FCF 

Creating a fuzzy class axiom: 
Class ( ϕ(FC1) partial ϕ(FC2) ) or SubClassOf ( ϕ(FC1) ϕ(FC2) ). 

Each fuzzy class hierarchy ≼F(FC) = FC1 × 
FC2×…×FCn, i.e., a fuzzy class FC generalizing n 
fuzzy classes FC1, …, FCn with the optional 
disjointness and completeness constraints 

Creating fuzzy class axioms: 
Class ( ϕ(FCi) partial ϕ(FC) ) or SubClassOf ( ϕ(FCi) ϕ(FC) ) ; 

If there are the disjointness and completeness constraints, then adding fuzzy 
class axioms: 

EquivalentClasses ( ϕ(FC) unionOf (ϕ(FC1), …, ϕ(FCn) ) 
DisjointClasses ( ϕ(FCi), ϕ(FCj) )  i, j ∈ 1, 2, …, n,  i ≠ j. 
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Each fuzzy class FC ∈ FCF such that attF(FC) → 
[FA1 (p1...q1): FT1, …, FAn (pn...qn): FTn]. 

Here, FAi ∈ FAF, FTi ∈ FTF, (pi...qi) is the 
multiplicity multF(FTi, FC, FAi) = ( multmin(FTi, 
FC, FAi), multmax(FTi, FC, FAi) ) as mentioned in 
Definition 1, and i ∈ {1…n} 

Creating a fuzzy class axiom: 
Class ( ϕ(FC) partial restriction (ϕ(FA1) allValuesFrom (ϕ(FT1)) 
minCardinality (p1) maxCardinality (q1)) … restriction (ϕ(FAn) 
allValuesFrom (ϕ(FTn)) minCardinality (pn) maxCardinality (qn)) ) ; 

Creating fuzzy property axioms: 
DatatypeProperty ( ϕ(FAi) domain (ϕ(FC)) range (ϕ(FTi)) ) . 

Each fuzzy aggregation FG ∈ FGF such that 
aggF(FG) = FC × (FC1 [w1...z1] ∪ … ∪ FCm 
[wm...zm]). 

Here, FC, FCi ∈ FCF, (wi...zi) is the 
multiplicity mult'F(FCi, FC) = ( mult'min(FCi, FC), 
mult'max(FCi, FC) ) as mentioned in Definition 1, 
and i ∈ {1…m} 

Creating a fuzzy axioms: 
Class ( owl:Thing partial restriction (inverseOf ϕ(is_part_of_g1) 
allValuesFrom (ϕ(FC)) Cardinality (1)) restriction (ϕ(is_whole_of_g1) 
allValuesFrom (ϕ(FC1)) minCardinality (w1) maxCardinality (z1)) … 
restriction (inverseOf ϕ(is_part_of_gm) allValuesFrom (ϕ(FC)) Cardinality 
(1)) restriction (ϕ(is_whole_of_gm) allValuesFrom (ϕ(FCm)) minCardinality 
(wm) maxCardinality (zm)) ) ; 
ObjectProperty ( ϕ(is_part_of_gi) domain (ϕ(FCi)) range (ϕ(FC)) ) ;  
ObjectProperty ( ϕ(is_whole_of_gi) domain (ϕ(FC)) range (ϕ(FCi)) ) . 

Each fuzzy dependency such that depF ⊆ FC1 × 
FC2 

As mentioned in Section 2.2, the dependency between FC1 and FC2 is only related 
to the classes themselves and does not require a set of instances for its meaning, 
and the current fuzzy OWL ontologies are not enough to support this type of 
property, which can be indicated explicitly by the designers. 

Each pair of symbols x, y ∈ FCF ∪ FSF with x ≠ y 
and x ∈ FSF  

Creating a fuzzy class axiom: 
DisjointClasses ( ϕ(x), ϕ(y) ) . 

Each fuzzy class FC ∈ FCF such that attF(FC) → 
[…, f() : R, …]. Here, f(): R ∈ FMF is a method 
without parameters.  

Creating a fuzzy class axiom: 
Class ( ϕ(FC) partial restriction (ϕ(f) allValuesFrom (ϕ(R)) 
maxCardinality(1)) ). 

Each fuzzy class FC ∈ FCF such that attF(FC) → 
[…, f(P1, …, Pm) : R, …]. 

Here, f(P1, …, Pm) : R ∈ FMF is a method with 
m parameters P1, …, Pm. 

Creating fuzzy class axioms: 
Class ( ϕ(FCf(P1, …, Pm)) partial restriction (ϕ(r1) someValuesFrom (owl:Thing) 
Cardinality(1)) … restriction (ϕ(rm+1) someValuesFrom (owl:Thing) 
Cardinality(1)) ) ; 
Class ( ϕ(FCf(P1, …, Pm)) partial restriction (ϕ(r2) allValuesFrom (ϕ(P1))) … 
restriction (ϕ(rm+1) allValuesFrom (ϕ(Pm))) ) ; 
Class ( ϕ(FC) partial restriction (inverseOf(ϕ(r1)) allValuesFrom (unionOf 
(complementOf (ϕ(Cf(P1, …, Pm))) restriction (ϕ(rm+2) allValuesFrom 
(ϕ(R)))))) ). 

Note that: The first axiom states that each instance of ϕ(FCf(P1, …, Pm)), representing a 
tuple, correctly is connected to exactly one object for each of r1,…rm+1; The other two 
axioms impose the correct typing of parameters and of the return value. 

Each fuzzy association FS ∈ FSF such that 
assF(FS) = [FR1 : FC1, …, FRk : FCk]. 

Here, FRi ∈ FRF, FCi ∈ FCF, each role FRi is 
associated with a cardinality constraint cardF(FCi, 
FS, FRi) = ( cardmin(FCi, FS, FRi), cardmax(FCi, FS, 
FRi) ), and i ∈ {1…k} 

Creating fuzzy class axioms: 
Class ( ϕ(FS) partial restriction (ϕ(FR1) allValuesFrom (ϕ(FC1)) cardinality 
(1)) … restriction (ϕ(FRk) allValuesFrom (ϕ(FCk)) cardinality (1)) ) ;  
Class ( ϕ(FCi) partial restriction (vi allValuesFrom (ϕ(FS))) ), where vi = 
invof_ϕ(FRi) ∈ FOPID0 denotes an inverse property of the fuzzy object 
property ϕ(FRi) as mentioned above ; 

Do case cardF(FCi, FS, FRi) of: 
(i) m = cardmin(FCi, FS, FRi) ≠ 0, creating a fuzzy class axiom: 

Class ( ϕ(FCi) partial restriction (vi minCardinality (m)) ) ; 
(ii) n = cardmax(FCi, FS, FRi) ≠ ∞, creating a fuzzy class axiom: 

Class ( ϕ(FCi) partial restriction (vi maxCardinality (n)) ) ; 
(iii) q = cardF(FCi, FS, FRi), creating a fuzzy class axiom: 

Class ( ϕ(FCi) partial restriction (vi Cardinality (q)) ) ; 
Creating fuzzy property axioms: 

ObjectProperty (vi domain (ϕ(FCi)) range (ϕ(FS)) inverseOf ϕ(FRi) ) ; 
ObjectProperty ( ϕ(FRi) domain (ϕ(FS)) range (ϕ(FCi)) ) . 
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Below we prove the correctness of the 
transformation in Definition 5, which can be sanctioned 
by establishing mappings between the fuzzy object 
states (w.r.t. the fuzzy UML model FUML) and the 
models of the transformed fuzzy OWL ontology ϕ(FUML) 
(see Theorem 1). 

Theorem 1. For each fuzzy UML model FUML, FB 
is a legal fuzzy object state corresponding to FUML, and 
ϕ(FUML) is the fuzzy OWL ontology derived from the 
FUML by Definition 5. Then there exist two mappings αF, 
from the fuzzy object state FB to the model of ϕ(FUML), 
and βF, from the model of ϕ(FUML) to the fuzzy object 
state FB, such that: 
• For each legal fuzzy object state FB for FUML, 

there is αF(FB) which is a model of ϕ(FUML).  
• For each model FI of ϕ(FUML), there is βF(FI) 

which is a legal fuzzy object state for FUML. 
Proof. The following gives the proof of the first part of 
Theorem 1. Here, as mentioned in Section 3.1, for each 
legal fuzzy object state FB, a finite set of fuzzy values 
ΔFB is considered. Moreover, for ease of understanding 
the following proof omits the membership degrees 
which occur at the fuzzy UML model as mentioned in 
Section 3.1. Firstly, given a legal fuzzy object state FB 
for FUML, the fuzzy interpretation αF(FB) of ϕ(FUML) 
can be defined as follows: 
• The domain elements ( )αΔ F FB  of the fuzzy 

interpretation αF(FB) of ϕ(FUML) are constituted by 
the values ΔFB of the fuzzy object state FB. 

• The fuzzy OWL class description set FID0 of 
ϕ(FUML) in Definition 5 are defined as follows: 
− For each symbol X ∈ FTF∪FAF∪FCF∪FSF, 

α ( )( ( ))Xϕ F FB  = XFB ; 
− For each fuzzy association FS ∈ FSF with 

assF(FS) = [FR1 : FC1, …, FRk : FCk], 
α ( )

i( ( ))FRϕ F FB  = {<s, ci> ∈ ( )αΔ F FB × ( )αΔ F FB | s 
∈ FSFB ∧ ci ∈ FCi

FB ∧ s[FRi] = ci}, where i = 
1, …, k. 

Based on the definition of αF(FB) above, in the 
following we prove that αF(FB) is a model of ϕ(FUML), 
i.e., prove that αF(FB) satisfies each fuzzy OWL axiom 
of FAxiom0 of ϕ(FUML) in Definition 5. Notice that, the 
fuzzy OWL axioms of FAxiom0 in Definition 5 may be 
mainly partitioned into the following several cases: 

Case 1: If ≼F(FC2) = FC1. Firstly, according to 
Definition 3, if FB is a legal fuzzy object state, then 
FC1

FB
 ⊆ FC2

FB. Then, by definition of αF(FB) above, 
we have α ( )

1( ( ))FCϕ F FB  ⊆ α ( )
2( ( ))FCϕ F FB . That is, 

αF(FB) satisfies the axiom Class ( ϕ(FC1) partial 
ϕ(FC2) ) in Definition 5. 

Case 2: If there is a fuzzy class hierarchy ≼F(FC) = 
FC1 × FC2×…×FCn. Firstly, similarly for the case 1 
above, we have α ( )

i( ( ))FCϕ F FB  ⊆ α ( )( ( ))FCϕ F FB , where 
i ∈ {1, …, n}. Then, if there are disjointness and 
completeness constraints, according to Definition 3, if 
FB is a legal fuzzy object state, then FCFB = FC1

FB 
∪…∪ FCn

FB and FCi
FB ∩ FCj

FB = ∅, and by definition 
of αF(FB) again, we have α ( )( ( ))FCϕ F FB  = 

α ( )
1( ( ))FCϕ F FB  ∪ … ∪ α ( )

n( ( ))FCϕ F FB  and 
α ( )

i( ( ))FCϕ F FB  ∩ α ( )
j( ( ))FCϕ F FB = ∅. That is, αF(FB) 

satisfies the corresponding axioms of the fuzzy class 
hierarchy ≼F(FC) in Definition 5. 

Case 3: If there is a fuzzy class FC ∈ FCF with 
attF(FC) = [FA1 : FT1, …, FAn : FTn]. Firstly, for an 
instance c ∈ α ( )( ( ))FCϕ F FB , by definition of αF(FB) 
above, we have c ∈ FCFB. Then, according to Definition 
3, there is at least one element ai ∈ FAi

FB whose first 
component is c, and the second component of ai is an 
element ti ∈ FTi

FB, and we have the formula multmin(ti, c, 
ai) ≤ #{c ∈ FCFB | c[ai] = ti} ≤ multmax(ti, c, ai), where 
#{ }denotes the base of set { }. Furthermore, by 
definition of αF(FB) above, we have ai = <c, ti> ∈ FAi

FB 
= α ( )

i( ( ))FAϕ F FB  and α ( )( ( ))FCϕ F FB  ⊆ {c | multmin(ti, c, 
ai) ≤ #{c ∈ α ( )( ( ))FCϕ F FB |<c, ti> ∈ α ( )

i( ( ))FAϕ F FB } ≤ 
multmax(ti, c, ai)}, where c ∈ α ( )( ( ))FCϕ F FB  and ti ∈ 
FTi

FB = α ( )
i( ( ))FTϕ F FB . Moreover, according to 

Definition 2, it is shown that each fuzzy attribute FA ∈ 
FAF is mapped into a set, i.e., FAFB ⊆ ΔFB × 

FT FT FT∈∪
F

FB , and based on the above statements, there 
is at least one <c, ti> ∈ ai, i.e., FAi

FB ⊆ FCFB × 

i iFT FT FT∈∪
F

FB , i.e., α ( )
i( ( ))FAϕ F FB  ⊆ α ( )( ( ))FCϕ F FB  × 

α ( )
i( ( ))FTϕ F FB . That is, αF(FB) satisfies the 

corresponding axioms of the fuzzy class attF(FC) in 
Definition 5. 

Case 4: If x, y ∈ FCF ∪ FSF with x ≠ y and x ∈ FSF. 
Firstly, according to Definition 1, the various basic 
domains are pairwise disjoint and disjoint from ΔFB and 
from the set of labeled tuples. Then, we know that 
labeled tuples corresponding to different associations 
cannot be equal since they are defined over different 
sets of roles. That is, αF(FB) satisfies the corresponding 
axioms of this case in Definition 5. 

Case 5: IF there is a fuzzy association FS ∈ FSF 
such that assF(FS) = [FR1 : FC1, …, FRk : FCk], and 
each role FRi is associated with a cardinality constraint 
cardF(FCi, FS, FRi) = ( cardmin(FCi, FS, FRi), 
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cardmax(FCi, FS, FRi) ). Firstly, for a fuzzy association 
instance s ∈ α ( )( ( ))FSϕ F FB , by definition of αF(FB) 
above, we have s ∈ FSFB. Then, according to Definition 
3, we know that all instances of FS are of the form [r1 : 
c1, …, rk : ck], and thus s is also the following FR-
labeled tuples over ΔFB of the form [r1 : c1, …, rk : ck], 
where ri ∈ FRi

FB, ci ∈ FCi
FB, i ∈ {1, …, k}. 

Furthermore, by definition of αF(FB) above once again, 
we have ci ∈ α ( )

i( ( ))FCϕ F FB . Moreover, by definition 
of αF(FB) above, it follows α ( )

i( ( ))FRϕ F FB  = {<s, ci> ∈ 
( )αΔ F FB × ( )αΔ F FB  | s ∈ FSFB ∧ ci ∈ FCi

FB ∧ s[FRi] = ci}, 
i.e., α ( )

i( ( ))FRϕ F FB  ⊆ FSFB × FCi
FB, so α ( )

i( ( ))FRϕ F FB  ⊆ 
α ( )( ( ))FSϕ F FB  × α ( )

i( ( ))FCϕ F FB . Since vi = invof_ϕ(FRi) 
denotes an inverse property of the fuzzy object property 
ϕ(FRi), i.e., α ( )

iv F FB  = α ( )
i(( ( )) )FR −ϕ F FB , we have 

α ( )
iv F FB  = α ( )

i(( ( )) )FR −ϕ F FB ⊆ α ( )
i( ( ))FCϕ F FB  × 

α ( )( ( ))FSϕ F FB . In addition, according to Definition 3, 
we have the following formula: cardmin(FC, FS, FR) ≤ 
#{s ∈ FSFB | s[FR] = c} ≤ cardmax(FC, FS, FR), where 
#{ }denotes the base of set { }, and by definition of 

αF(FB) above, it follows α ( )
i( ( ))FCϕ F FB  ⊆ {ci | multmin(ti, 

c, ai) ≤ #{s ∈ α ( )( ( ))FSϕ F FB |<s, ci> ∈ α ( )
i( ( ))FRϕ F FB } ≤ 

multmax(ti, c, ai)}. That is, αF(FB) satisfies the 
corresponding axioms of the fuzzy association assF(FS) 
in Definition 5. 

The other cases in the first part of Theorem 1 such 
as methods and aggregations can be proved analogously, 
where the methods are included in the case 3 above, and 
the aggregations are a particular kind of binary 
associations and can be proved similarly with the case 4 
above. Moreover, the two parts of Theorem 1 are a 
mutually inverse process, and the proof of the second 
part of Theorem 1, which can be treated analogously 
according to the first part above, is omitted here.          □ 

In the following, we further illustrate the 
transformation in Definition 5 with Example 1. 

Example 1. Given the fuzzy UML model FUML1 in 
Fig. 6, by Definition 5, we can obtain the corresponding 
fuzzy OWL ontology structure FOS = ϕ(FUML1) in Fig. 
9. 

 

Fig. 9. The fuzzy OWL ontology structure ϕ(FUML1) derived from the fuzzy UML model FUML1 in Fig. 6. 

The fuzzy OWL ontology structure ϕ(FUML1) = (FID0, FAxiom0) derived from the fuzzy UML model FUML1 
in Fig. 6 by Definition 5 is as follows (for brevity, FID0, part of axioms, and the symbol ϕ( ) are omitted): 
FAxiom0 = { Class ( Young-Employee  partial  Employee ) ;  

Class ( Old-Employee  partial  Employee ) ; 
EquivalentClasses( ϕ(Employee), unionOf (ϕ(Young-Employee), ϕ(Old-Employee)) ) ; 
DisjointClasses ( Young-Employee, Old-Employee ) ; 
Class ( New-Computer  partial  Computer ) ;  
Class ( Old-Employee partial restriction (ID allValuesFrom (xsd:String) Cardinality (1)) restriction 

(Name allValuesFrom (xsd:String) Cardinality (1)) restriction (FUZZY-Age allValuesFrom 
(xsd:Integer) Cardinality (1)) restriction (FUZZY-Email allValuesFrom (xsd:String) minCardinality 
(1)) restriction (IsDepartment allValuesFrom (xsd:String) maxCardinality (1)) restriction (u 
allValuesFrom (xsd:Real) Cardinality (1)) ) ;  

Class ( Use  partial  restriction (Date allValuesFrom (xsd:String) Cardinality (1)) restriction (β 
allValuesFrom (xsd:Real) Cardinality (1)) restriction (Uby allValuesFrom (Old-Employee) 
Cardinality (1)) restriction (Uof allValuesFrom (New-Computer) Cardinality (1)) ) ; 

Class ( owl:Thing partial restriction (inverseOf ϕ(is_part_of_g1) allValuesFrom (New-Computer) 
Cardinality (1)) restriction (ϕ(is_whole_of_g1) allValuesFrom (Monitor) minCardinality (1)) … 
restriction (inverseOf ϕ(is_part_of_gm) allValuesFrom (New-Computer) Cardinality (1)) restriction 
(ϕ(is_whole_of_gm) allValuesFrom (Keyboard) minCardinality (1)) ) ; 

Class ( Old-Employee  partial  restriction ( invof_Uby  allValuesFrom (Use)) ) ; 
Class ( New-Computer  partial  restriction ( invof_Uof  allValuesFrom (Use)) ) ; 
Class ( Old-Employee  partial  restriction ( invof_Uby  Cardinality (1)) ) ; 
Class ( New-Computer  partial  restriction (invof_Uof  minCardinality (1) maxCardinality (2)) ) ; 
ObjectProperty ( is_part_of_g1 domain (Monitor) range (New-Computer) ) ; 
ObjectProperty ( is_whole_of_g1 domain (New-Computer) range (Monitor) ) ; 
DatatypeProperty ( Name domain (Old-Employee) range (xsd:String) [Functional] ) ; … } 
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4.2. Transforming Fuzzy UML Instantiations into 
Fuzzy Ontology Instances 

Based on the structure transformation in Section 4.1, in 
this section we further propose an approach for 
transforming the fuzzy UML instantiations into the 
fuzzy OWL ontology instances at instance level. Firstly, 
let us briefly sketch the representation forms of 
instances in fuzzy OWL ontologies and fuzzy UML 
models. 

In a fuzzy OWL ontology, the instances are 
represented by the fuzzy individual axioms (see Table 
1):  
• Individual ( o type(C1) [⋈ m1] … value(R1, o1) [⋈ 

k1] … value(U1, v1) [⋈ l1] … );  
• SameIndividual (o1 … on);  
• DifferentIndividuals (o1 … on), where oi denotes an 

abstract individual, vi a concrete individual, C fuzzy 
class description, R and U a fuzzy object and 
datatype property respectively, mi ∈ [0, 1], ki ∈ [0, 
1], li ∈ [0, 1], and ⋈ ∈ {≥, >, ≤, <}. 

In a fuzzy UML model, as mentioned in Sections 
2.2 and 3.1, it is shown that the fuzziness may occur at 
several different levels: 
• The first level is the attribute level. In a class of a 

fuzzy UML model, each attribute is associated with 
a type (called the domain of an attribute), and an 
attribute may be one of the following two cases: 
− A non-fuzzy attribute, its domain may be a 

simple/basic type (such as integer, real and 
string) or a complex type (such as set type and 
object type).  

− A fuzzy attribute, it domain is a fuzzy-type-
based type. Only fuzzy attributes have fuzzy 
types and fuzzy attributes are explicitly 
indicated in a class definition (e.g., a fuzzy 
keyword FUZZY is appeared on the front of 
attributes indicating they are fuzzy attributes). A 
fuzzy domain of a fuzzy attribute may be a set 
of possibility distributions or a set of fuzzy 
linguistic terms (each fuzzy linguistic term is 
associated with a membership function over a 
basic type). For example, the domain of an 
attribute Age may be a crisp set of integers, a set 
of possibility distributions over the basic type 
integers, or a set of fuzzy linguistic terms over 
the basic type integers such as {young, old}. 

• The second level is the object/class level, i.e., an 
object belongs to a class with a membership degree 
of [0, 1]. An additional attribute u ∈ [0, 1] is 

introduced into a class to represent the membership 
degree of an object to the class. 

• The third level is the class/class level, such as the 
fuzziness in a subclass/superclass relationship or 
the fuzziness in two classes with an association 
relationship as mentioned in Sections 2.2 and 3.1, 
and these kinds of fuzziness may be represented by 
the fuzziness in the first two levels above. For 
example, in a subclass/superclass relationship, the 
membership degree that any object belongs to the 
subclass is less than or equal to the membership 
degree that it belongs to the superclass. Therefore, 
fuzzy subclass/superclass relationships in a fuzzy 
UML model can be assessed by utilizing the 
inclusion degree of objects to the class in the 
second level above. 

Based on the discussion about fuzzy UML models 
above and Sections 2.2 and 3.1, a fuzzy UML 
instantiation with respect to a fuzzy UML model, which 
describes the real world by means of objects, values, 
and their mutual relationships, can be considered as a 
finite set of assertions. The assertion formalisms of a 
fuzzy UML instantiation (i.e., a set of object instances) 
with respect to a fuzzy UML model include:  
• The assertion of the form FO: FC: u, which denotes 

that a fuzzy object FO is an instance of a fuzzy 
class FC with membership degree of u ∈ [0, 1].  

• The assertion of the form FO : 
[FA1:FV1:n1,…,FAk:FVk:nk], which denotes the 
attribute value associated with FO, where FVi ∈ 
ΔFB, FAi ∈ FAF denotes the attribute of FO, ni ∈ [0, 
1] denotes the membership degree, and i ∈ {1…k} 
(see Definition 2). Here, since the value of an 
attribute FAi may be a possibility distribution, for 
simplicity, FVi : ni only denotes one element of the 
possibility distribution.  

• Since the fuzziness in the third level above in a 
fuzzy UML model can be assessed by the other two 
levels as mentioned above, the assertion formalisms 
of the fuzziness in the third level may be repressed 
by the above assertion formalisms. 

On this basis, Definition 6 gives a transformation 
approach from fuzzy UML instantiations with respect to 
fuzzy UML models to fuzzy OWL ontology instances. 

Definition 6 (Instance transformation). Given a 
fuzzy UML instantiation (i.e., a set of object instances) 
w.r.t. a fuzzy UML model, the corresponding fuzzy 
OWL ontology instances (w.r.t. the fuzzy ontology 
structure in Definition 5) can be derived as the rules in 
Table 3: 
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In the following, we illustrate the transformation 
procedure in Definition 6 with Example 2. 

Example 2. Given the fuzzy UML instantiation in 
Fig. 8 (w.r.t. the fuzzy UML model in Fig. 6 and Fig. 7), 

the transformed fuzzy ontology instance (w.r.t. the 
fuzzy ontology structure in Fig. 9) is shown in Fig. 10. 
The fuzzy ontology structure in Fig. 9 and the instance 
in Fig. 10 form a target fuzzy ontology. 

 

Fig. 10. The fuzzy OWL ontology instance derived from the fuzzy UML instantiation in Fig. 8. 

The fuzzy OWL ontology instance FOI = (FID0, FAxiom0) derived from the fuzzy UML instantiation in Fig. 8 is 
as follows: FIID0 = {o1, o2, o3, o4, o1', o2', o''} ;   //o'' is an additional individual 
FAxiom0 = { DifferentIndividuals (o1, o2, o3, o4, o1', o2', o'') ; 

Individual ( o1  type(Young-Employee) [⋈' 0.9] ) ; 
Individual ( o2  type(Young-Employee) [⋈' 0.95] ) ; 
Individual ( o1'  type(Old-Employee) [⋈' 0.6] ) ; 
Individual ( o2'  type(Old-Employee) [⋈' 0.8] ) ; 
Individual ( o1  type(Employee) [⋈' 0.93] ) ; 
Individual ( o2  type(Employee) [⋈' 0.95] ) ; 
Individual ( o1'  type(Employee) [⋈' 0.7] ) ; 
Individual ( o2'  type(Employee) [⋈' 0.8] ) ; 
Individual ( o3  type(New-Computer) [⋈' 0.65] ) ; 
Individual ( o4  type(New-Computer) [⋈' 0.95] ) ; 
Individual ( o3  type(Computer) ) ; Individual ( o4  type(Computer) [⋈' 0.95] ) ; 
Individual ( o''  type(Use) ) ; 
Individual ( o''  value(Uby, o1')  value(Uof, o3) [⋈' 0.7]  value(Uof, o4) [⋈' 0.9] ) ; 
Individual ( o3  value(ComID, NC12) value(Brand, Sony) value(Year, 6) value(u, 0.65) value (invof_Uof, 

o'') [⋈' 0.7] ) ; 
Individual ( o4  value(ComID, NC32)  value(Brand, IBM) value(Year, 2) value(u, 0.95) value (invof_Uof, 

o'') [⋈' 0.9] ) ; 
Individual ( o1'  value(ID, OE24) value(Name, Tom)  value(FUZZY-Age, 51) [⋈' 0.7] … value(FUZZY-

Email, John@yahoo.com) [⋈' 0.3]  value(IsDepartment, SalesDept) [⋈' 0.6]  value(u, 0.6) 
value(invof_Uby, o'') ) ; } 

Table 3.  Transforming rules from the fuzzy UML instantiations to the fuzzy OWL ontology instances. 

Fuzzy UML instantiations Fuzzy OWL ontology instances FOI Comments 

Each fuzzy object symbol FO ∈ FO
F
 A fuzzy individual identifier ϕ(FO) ∈ FIID0  

Each fuzzy class symbol FC ∈ FC
F
, 

each fuzzy attribute symbol FA ∈ FA
F
, 

each fuzzy role symbol FR ∈ FR
F
, and so 

on in Definition 5 

A fuzzy class identifier ϕ(FC) ∈ FCID0, a fuzzy datatype 
property identifier ϕ(FA) ∈ FDPID0, a pair of inverse fuzzy 
object property identifiers ϕ(FR) ∈ FOPID0 and v = 
invof_ϕ(FR) ∈ FOPID0, and the other fuzzy class/datatype 
property/object property identifiers; For brevity, in the 
following we use ϕ(FC) to denote all fuzzy class identifiers in 
Definition 5, Ui denotes all fuzzy datatype property 
identifiers, and Ri denotes all fuzzy object property identifiers. 

See 
Definition 5 
in detail 

Each fuzzy assertion FO: FC: n A fuzzy individual axioms: 
Individual ( ϕ(FO) type(ϕ(FC)) [⋈' n] ), ⋈′ ∈ {≥, ≤} 

See Fig. 10 
in detail 

Each fuzzy assertion: 
FO:[FA1:FV1:n1,…,FAk:FVk:nk] 

A fuzzy individual axioms: 
Individual ( ϕ(FO) value(Ri, ϕ(FVi)) [⋈' ni]… 

value(Ui, ϕ(FVi)) [⋈' ni]… ) 
where ϕ(FVi), which denotes the corresponding value of FVi, 
is an element of the fuzzy interpretation domain of the fuzzy 
ontology, i ∈ {1…k}, ⋈′ ∈ {≥, ≤} 

See Fig. 10 
in detail 
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Based on the proposed approaches in the previous 
sections, a fuzzy UML model including its structure and 
instance information can be transformed into a fuzzy 
OWL ontology. In the following section we further 
develop a prototype tool to construct fuzzy OWL 
ontologies from fuzzy UML models. 

4.3. Prototype Construction Tool 

In this section, following the proposed approaches in 
Sections 4.1 and 4.2, we developed a prototype tool 
called FUML2FOnto, which can read in an XML-coded 
fuzzy UML model created with a CASE tool 
PowerDesigner and automatically construct fuzzy OWL 
ontologies from fuzzy UML models. In the following 
we briefly introduce the design and implementation of 
the prototype tool FUML2FOnto. 

The implementation of FUML2FOnto is based on 
Java 2 JDK 1.6 platform, and the Graphical User 
Interface is exploited by using the java.awt and 
javax.swing packages. In our implementation, the XMI 
file of the fuzzy UML model is parsed by the DOM API 
for Java to construct an in-memory document 
representation (tree structure). Java methods are used to 
extract fuzzy UML model data from the tree structure; 
the extracted data are stored as in-memory data in Java 
classes and simultaneously displayed on the tool screen. 
Then the in-memory data are used by Java methods to 
perform the transformation from the fuzzy UML model 
to the fuzzy OWL ontology. The resulting ontology is 
saved as text files and displayed simultaneously on the 
tool screen. The overall architecture of FUML2FOnto is 
shown in Fig. 11.  

From Fig. 11, FUML2FOnto includes four main 
modules, i.e., input module, parsing module, 
transformation module, and output module: 
• The input module inputs an XML-coded fuzzy 

UML model created with a CASE tool 
PowerDesigner. It should be noted that some 
features of a fuzzy UML model (such as the 
disjointness and completeness constraints in a fuzzy 
hierarchy and the fuzzy dependency as introduced 
in Sections 2.2 and 3.1) cannot be supported by the 
CASE tool, and they need to be added by the 
designers by hand; 

• The parsing module uses the regular expression to 
parse the fuzzy UML model file, and stores the 
parsed results as Java ArrayList classes, where 
fuzzy UML classes, attributes, and so on are 
identified;  

• The transformation module transforms the parsed 
results of the fuzzy UML model into the fuzzy 
OWL ontology structure and instance according to 
the proposed approaches in Sections 4.1 and 4.2. 
where the instance transformation is based on the 
structure transformation; 

• The output module produces the resulting fuzzy 
OWL ontology which is saved as a text file and 
displayed on the tool screen as will be shown in Fig. 
12. 

In the following we provide an example of 
FUML2FOnto to show that the proposed approach is 
feasible and the implemented tool is efficient. As shown 
in Section 3.1, a fuzzy UML model FUML1 modeling the 
situation at a company (including the structure 
information in Fig. 6 and the instance information in Fig. 
8) is provided, and the fuzzy UML model FUML1 is 
transformed into a fuzzy OWL ontology by 
FUML2FOnto. Fig. 12 shows the screen snapshot of 
FUML2FOnto, which displays the transformations from 
the fuzzy UML model (Fig. 6) and the corresponding 
fuzzy UML instantiation (Fig. 8) to the fuzzy OWL 
ontology structure (Fig. 9) and the fuzzy OWL ontology 
instance (Fig. 10). In Fig. 12, the XML-coded fuzzy 
UML model file, the parsed results, and the constructed 
fuzzy OWL ontology are displayed in the left, middle 
and right areas, respectively. 

 

Fig. 11. The overall architecture of FUML2FOnto. 
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Based on the tool FUML2FOnto, a fuzzy OWL 
ontology can be constructed from a fuzzy UML model. 
Now let us analyze the time complexity of the 
construction process by measuring the amount of work 
done by the tool. Here we consider the transformation 
operations and ignore the preprocessing operations (i.e., 
fuzzy UML model parsing and element extraction as 
mentioned in the overall architecture of FUML2FOnto 
above). That is to say, we exclude the amount of work 
done by an XML parser (e.g., the DOM API for Java in 
our implementation) that parses the fuzzy UML model 
(i.e., an XMI-coded file) and prepares the element data 
in computer memory for the usage in the transformation 
procedure. Moreover, since the transformation from 
fuzzy UML symbols to fuzzy OWL ontology identifiers 
can be simultaneously made as sub-operations in 
creating the fuzzy OWL ontology axioms as shown in 
Sections 4.1 and 4.2, we can ignore the amount of work 
done in the symbol-to-identifier transformation and 
consider only the creation of axioms to be the main 
operation of the tool FUML2FOnto. On this basis, we 
now could measure the amount of work done by the tool 
FUML2FOnto by roughly counting the total number of 
operations for axiom creation in the construction 
procedure proposed in our approach (see Definitions 5 
and 6 in Sections 4.1 and 4.2). 

Given a fuzzy UML model FUML = (LF, ≼F, attF, 
aggF, depF, assF, cardF, multF, mult'F), the amount of 
work done by the tool FUML2FOnto mainly depends on 
the structure of the fuzzy UML model FUML. We use the 
total number of main elements in FUML to measure the 
scale of the fuzzy UML model. Suppose the scale of the 
fuzzy UML model FUML is N = NFC + NFA + NFS + NFR 
+ NFH + NFG + NI, where NFC, NFA, NFS, NFR, NFH, 
NFG and NI denotes the cardinality of the sets of fuzzy 

classes, fuzzy attributes, fuzzy associations, fuzzy roles, 
fuzzy hierarchies, fuzzy aggregations and object 
instances, respectively (note that the fuzzy dependency 
in a fuzzy UML model is omitted here since it cannot be 
represented by fuzzy OWL ontology and needs to be 
indicated explicitly by the designers as mentioned in 
Section 4.1). Then, from the construction procedure 
proposed in our approach (see Definitions 5 and 6 in 
Sections 4.1 and 4.2), it is shown that the executing 
times of creating the corresponding axioms of the case 
attF(FC) is NFC + 2NFA at most (where NFC includes 
fuzzy classes and fuzzy association classes, and NFA 
includes attributes and methods), the case of fuzzy 
association assF(FS) is NFS + 5NFR, the case of fuzzy 
class hierarchy ≼F(FC) is 2NFH, the case of fuzzy 
aggregation aggF(FG) is 2NFG, the case of 
DislointClasses(ϕ(x), ϕ(y)) in Table 2 of Section 4.1 is 
NFS × (NFS-1)/2 + NFS × NFC = NFS × (NFC+NFS/2－
1/2), and the executing times of creating the 
corresponding axioms of object instances is NI + 1. 
Therefore, the total running times T = NFC + 2NFA + 
NFS + 5NFR + 2NFH + 2NFG + NFS×(NFC+NFS/2－1/2) + 
NI + 1 < N2 + 5N, that is, the worst case time 
complexity of the transformation from a fuzzy UML 
model to a fuzzy OWL ontology is O(N2).  

So far, on the basis of the proposed approach and 
the implemented tool, fuzzy OWL ontologies can be 
constructed from fuzzy UML models. The correctness 
of our proposed construction approach has been 
formally proved in the previous section 4.1. In this 
section, we developed the tool FUML2FOnto to 
demonstrate that the approach actually works. In 
summary, from the proposed approach and tool above, it 
is shown that two main steps need to be carried out 
when constructing a fuzzy OWL ontology from a fuzzy 
UML model, i.e., transforming the fuzzy UML model 
into the fuzzy OWL ontology at structure level and 
transforming the object instance w.r.t. the fuzzy UML 
model into the fuzzy OWL ontology at instance level. 
Therefore, the correctness of the resulting fuzzy OWL 
ontology is decided by the respective correctness of two 
steps above. For the first step, the transformation rules 
at structure level (see Definition 5) can transform all the 
elements of the fuzzy UML model (including fuzzy 
classes FCF, fuzzy attributes FAF, and so on) into fuzzy 
OWL ontology identifiers, and induce a set of fuzzy 
class and property axioms from the constraints of the 
fuzzy UML model (including fuzzy hierarchies, fuzzy 

 

Fig. 12. Screen snapshot of FUML2FOnto. 
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aggregations, fuzzy associations, and so on). The 
correctness of the transformation above has been 
sanctioned by the theorem 1. For the second step, the 
transformation at instance level from the object instance 
w.r.t. the fuzzy UML model into the fuzzy OWL 
ontology instance is established based on the 
transformation at structure level in the first step. Based 
on the constructed fuzzy OWL ontology identifiers and 
axioms in the first step, the transformation rules at 
instance level (see Definition 6) can further map the 
objects to their corresponding fuzzy classes and map the 
attributes of the objects to their corresponding values. 
The correctness of the transformation at instance level 
can be ensured by the correctness of the transformation 
at structure level in the first step. Moreover, we also 
provide an example (including examples 1 and 2 in 
Sections 4.1 and 4.2) to show that the approach is 
validated and verified, and the example is tested by the 
tool FUML2FOnto, where the example 1 can construct 
the fuzzy OWL ontology structure FOS (i.e., identifiers 
and fuzzy class/property axioms in Fig. 9) from the 
fuzzy UML model FUML1 in Fig. 6 and Fig. 7, and then 
the example 2 can further construct the fuzzy OWL 
ontology instance FOI (i.e., fuzzy individual axioms in 
Fig. 10) from the object instance in Fig. 8 w.r.t. the 
fuzzy UML model FUML1. Finally, two parts FOS and 
FOI form a target fuzzy OWL ontology. 

After constructing a fuzzy OWL ontology from a 
fuzzy UML model on the basis of the previous work, 
this means that the information in a fuzzy UML model 
may be represented using a knowledge representation 
technique. As a result, reasoning of fuzzy UML models 
may be handled using the common fuzzy ontology 
technique in an intelligent and automatic way. For 
example, using conventional techniques in reasoning on 
fuzzy UML models would mean to manually check the 
reasoning tasks of fuzzy UML models (e.g., whether a 
fuzzy class in a fuzzy UML model is satisfiable or 
whether there is redundancy in a fuzzy UML model). 
Using knowledge representation techniques such as 
fuzzy ontology, the tasks of checking the reasoning 
problems of fuzzy UML models may be done 
automatically, which may help to improve the ability of 
reasoning on fuzzy UML models. 

Therefore, to demonstrate the constructed fuzzy 
OWL ontologies may be useful for reasoning on fuzzy 
UML models, in the following section we will focus on 

investigating how to reason on fuzzy UML models 
based on the constructed fuzzy OWL ontologies. 

5. Reasoning on Fuzzy UML Models with the 
Constructed Fuzzy OWL Ontologies 

As mentioned in Section 1 and the end of Section 4.3, 
the approach of constructing fuzzy OWL ontologies 
from fuzzy UML models may facilitate the fuzzy 
ontology development. Also, the constructed fuzzy 
OWL ontologies may be useful for reasoning on fuzzy 
UML models. Therefore, after representing a fuzzy 
UML model in a fuzzy OWL ontology in the previous 
sections of this paper, maybe it is convenient and worth 
it investigating how to reason on fuzzy UML models 
based on the constructed fuzzy OWL ontologies. 

In this section, to demonstrate the constructed fuzzy 
OWL ontologies may be useful for reasoning on fuzzy 
UML models, based on the initial idea in Ref. 30, we 
investigate how to reason on fuzzy UML models based 
on the constructed fuzzy OWL ontologies in depth, 
including: 
• we first introduce the motivation of reasoning on 

fuzzy UML models with the constructed fuzzy 
OWL ontologies in detail; 

• we give formal definitions of the familiar reasoning 
tasks of fuzzy UML models, where several 
reasoning problems are added and some reasoning 
problems are redefined and studied in depth; 

• we reduce reasoning on fuzzy UML models to 
reasoning on the constructed fuzzy OWL 
ontologies, and give the proofs of correctness of the 
reduction methods. By reducing, the reasoning 
tasks of fuzzy UML models may be done by 
checking the reasoning problems of fuzzy OWL 
ontologies. Further, the reasoning problems of 
fuzzy OWL ontologies can be automatically 
checked by means of the existing fuzzy ontology 
reasoner DeLorean48. 

5.1. The Motivation of Reasoning on Fuzzy UML 
Models with the Constructed Fuzzy OWL 
Ontologies 

In the following we give a brief example of reasoning 
on fuzzy UML models, which can more directly 
illustrate that: (i) some reasoning tasks may usually 
occur in the fuzzy UML modeling activities; (ii) it is 
possible and meaningful to reason on fuzzy UML 
models with the constructed fuzzy OWL ontologies. 
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Example 3. Fig. 13 shows a simple fuzzy UML 
model FUML2 and its corresponding object instances 
(part of classes and object instances). Here, as 
mentioned in Sections 2.2 and 3.1: (i)  denotes the 
generalization relationship between fuzzy classes; (ii) 
disjointness and completeness constraints denote that 
two fuzzy classes Young-Employee and Old-Employee 
are disjoint and the union of them completely covers the 
superclass Employee. There are unsatisfiability and 
redundancy in the fuzzy UML model FUML2 since the 
following reasons: 
• Since Old-Employee and Young-Employee are 

disjoint, i.e., there is no instance which belongs to 
the two classes, we have {o1/0, o2/0} ∈ Old-
Employee. 

• Since Young-Employee is a subclass of Old-
Employee, i.e., for any object, the membership 
degree that it belongs to the subclass Young-
Employee is less than or equal to the membership 
degree that it belongs to the superclass Old-
Employee, we have {o1/≥0.9, o2/≥0.95, o1

’/0.6, 
o2

’/0.8} ∈ Old-Employee;  
• It is shown from (a)-(b) that the two instance sets of 

Old-Employee are conflictive. Therefore, we know 
that the instance set of Young-Employee is an empty 
set, because the empty set is the only set that can be 
at the same time disjoint from and contained in the 
class Old-Employee. That is, Young-Employee is 
unsatisfiable since it is an empty class. 

• Since Young-Employee is an empty class, and 
Employee is the union of Young-Employee and Old-
Employee, we know that Employee is equivalent to 
Old-Employee, i.e., there is redundancy in the fuzzy 
UML model.  

• The above cases may result in that other 
undesirable problems occur in a more complete 
fuzzy UML model. 

All the reasoning problems mentioned above may 
occur in the fuzzy UML modeling activities, and the 
burden of checking these problems is left to the 
designers, which is a complex and time-consuming task 
and may have some disadvantages such as a low 
reasoning efficiency and reliability. Therefore, it would 
be highly desirable to improve the ability of reasoning 
on fuzzy UML models. Based on the previous sections 
of this paper, a fuzzy UML model can be transformed 
into a fuzzy OWL ontology, and in the following we 
further make an attempt to resolve the problem of 
reasoning on fuzzy UML models by means of the 
reasoning mechanism of the constructed fuzzy OWL 
ontologies. 

5.2. The Reasoning Problems of Fuzzy UML 
Models 

Generally speaking, the familiar reasoning problems of 
fuzzy UML models include consistency, satisfiability, 
subsumption, and redundancy. Based on Refs. 30, 38, in 
the following we give formal definitions of the 
reasoning problems above in more detail, where some 
reasoning problems (such as consistency, satisfiability 
and redundancy) are redefined and studied in depth.  

Definition 7 (consistency of fuzzy UML models). 
As shown in Section 3.1, a fuzzy UML model may 
contain its structure information and its instance 
information (see Fig. 6 and Fig. 8). A fuzzy UML 
model is consistent, if the set of object instances 
satisfies all the constraints of the structure information. 

In particular, when no object instance exists, the 
consistency problem of the fuzzy UML model above is 
reduced to the satisfiability problem of the fuzzy UML 
model in Definition 8. 

Definition 8 (satisfiability of fuzzy UML models). 
When there are not object instances in a fuzzy UML 
model, the fuzzy UML model is satisfiable, if it admits 
at least one fuzzy UML instantiation (i.e., a set of object 
instances).  

If a fuzzy UML model is not satisfiable, the classes 
altogether are contradictory, i.e., it does not allow that 
any class can be populated without violating any of the 
requirements imposed by the structure information of 
the fuzzy UML model. This may be due to a design 
error or over-constraining. 

Definition 9 (satisfiability of fuzzy classes). A 
fuzzy class FC ∈ FCF in a fuzzy UML model FUML is 
satisfiable, if there is at least one fuzzy object 

 

 

Fig. 13. A simple fuzzy UML model FUML2. 
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state/instance FB of FUML mentioned in Definition 2 
such that FCFB ≠ ∅.  

A fuzzy class FC in a fuzzy UML model FUML is 
satisfiability, i.e., FUML admits a fuzzy object state in 
which FC has a non-empty set of objects. An 
unsatisfiable fuzzy class weakens the understandability 
of a fuzzy UML model, since the fuzzy class stands for 
an empty class, and thus, at the very least, it is 
inappropriately named. In this case, designers should 
modify or delete the fuzzy class to increase 
understandability. 

Definition 10 (subsumption of fuzzy classes). 
Given two fuzzy classes FC1 and FC2 in a fuzzy UML 
model FUML, if for each fuzzy object state FB of FUML, 
FC1

FB is a subset of FC2
FB (see Definition 3), then FC1 

is a subclass of FC2. 
Definition 10 denotes that a fuzzy class FC1 is a 

subclass of another fuzzy class FC2 if, for any object, 
the membership degree of it to FC1 is less than or equal 
to the membership degree of it to FC2. The class 
subsumption is the basis for a classification of all the 
classes in a fuzzy UML model.  

Definition 11 (redundancy of fuzzy UML models). 
A fuzzy UML model is redundant, if there is some class 
standing for an empty class, i.e., it is inappropriately 
named; or there are two equivalent fuzzy classes. 

In Definition 11, firstly, there is some class standing 
for an empty class, i.e., there is some unsatisfiable fuzzy 
class (see Definition 9). Secondly, we need to introduce 
the notion of equivalent fuzzy classes. As we have 
known, in the classical UML model, two classes are 
equivalent if they denote the same set of object 
instances. In a fuzzy UML model, however, an object 
may belong to a fuzzy class with membership degree of 
[0, 1], and thus two fuzzy classes may have same 
objects with same/different membership degrees. In this 
case, the notion of equivalent classes should be 
extended under fuzzy environment as follows. 

In a fuzzy UML model, we said that a fuzzy class 
FC1 is equivalent to another fuzzy class FC2, if at least 
one of the following conditions is satisfied: (i) two 
fuzzy classes have same objects with same membership 
degrees; (ii) two fuzzy classes do not have 
subclass/superclass relationship but they have same 
objects with different membership degrees. Note that, 
for case (i), when two fuzzy classes have same objects 
with same membership degrees, the two fuzzy classes 
are strictly equivalent. In this case, one of the fuzzy 

classes can be removed and replaced by another. For 
case (ii), let FC1 and FC2 be two fuzzy classes, and 
assume that there is an object FO belonging to the two 
fuzzy classes with different membership degrees 
uFC1(FO) ∈ (0, 1] and uFC2(FO) ∈ (0, 1]. At this 
moment, which one in FC1 and FC2 is the class of 
object FO depends on the following cases: if uFC1(FO) > 
uFC2(FO), then FC1 is considered as the class of object 
FO and we say FC1 fuzzily includes FC2, else FC2 is 
considered as the class of object FO and we say FC2 
fuzzily includes FC1. Correspondingly, the fuzzy class 
which is included by another fuzzy class is removed, 
and the fuzzy class which includes the removed fuzzy 
class is retained. 

The reasoning problems mentioned in Definitions 7-
11 may occur in the fuzzy UML modeling activities, 
and the following section will study how to reason on 
these problems of fuzzy UML models by means of the 
reasoning mechanism of the constructed fuzzy OWL 
ontologies. 

5.3. Reasoning on Fuzzy UML Models with the 
Constructed Fuzzy OWL Ontologies 

After transforming a fuzzy UML model into a fuzzy 
OWL ontology based on the previous sections, the 
following theorems allow us to reduce reasoning on the 
fuzzy UML model to reasoning on the fuzzy OWL 
ontology, so that the reasoning problems of the fuzzy 
UML model mentioned in Section 5.2 may be checked 
through the reasoning mechanism of the constructed 
fuzzy OWL ontology. 

Theorem 2 (consistency of fuzzy UML models). 
Given a fuzzy UML model FUML, and φ(FUML) is the 
constructed fuzzy OWL ontology according to the 
proposed approach in Section 4. The fuzzy UML model 
FUML is consistent iff φ(FUML) is consistent, i.e., the 
fuzzy OWL ontology instance is consistent w.r.t. the 
fuzzy OWL ontology structure. 

Based on Definitions 7 and 8, when there are not 
object instances in a fuzzy UML model (i.e., the 
constructed fuzzy OWL ontology contains only the 
fuzzy OWL ontology structure), the consistency 
problem of the fuzzy UML model (Theorem 2) will be 
reduced to the satisfiability problem of the fuzzy UML 
model (see Theorem 3). 

Theorem 3 (satisfiability of fuzzy UML models). 
Given a fuzzy UML model FUML (only contains the 
structure information), and ϕ(FUML) is the constructed 
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fuzzy OWL ontology according to the proposed 
approach in Section 4. FUML is satisfiable iff ϕ(FUML) is 
satisfiable, i.e., there is a fuzzy interpretation FI which 
is a model of ϕ(FUML). 

Theorems 2 and 3 are the straightforward 
consequences of Definitions 7 and 8, and thus their 
proofs are omitted here. 

Theorem 4 (satisfiability of fuzzy classes). Given a 
fuzzy UML model FUML, ϕ(FUML) is the constructed 
fuzzy OWL ontology according to the proposed 
approach in Section 4, and FC is a fuzzy class in FUML. 
FC is satisfiable in FUML iff ϕ(FUML) ⊭ ϕ(FC) ⊑ ⊥. 
Proof. “⇒”: If FC is satisfiable, then there is a legal 
fuzzy object state FB with FCFB≠ ∅. By part 1 of 
Theorem 1, αF(FB) is a model of ϕ(FUML) with FCFB 
= α ( )( ( ))FCϕ F FB , so α ( )( ( ))FCϕ F FB  ≠ ∅. That is, ϕ(FUML) 
⊭ ϕ(FC) ⊑ ⊥. 

“⇐”: If ϕ(FUML) ⊭ ϕ(FC) ⊑ ⊥, then ϕ(FC) is 
consistent in ϕ(FUML), i.e., there is a fuzzy 
interpretations FI of ϕ(FUML) with (ϕ(FC))FI ≠ ∅. By 
part 2 of Theorem 1, βF(FI) is a legal fuzzy object state 
for FUML with (ϕ(FC))FI = β ( )FC F FI , so β ( )FC F FI ≠ ∅. 
That is, FC is satisfiable.                                              □ 

Theorem 5 (subsumption of fuzzy classes). Given 
a fuzzy UML model FUML, ϕ(FUML) is the constructed 
fuzzy OWL ontology according to the proposed 
approach in Section 4, and FC1 and FC2 are two fuzzy 
classes in FUML. FC1 is a subclass of FC2 in FUML iff 
ϕ(FUML) ⊨ ϕ(FC1) ⊑ ϕ(FC2). 
Proof. “⇒”: If ϕ(FUML) ⊭ ϕ(FC1) ⊑ ϕ(FC2), i.e., 
ϕ(FC1) ⊓ ¬ϕ(FC2) is consistent in ϕ(FUML), then there 
is a fuzzy interpretations FI of ϕ(FUML) with (ϕ(FC1) ⊓ 
¬ϕ(FC2))FI ≠ ∅, i.e., ∃d. d ∈ (ϕ(FC1))FI and d ∉ 
(ϕ(FC2))FI. By part 2 of Theorem 1, βF(FI) is a legal 
fuzzy object state for FUML with (ϕ(FC1))FI = 

β ( )
1FC F FI and (ϕ(FC2))FI = β ( )

2FC F FI , i.e., ∃d. d ∈ 
β ( )

1FC F FI and d ∉ β ( )
2FC F FI . That is, FC1 is not a 

subclass of FC2, and thus there is a contradiction, i.e., 
ϕ(FUML) ⊨ ϕ(FC1) ⊑ ϕ(FC2). 

“⇐”: If FC1 is not a subclass of FC2, then there is a 
legal fuzzy object state FB for FUML such that c ∈ 
FC1

FB and c ∉ FC2
FB. By part 1 of Theorem 1, αF(FB) 

is a model of ϕ(FUML) with FC1
FB = α ( )

1( ( ))FCϕ F FB  and 
FC2

FB = α ( )
2( ( ))FCϕ F FB , i.e., c ∈ α ( )

1( ( ))FCϕ F FB  and c ∉ 
α ( )

2( ( ))FCϕ F FB . That is, ϕ(FUML) ⊭ ϕ(FC1) ⊑ ϕ(FC2), 
and thus there is a contradiction, i.e., FC1 is a subclass 
of FC2.                                                                 □ 

Theorem 6 (redundancy of fuzzy UML models). 
Given a fuzzy UML model FUML, ϕ(FUML) is the 
constructed fuzzy OWL ontology according to the 
proposed approach in Section 4, and FC, FC1 and FC2 
are three fuzzy classes in FUML. FUML is redundant if 
and only if at least one of the following conditions is 
satisfied: (i) ϕ(FUML) ⊨ ϕ(FC) ⊑ ⊥; (ii) ϕ(FUML) ⊨ 
ϕ(FC1) ≡ ϕ(FC2); (iii) ϕ(FUML) ⊭ ϕ(FC1) ⊑ ϕ(FC2), 
ϕ(FUML) ⊭ ϕ(FC2) ⊑ ϕ(FC1), and ϕ(FC1) and ϕ(FC2) 
contain same individuals. 

Note that, as mentioned in Definition 11, a fuzzy 
UML model is redundant, if there is some class 
standing for an empty class or there are two equivalent 
fuzzy classes. Firstly, for the first condition, a class is 
an empty class, i.e., the class is unsatisfiable, which can 
be reasoned by checking whether ϕ(FUML) ⊨ ϕ(FC) ⊑ 
⊥ according to Theorem 4. Secondly, for the second 
condition, which can be partitioned into the following 
two cases: (a) when two fuzzy classes have same 
individuals with same membership degrees, the 
equivalence problem of fuzzy classes can be reasoned 
by checking whether ϕ(FUML) ⊨ ϕ(FC1) ≡ ϕ(FC2), i.e., 
ϕ(FUML) ⊨ ϕ(FC1) ⊑ ϕ(FC2) and ϕ(FUML) ⊨ ϕ(FC2) ⊑ 
ϕ(FC1) in Theorem 5; (b) when two fuzzy classes do not 
have subclass/superclass relationship but they have 
same objects with different membership degrees, it 
cannot be handled directly by checking whether ϕ(FUML) 
⊨ ϕ(FC1) ≡ ϕ(FC2). In this case, the constraint that two 
fuzzy classes do not have subclass/superclass 
relationship can be reasoned by checking whether 
ϕ(FUML) ⊭ ϕ(FC1) ⊑ ϕ(FC2) and ϕ(FUML) ⊭ ϕ(FC2) ⊑ 
ϕ(FC1) in Theorem 5. Furthermore, whether two fuzzy 
classes contain same objects can be done by detecting 
whether ϕ(FC1) and ϕ(FC2) have the same individuals, 
which can be checked by the retrieval reasoning service 
of fuzzy ontologies48. Theorem 6 is the straightforward 
consequence of Definition 11, and the proof is hereby 
omitted here. 

In summary, Fig. 14 describes the process of 
reasoning on the fuzzy UML model FUML1 in Section 
3.1.3 based on the approaches proposed in the previous 
sections of this paper: 
• Firstly, according to the construction approach of 

fuzzy OWL ontologies proposed in Section 4, the 
fuzzy UML model FUML1 and its instantiation (see 
Section 3.1.3) can be transformed into the fuzzy 
OWL ontology ϕ(FUML1) as have been shown in 
Fig. 9 and Fig. 10.  

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    466



Fu Zhang and Z. M. Ma 
 

• Then, based on the reasoning reduction approaches 
in this section, the reasoning tasks of the fuzzy 
UML model FUML1 (e.g., consistency, satisfiability, 
subsumption, and redundancy as mentioned in 
Section 5.2) may be checked by detecting the 

reasoning problems of the constructed fuzzy OWL 
ontology ϕ(FUML1). Finally, reasoning on the fuzzy 
OWL ontology ϕ(FUML1) can be automatically 
handled by means of the existing fuzzy ontology 
reasoner DeLorean48. 

 
So far, based on the previous sections, it is possible 

to establish the correspondences between fuzzy UML 
models and fuzzy ontologies:  
• Based on Section 3, fuzzy UML models and fuzzy 

ontologies can be represented and interpreted by 
their respective formal definitions and semantic 
interpretation methods; 

• On the basis of the formal definitions above and 
Section 4, fuzzy ontologies can be constructed 
from fuzzy UML models, i.e., fuzzy UML models 
(including the structure and instance information) 
can be transformed into the corresponding fuzzy 
ontologies. Constructing fuzzy ontologies from 
fuzzy UML models may facilitate the development 
of the Semantic Web fuzzy ontologies.  

• After constructing fuzzy ontologies from fuzzy 
UML models, the constructed fuzzy ontologies may 
be useful for reasoning on fuzzy UML models as 

shown in Section 5. By reducing the reasoning 
tasks of a fuzzy UML model to the reasoning 
problems of the constructed fuzzy ontology, the 
reasoning tasks of the fuzzy UML model may be 
checked by detecting automatically the reasoning 
problems of the constructed fuzzy ontology by 
means of the existing fuzzy ontology reasoner 
DeLorean48. 

6. Related Work 

How to construct classical/fuzzy ontologies has become 
a key technology to enable the Semantic Web, and kinds 
of methods and tools were developed to construct 
crisp/fuzzy ontologies. The following categories of 
approaches are related to our work according to their 
focuses, including classical ontology construction, fuzzy 

 

Fig. 14. Reasoning on the fuzzy UML model FUML1 in Section 3.1.3 with the constructed fuzzy OWL ontology ϕ(FUML1). 

Reasoner
DeLorean

Reducing 

Constructing 

The fuzzy OWL ontology ϕ(FUML1) constructed 
from the fuzzy UML model FUML1 (see Fig. 9 and 
Fig. 10): 
Class(Young-Employee partial Employee) ; 
Class(Old-Employee partial Employee) ; 
EquivalentClasses(ϕ(Employee), 
unionOf(ϕ(Young-Employee), ϕ(Old-Employee))) ; 
DisjointClasses(Young-Employee, Old-Employee) ; 
Class(Old-Employee partial restriction(invof_Uby 
allValuesFrom(Use))) ; 
Class(New-Computer partial restriction(invof_Uof 
allValuesFrom(Use))) ; 
… 
Individual(o1 type(Young-Employee) [⋈' 0.9]). 

Reasoning tasks of the fuzzy UML model 
FUML1: 
− Is the class Young-Employee satisfiable? 
− Is New-Computer the subclass of Computer? 
− … 
− Is the model FUML1 consistent? 

The fuzzy UML model FUML1 including the 
structure and instance information (see 
Section 3.1.3 in detail): 
FUML1=(L

F
, ≼

F
, att

F
, …, card

F
, mult

F
, mult'

F
) 

FC
F
={Employee, Computer, …, Keyboard} 

FA
F
={ID, Name, …, ComID, Brand, Year} 

FR
F
={Uby, Uof} 

… 
att

F
(New-Computer) = [ComID: String, Brand: 

String, Year: Integer, u: Real] 
≼

F
(Computer) = New-Computer 

ass
F
(Use) = [Uby : Old-Employee, Uof : New-

Computer] 
card

F
(Old-Employee, Use, Uby) = (1, 1) 

card
F
(New-Computer, Use, Uof) = (1, 2) 

Reasoning problems of the constructed fuzzy 
OWL ontology ϕ(FUML1): 
− ϕ(FUML1) ⊭ ϕ(Young-Employee) ⊑ ⊥? 
− ϕ(FUML1) ⊨ ϕ(New-Computer) ⊑ ϕ(Computer)? 
− … 
− Is the ϕ(FUML1) consistent? 
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UML models and fuzzy ontologies, and fuzzy ontology 
construction: 
(i)  How to construct classical ontologies: 

Regarding how to construct classical ontologies, 
Table 4 shows some approaches for constructing 
ontologies from various data sources, including UML 
model. It should be noted that Table 4 does not cover all 
publications in the research area. For a comprehensive 
review of ontology construction, please refer to Refs. 4, 
49, and 50. Moreover, less research on how to reason on 
UML models with the Semantic Web knowledge 
representation techniques, especially ontologies, has 
been done. There are several works51,52 establishing 
correspondences between UML models and description 
logics. However, the above research works were not 
sufficient for handling imprecise and uncertain 
information that is commonly found in real-world 
applications. 

(ii) How to represent imprecise and uncertain 
information in UML models and ontologies: 

Regarding how to modeling imprecise and uncertain 
information in UML models, several works have been 
done in extending UML models based on the fuzzy set 
theory32,33,34,35,39,59. How to apply fuzzy UML for 
uncertain systems modeling is investigated32,59. Without 
including formal representations, different levels of 
fuzziness were introduced into the UML model in Refs. 
33, 34 and the mappings of the fuzzy UML model into 
the fuzzy XML model and the fuzzy relational schema 
were hereby developed. An approach for mapping 
activity diagram in fuzzy UML to fuzzy Petri net was 
presented35. How to integrate the fuzziness into the 
fuzzy UML model was investigated39. A comprehensive 
literature review of fuzzy data models can be found in 
Ref. 60. 

Also, in order to represent and reason on imprecise 
and uncertain information in ontologies, some 

approaches have been developed to characterize or 
define fuzzy ontologies. Calegari18,19 integrated fuzzy 
logic in ontologies, and developed a plug-in for the 
KAON Project in order to introduce fuzziness in 
ontologies. Lee44 presented a four-layered fuzzy 
ontology and applied it to news summarization. 
Sanchez23 introduced a fuzzy ontology structure from 
the aspects of lexicon and knowledge base. Lam21 
proposed a fuzzy ontology map by extending the crisp 
ontology with the fuzzy theory and graph theory. The 
comprehensive reviews on fuzzy ontologies and some 
relevant applications can be found in Ref. 46. 
(iii) How to construct fuzzy ontologies: 

Regarding the requirement of constructing fuzzy 
ontologies, some efforts have been made to construct 
fuzzy ontologies from various data sources. Here, we 
first briefly summarize some work about the 
construction of fuzzy ontologies from data sources such 
as fuzzy narrower term relations and fuzzy context. 
Then, we introduce several approaches for constructing 
fuzzy ontologies from fuzzy database models. Finally, 
we introduce the most similar work in Ref. 30 and 
provide detailed comparisons between it and our work.  

In order to construct fuzzy ontologies from some 
data sources, Widyantoro29 described a PASS 
(Personalized Abstract Search Services) system and an 
automatic technique to build a fuzzy ontology of term 
associations for query refinement in the system, where 
the fuzzy ontology construction is grouped into two 
stages. The first stage is to create a full ontology from 
fuzzy narrower term relations, and the full fuzzy 
ontology is then pruned by eliminating unnecessary 
relations in the second stage. Quan28 proposed a 
framework known as FOGA (Fuzzy Ontology 
Generation frAmework) that can automatically generate 
a fuzzy ontology from uncertainty data based on Formal 
Concept Analysis (FCA) theory. De Maio25 presented 
an approach for automatic generation of a fuzzy 
ontology, where the approach gave the mapping steps 
for translating the fuzzy lattice generated by Formal 
Concept Analysis (FCA) theory into an OWL based 
ontology. Moreover, Gu61 proposed a reasoning-enabled 
general fuzzy ontology based on the observation that 
three general fuzzy relations (i.e., fuzzy instance 
relation, fuzzy concept relation, and fuzzy concept base 
relation) exist widely among the real world, and also 
introduced a reference process for building these 
general fuzzy relations in fuzzy ontology applications. 

Table 4.  Survey of classical ontology 
construction approaches. 

 Different types of inputs 
Text, Dictionary, Knowledge base  
(see Refs. 4, 49, and 50 for overviews);
ER model5,53;  
Relational database model7,54,55;  
Object-oriented database model56;  
XML data model57,58; 

Ontology 
construction 

UML model6,11,12,13,14. 
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Abulaish62 presented a fuzzy ontology generation 
framework in which concept descriptors and inter-
concept relations are represented as fuzzy relations. This 
work has been integrated with a text-mining system 
such that, starting with a seed ontology a domain 
ontology can be extended with new knowledge 
extracted from text documents. In addition, Inyaem26 
proposed a methodology for constructing terrorism 
fuzzy ontology for event extraction work using Web 
Ontology Language (OWL). Ceravolo20 presented a way 
of building specification of a shared conceptualization 
proceeding in a bottom-up fashion, i.e., defining 
concepts as clusters of concrete objects, where the 
bottom-up ontologies are based on discovery of implicit 
part-whole and is-a relations. Also, the authors 
discussed how metadata based on bottom-up ontologies 
can be associated with a flexible degree of trust by 
collecting user feedback. Chen63 proposed an automatic 
fuzzy ontology generation approach from fuzzy context, 
where fuzzy formal concept analysis and fuzzy concept 
hierarchy structure are adopted to automatically 
generate primitive fuzzy ontology, and a complete fuzzy 
ontology model can be generated through the extension 
of primitive ontology.  

Besides, there are several approaches for 
constructing fuzzy ontologies from fuzzy database 
models. A fuzzy ontology construction approach from 
fuzzy relational models was proposed in Ref. 27, where 
the authors first implicitly transformed the fuzzy 
relational schema into the fuzzy ER model by means of 
reverse engineering, and then transformed the fuzzy ER 
model and data instances into the fuzzy ontology 
structure and fuzzy RDF data model, respectively. Also, 
an ontology system was proposed in Ref. 64 to represent 
the fuzzy information of a fuzzy relational database. 
Owing to the formality of this representation, fuzzy 
metaknowledge base access is more accessible to users 
or applications which use the ontology as an interface 
for access. Moreover, a fuzzy ontology construction 
approach from fuzzy ER models was developed in Ref 
45, where the authors transformed the fuzzy ER model 
and the corresponding data instances into the fuzzy 
ontology. How to construct fuzzy ontologies from fuzzy 
object-oriented database models was investigated in Ref. 
31. In addition, a fuzzy description logic approach for 
representing and reasoning on fuzzy UML models was 
presented in Ref. 38. All of the work above gives us 
good hints for developing our approach in this paper, 

but the goals and approaches of the work above are 
different comparing to our research, and our aim in this 
paper is to develop a formal and automatic approach for 
constructing fuzzy ontologies from fuzzy UML models 
as introduced in the previous sections. 

In addition, how to construct fuzzy ontologies from 
fuzzy UML models was initially investigated in Ref. 30. 
The current paper differs from Ref. 30 in three major 
aspects: (i) Regarding the formalization problems of 
fuzzy UML models and fuzzy ontologies, this paper gives 
the semantic interpretation method of fuzzy UML 
models (see Section 3.1.2 in this paper), which was 
missed in Ref. 30; And this paper proposes a more 
complete formal definition of fuzzy UML models, where 
this paper considers both the structural and dynamic 
aspects of fuzzy UML models and adds some new 
functions into the formal definition for capturing some 
important features of fuzzy UML models (see 
Definition 1 in this paper); Moreover, this paper gives a 
formal definition of fuzzy ontologies including the fuzzy 
ontology structure and the fuzzy ontology instance, and 
the fuzzy ontology instance (i.e., a set of fuzzy 
individual axioms) is missed in Ref. 30; (ii) Regarding 
the construction of fuzzy ontologies from fuzzy UML 
models (see Section 4 in this paper), first, this paper 
proposes a complete fuzzy ontology construction 
approach which considers both the structural and 
dynamic aspects of fuzzy UML models, where the 
dynamic aspect of fuzzy UML models was not 
discussed in Ref. 30, and the proof of correctness of the 
construction approach is given in this paper but missed 
in Ref. 30; Second, the construction approaches from 
fuzzy UML models to fuzzy ontologies at instance level 
are different in this paper and Ref. 30, the work in Ref. 
30 transformed the structure information of a fuzzy 
UML model into a fuzzy ontology structure but 
transformed the object instance information of the fuzzy 
UML model into a fuzzy RDF data model, where the 
fuzzy ontology structure (i.e., a set of fuzzy class and 
property axioms) and the fuzzy ontology instance (i.e., 
the fuzzy RDF data model) were not written using the 
same fuzzy ontology representation syntax, but this 
paper transforms the structure and instance information 
of a fuzzy UML model into the fuzzy ontology structure 
and instance using the same syntax, and both of the 
fuzzy ontology structure and instance are represented as 
the forms of fuzzy axioms, which may be more useful 
for the reasoning of fuzzy UML models and the access 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    469



Fu Zhang and Z. M. Ma 
 

to and evaluation of fuzzy ontologies; Third, the 
prototype construction tool was developed in this paper 
and was missed in Ref. 30; (iii) Regarding the problem 
of reasoning on fuzzy UML models with the constructed 
fuzzy ontologies, the work in Ref. 30 only briefly 
discussed and gave several theorems, and the detailed 
reasoning procedures of fuzzy UML models were 
missed in Ref. 30. Based on the initial idea in Ref. 30, 
this paper well introduces the motivation of reasoning 
on fuzzy UML models with the constructed fuzzy 
ontologies, gives the complete formal definitions of 
reasoning problems of fuzzy UML models (where 
several reasoning problems are added and some 
reasoning problems are redefined and studied in depth), 
and proposes the reasoning methods and gives the 
proofs of correctness of the reasoning methods (see 
Section 5 in this paper).  

Based on the observations above, so far, to our best 
knowledge, there is no complete report on constructing 
fuzzy ontologies from fuzzy UML models and 
reasoning on fuzzy UML models with the constructed 
fuzzy ontologies. 

7. Conclusions 

We proposed a formal approach and developed an 
automated tool for constructing fuzzy ontologies from 
fuzzy UML models, and further studied how the 
constructed fuzzy ontologies may be useful for 
reasoning on fuzzy UML models. Firstly, a complete 
formal definition of fuzzy UML models was proposed. 
Then, we proposed an approach for constructing fuzzy 
ontologies from fuzzy UML models, i.e., transforming 
fuzzy UML models (including the structure and instance 
information of fuzzy UML models) into fuzzy 
ontologies. Furthermore, following the proposed 
approach, we implemented a prototype transformation 
tool FUML2FOnto, which can automatically construct 
fuzzy ontologies from fuzzy UML models. Finally, how 
to reason on fuzzy UML models based on the 
constructed fuzzy ontologies was investigated, and it 
turned out that the reasoning tasks of fuzzy UML 
models can be checked by the reasoning mechanism of 
the fuzzy ontologies.  

Summarizing, given a fuzzy UML model 
represented in the form of Definition 1, it can be 
transformed into a fuzzy ontology based on the 
proposed approach in the paper. Further, the constructed 
fuzzy ontology may be used to reason on the fuzzy 

UML model by means of the reasoning mechanism of 
the fuzzy ontology. It should be noted that, although 
several works investigated fuzzy UML models by 
considering different features of fuzzy UML models, 
there is not a standard definition of fuzzy UML models. 
We do not expect our definition of fuzzy UML models 
to become a standard now, but it considers most of 
general and important features of fuzzy UML models as 
usually mentioned in the literature. The formalization in 
fuzzy ontologies of fuzzy UML models may facilitate 
the development of the Semantic Web fuzzy ontologies 
and also be considered as the basic steps towards 
developing intelligent systems that provide computer-
aided support to reason on fuzzy UML models. 

As far as future work, we intend to test and evaluate 
the construction approach and tool with more and 
complex examples. Also, we aim at developing other 
approaches of constructing classical/fuzzy ontologies, 
such as constructing fuzzy ontologies from fuzzy 
object-relational database models65. 

Acknowledgements 

The authors wish to thank the anonymous referees for their 
valuable comments and suggestions, which improved the 
technical content and the presentation of the paper. The work 
is supported by National Natural Science Foundation of China 
(61073139, 60873010, and 61202260) and by Program for 
New Century Excellent Talents in University (NCET-05-0288). 

References 

1. T. Berners-Lee, J. Hendler and O. Lassila, The Semantic 
Web, Scientific American 284(5) (2001) 34–43. 

2. T. Berners-Lee, W. Hall, J. Hendler, N. Shadbolt and D. 
Wietzner, Creating a science of the Web, Science 313(11) 
(2006) 769–771. 

3. E. K. Jacob, Ontologies and the semantic web, Bulletin of 
the American Society for Information Science and 
Technology 29(4) (2003) 19–22. 

4. A. Maedche and S. Steffen, Ontology Learning for the 
Semantic Web, IEEE Intelligent Systems 16(2) (2001) 
72–79. 

5. M. Fahad, ER2OWL: Generating OWL Ontology from 
ER Diagram, in Proc. 5th Int. Conf. Intelligent 
Information Processing (Beijing, China, 2008), pp. 28–
37. 

6. K. Baclawski, M. Kokar and P. Kogut, et al, Extending 
UML to Support Ontology Engineering for the Semantic 
Web. In Proc. 4th Int. Conf. on UML (Toronto, Canada, 
2001), pp. 342–360. 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    470



 Construction of Fuzzy Ontologies from Fuzzy UML Models 
 

7. Y. An, A. Borgida and J. Mylopoulos, Refining Semantic 
Mappings from Relational Tables to Ontologies, In Proc. 
of 2nd International workshop on Semantic Web and 
Databases (Toronto, Canada, 2004), pp. 84–90. 

8. T. A. Halpin, Metaschemas for ER, ORM and UML data 
models: a comparison, Journal of Database Management 
13(2) (2002) 20–30. 

9. G. Booch, J. Rumbaugh and I. Jacobson, The Unified 
Modeling Language User Guide (Addison-Welsley 
Longman, Inc, 1998). 

10. Object Management Group (OMG), Unified Modeling 
Language (UML), Version 1.5, Technical report, OMG, 
2003, www.omg.org. 

11. S. Cranefield, UML and the Semantic Web. In Proc. 
International Semantic Web Working Symposium (Palo 
Alto, California, 2001), pp. 113–130. 

12. D. Djurić, D. Gašević and V. Devedžić, Ontology 
Modeling and MDA, Journal on Object Technology 4(1) 
(2005) 109–128. 

13. K. Falkovych, M. Sabou and H. Stuckenschmidt, UML 
for the Semantic Web: Transformation-Based 
Approaches, in Knowledge Transformation for the 
Semantic Web, eds. B. Omelayenko and M. Klein (IOS 
Press, 2003), pp. 92–106. 

14. H. S. Na, O. H. Choi and J. E. Lim, A Method for 
Building Domain Ontologies based on the 
Transformation of UML Models, in Proc. 4th Int. Conf. 
Software Engineering Research, Management and 
Applications (Seattle, Washington, USA, 2006), pp. 332–
338. 

15. J. Galindo (eds.), Handbook of Research on Fuzzy 
Information Processing in Databases (Information 
Science Reference, Hershey, 2008). 

16. G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: 
Theory and Applications (Prentice-Hall, Englewood, NJ, 
1995). 

17. T. Lukasiewicz and U. Straccia, Managing uncertainty 
and vagueness in description logics for the Semantic Web, 
Web Semantics: Science. Services and Agents on the 
World Wide Web 6(4) (2008) 291–308. 

18. S. Calegari and D. Ciucci, Fuzzy ontology, fuzzy 
description logics and fuzzy-owl, in Proc. of WILF 2007 
(Camogli, Italy, 2007), pp. 118–126. 

19. S. Calegari and D. Ciucci, Integrating fuzzy logic in 
ontologies, in Proc. 9th International Conference on 
Enterprise Information Systems (Setúbal, Portugal, 2006), 
pp. 66–73. 

20. P. Ceravolo, A. Corallo and E. Damiani, et al, Bottom-up 
Extraction and Maintenance of Ontology-based Metadata, 
in E. Sanchez: Fuzzy Logic and the Semantic Web 
(Elsevier, Amsterdam, 2006), pp. 265–282. 

21. T. H. W. Lam, Fuzzy ontology map-a fuzzy extension of 
the hard-constraint ontology, in Proc. of 5th the 
IEEE/WIC/ACM International Conference on Web 
Intelligence (Hong Kong, China, 2006), pp. 506–509. 

22. D. Parry, Fuzzy ontologies for information retrieval on 
the WWW, in E. Sanchez: Fuzzy Logic and the Semantic 
Web (Elsevier, Amsterdam, 2006), pp. 21–48. 

23. E. Sanchez and T. Yamanoi, Fuzzy ontologies for the 
semantic web, in Proc. 7th International Conference on 
Query Answering Systems (Milan, Italy, 2006), pp. 691–
699. 

24. C. Thomas and A. Sheth, On the Expressiveness of the 
Languages for the Semantic Web-Making a Case for 'A 
Little More', in E. Sanchez: Fuzzy Logic and the 
Semantic Web (Elsevier, Amsterdam, 2006), pp. 3–20. 

25. C. De Maio, G. Fenza, V. Loia and S. Senatore, Towards 
an Automatic Fuzzy Ontology Generation, In Proc. of the 
2009 IEEE International Conference on Fuzzy Systems 
(Jeju Island, Korea, 2009), pp. 1044–1049. 

26. U, Inyaem, P. Meesad, C. Haruechaiyasak and D. Tran, 
Construction of Fuzzy Ontology-Based Terrorism Event 
Extraction, in Proc. of the third International Conference 
on Knowledge Discovery and Data Mining (Phuket, 
Thailand, 2010), pp. 391–394. 

27. Z. M. Ma, Y. Lv and L. Yan, A Fuzzy Ontology 
Generation Framework from Fuzzy Relational Databases, 
Int. J. Semantic Web Information Systems 4(3) (2008) 1–
15. 

28. T. T. Quan, S. C. Hui, A. C. M. Fong and T. H. Cao, 
Automatic fuzzy ontology generation for Semantic Web, 
IEEE Transaction on Knowledge and Data Engineering 
18(6) (2006) 842–856. 

29. D. H. Widyantoro and J. Yen, A Fuzzy Ontology-based 
Abstract Search Engine and Its User Studies, in Proc. of 
the 10th IEEE International Conference on Fuzzy 
Systems (Melbourne, Australia, 2001), pp. 1291–1294. 

30. F. Zhang, Z. M. Ma, J. Cheng, X. Meng, Fuzzy Semantic 
Web Ontology Learning from Fuzzy UML Model, in 
Proc. of the 18th ACM Conference on Information and 
Knowledge Management (Hong Kong, China, 2009), pp. 
1007–1016. 

31. F. Zhang, Z. M. Ma, G. Fan and X. Wang, Automatic 
Fuzzy Semantic Web Ontology Learning from Fuzzy 
Object-Oriented Database Model, in Proc. International 
Conference on Database and Expert Systems 
Applications (Bilbao, Spain, 2010), pp. 16–30. 

32. A. Haroonabadi and M. Teshnehlab, Behavior Modeling 
in Uncertain Information Systems by Fuzzy-UML, 
International Journal of Soft Computing 4(1) (2009) 32–
38. 

33. Z. M. Ma and L. Yan, Fuzzy XML data modeling with 
the UML and relational data models, Data & Knowledge 
Engineering 63(3) (2007) 970–994. 

34. Z. M. Ma, F. Zhang and L. Yan, Fuzzy information 
modeling in UML class diagram and relational database 
models, Applied Soft Computing 11(6) (2011) 4236–4245. 

35. H. Motameni, A. Movaghar, I. Daneshfar, H. Nemat 
Zadeh and J. Bakhshi, Mapping to Convert Activity 
Diagram in Fuzzy UML to Fuzzy Petri Net, World 
Applied Sciences Journal 3(3) (2008) 514–521. 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    471



Fu Zhang and Z. M. Ma 
 

36. L A. Zadeh, Fuzzy sets, Information and Control 8(3) 
(1965) 338–353. 

37. L A. Zadeh, Fuzzy sets as a basis for a theory of 
possibility, Fuzzy Sets and Systems 1(1) (1978) 3–28. 

38. Z. M. Ma, F. Zhang, L. Yan and J. Cheng, Representing 
and reasoning on fuzzy UML models: A description logic 
approach, Expert Systems with Applications 38(3) (2011) 
2536–2549. 

39. M. A. Sicilia, E. Garcia, J. A. Gutierrez, Integrating 
fuzziness in object oriented modeling language: towards 
a fuzzy-UML, in Proc. of International Conference on 
Fuzzy Sets Theory and its Applications (Liptovský Ján, 
The Slovak Republic, 2002), pp. 66–67. 

40. OWL: Ontology Web Language, http://www.w3.org/ 
2004/OWL/ 

41. G. Stoilos, G. Stamou, V. Tzouvaras, J. Z. Pan and I. 
Horrocks, Fuzzy OWL: Uncertainty and the Semantic 
Web, in Proc. International Workshop of OWL: 
Experiences and Directions (Galway, Ireland, 2005), pp. 
80–89. 

42. G. Stoilos, G. Stamou and J. Z. Pan, Fuzzy extensions of 
OWL: Logical properties and reduction to Fuzzy 
Description Logics, Int. J. of Approximate Reasoning 51 
(2010) 656–679. 

43. U. Straccia, Towards a fuzzy description logic for the 
semantic Web, in Proc. of the 2nd European Semantic 
Web Conf. (Heraklion, Crete, 2005), pp. 167–181. 

44. C. S. Lee, Z. W. Jian and L. K. Huang, A fuzzy ontology 
and its application to news summarization, IEEE 
Transactions on Systems, Man and Cybernetics Part B 
35(5) (2005) 859–880. 

45. Z. M. Ma, F. Zhang, L. Yan, Y. Lv, Formal semantics-
preserving translation from fuzzy ER model to fuzzy 
OWL DL ontology, Web Intelligence and Agent Systems: 
An International Journal 8(4) (2010) 397–412. 

46. F. Bobillo, Managing Vagueness in Ontologies, PhD 
Dissertation, University of Granada, Spain, 2008. 

47. B. Oliboni and G. Pozzani, An XML Schema for 
Managing Fuzzy Documents, Technical report, 
Department of Computer Science, University of Verona, 
Italy, May 2008. 

48. F. Bobillo, M. Delgado and J. Gomez-Romero, DeLorean: 
A Reasoner for Fuzzy OWL 2, Expert Systems with 
Applications 39(1) (2012) 258–272. 

49. O. Corcho, M. Fernández-López and A. Gómez-Pérez, 
Methodologies, tools and languages for building 
ontologies. Where is their meeting point?, Data & 
Knowledge Engineering 46 (2003), 41–64. 

50. L. Zhou, Ontology learning: state of the art and open 
issues, Information Technology and Management 8(3) 
(2007) 241–252. 

51. D. Berardi, D. Calvanese and G. De Giacomo, Reasoning 
on UML class diagrams, Artificial Intelligence 168(1/2) 
(2005) 70–118. 

52. A. Calı`, D. Calvanese, G. De Giacomo and M. Lenzerini, 
Reasoning on UML Class Diagrams in Description 
Logics, in Proc. of IJCAR Workshop on Precise 

Modelling and Deduction for Object-Oriented Software 
Development (Siena, Italy, 2001), pp. 15–28. 

53. S. R. Upadhyaya and P. S. Kumar, ERONTO: A Tool for 
Extracting Ontologies from Extended E/R Diagrams, in 
Proc. 20th Annual ACM Symposium on Applied 
Computing (Santa Fe, New Mexico, 2005), pp. 666–670. 

54. I. Astrova, Reverse engineering of relational database to 
ontologies, in Proc. of the ESWC 2004 (Heraklion, 
Greece, 2004), pp. 327–341. 

55. L. Lubyte and S. Tessaris, Automatic extraction of 
ontologies wrapping relational data sources, in Proc. of 
20th International Conference on Database and Expert 
Systems Applications (Linz, Austria, 2009), pp. 128–142. 

56. F. Zhang, Z. M. Ma, X. Wang and Y. Wang, Formal 
approach and automated tool for constructing ontology 
from object-oriented database model, in Proc. of the 19th 
ACM Conference on Information and Knowledge 
Management (Toronto, Ontario, Canada, 2010), pp. 
1329–1332. 

57. Y. An, A. Borgida and J. Mylopoulos, Constructing 
Complex Semantic Mappings between XML Data and 
Ontologies, in Proc. of 4th International Semantic Web 
Conference (Galway, Ireland, 2005), pp. 6–20. 

58. T. Rodrigues, P. Rosa and J. Cardoso, Mapping XML to 
existing OWL Ontologies, in Proc. Int. Conf. on 
WWW/Internet 2006 (Murcia, Spain, 2006), pp. 72–77. 

59. A. Haroonabadi and M. Teshnehlab, Applying Fuzzy-
UML for Uncertain Systems Modeling, in First Joint 
Congress on Fuzzy and Intelligent Systems (Mashhad, 
Iran, 2007), pp. 32–38. 

60. Z. M. Ma and L. Yan, A Literature Overview of Fuzzy 
Conceptual Data Modeling, Journal of Information 
Science and Engineering 26(2) (2010) 427–441. 

61. H. Gu, H. Lv, J. Gao and J. Shi, Towards a General 
Fuzzy Ontology and Its Construction, in Proc. of ISKE a 
part of series: Advances in intelligent system research 
(Chengdu, China, 2007), pp. 409–414 . 

62. M. Abulaish and L. Dey, A fuzzy ontology generation 
framework for handling uncertainties and non-uniformity 
in domain knowledge description, in Proc. of the 
International Conference on Computing: Theory and 
Applications (Kolkata, India, 2007), pp. 287–293. 

63. W. Chen, Q. Yang, L. Zhu and B. Wen, Research on 
Automatic Fuzzy Ontology Generation from Fuzzy 
Context, in Proc. of the 2009 Second International 
Conference on Intelligent Computation Technology and 
Automation (Zhangjiajie, China, 2009), pp. 764–767. 

64. I. J. Blanco, M. A. Vila and C. Martinez-Cruz, The use of 
ontologies for representing database schemas of fuzzy 
information, J. Intelligent Syst 23(4) (2008) 419–445. 

65. J. C. Cubero, N. Marín, J. M. Medina, O. Pons and M. A. 
Vila, Fuzzy object management in an object-relational 
framework, in Proc. 10th Int. Conf. on Information 
Processing and Management of Uncertainty in 
Knowledge-Based Systems (Perugia, Italy, 2004), pp. 
1767–1774. 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    472




