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Abstract 

This paper presents a flexible multi-criteria group decision making method based on ideal points concept, which 
can be used to deal with heterogeneous information(numerical, interval valued and linguistic variable with different 
granularity and/or semantic)and reflect the Decision Makers’ different decision attitudes. The heterogeneous 
information is homogenized firstly into linguistic variable characterized fuzzy number. To simplify the 
computations and improve the comprehensibility, the homogenized information is further transformed to the 
continue linguistic terms set. A new relative closeness measure based on ordered weighted distance is introduced to 
consider the decision Makers’ different decision attitudes. A numerical experiment is used to illustrate the 
feasibility of the proposed method.  

Keywords: multi–criteria group decision making (MCGDM), ideal points, heterogeneous information, information 
uniform, ordered weighted distance (OWD) measure, decision attitude. 

1. Introduction 

TOPSIS (Technique for Order Performance by 
Similarity to Ideal Solution), one of the most widely 
used multi–criteria decision making (MCDM) method, 
was first presented by Hwang and Yoon (1981)1for 
solving a MCDM problem. The basic idea of the 
TOPSIS method is that the chosen alternative should 
have the shortest distance from the positive ideal 
solution (PIS) and the farthest distance from the 

negative ideal solution (NIS). TOPSIS cherishes such 
features as2: (i) a sound logic that represents the 
rationale of human choice; (ii) a scalar value that 
accounts for both the best and worst alternatives 
simultaneously; (iii) a simple computation process; and 
(iv) the performance measures of all alternatives on 
attributes can be visualized on a polyhedron, at least for 
any two dimensions. 

With the decision environment becomes much more 
complexity, many decision making problems call for a 
collaborative efforts of experts, and usually, the fact that 
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the uncertainty of experts’ knowledge. Hence, many 
efforts have extended TOPSIS to various group decision 
situations in which the decision information is fuzzy, 
interval–valued or intuitionstic fuzzy, and so on, to fit 
real-world, for example, Chen(2000)3extended TOPSIS 
to develop a methodology for solving multi–person 
multi–criteria decision-making problem in fuzzy 
environment, Jahanshahloo et al. (2006)4 extended 
TOPSIS with interval number, Wang and Elhag (2006)5 

proposed a nonlinear programming solution procedure 
to extend TOPSIS in fuzzy environment based on alpha 
level sets. Wang and Lee (2007)6generalized TOPSIS in 
a fuzzy environment, proposed Up and Lo operators 
instead of usual max and min operations, which 
satisfied the partial ordering relation on fuzzy numbers, 
to find the ideal solution and negative ideal solution. 
Chen and Tzeng(2004)7combined grey relation and 
TOPSIS to select an expatriate host country, where 
fuzzy AHP is used to determine subjective judgments 
weights, the grey relation model is combined to TOPSIS, 
and sugeno integral is used to consider the interaction 
among critera. García-Cascales and Lamata8 
incorporated descriptive, linguistic, ordinal variables, 
and presented the pseudo-distances between fuzzy 
numbers to TOPSIS method. Chen and Lee (2010)9 

presented an interval type–2 fuzzy TOPSIS method to 
handle fuzzy multiple attributes group decision–making 
problems based on interval type–2 fuzzy sets. Li 
(2010)10constructed a new nonlinear programming 
methodology based on TOPSIS to deal with 
multiattribute decision making with interval–valued 
intuitionistic fuzzy sets. Considering the interaction 
among attributes cannot be ignored, Hu 
(2008)11proposed choquet integral–based TOPSIS 
method, the choquet integral–based distance measure is 
used to compute the distances of alternatives to the PIS 
and the NIS. Additionally, Zanakis et al. (1998)12 

verified that TOPSIS has the fewest rank reversals 
among the eight methods of MCDM by simulation 
comparison.  

As reviewed above, most of the proposals for 
solving decision making problems with multiple experts 
are focused on the cases where all the experts express 
their opinions by means of values from the same type, 
either real values, interval values or linguistic labels in 
the same linguistic term set. However, due to the fact 
that each decision maker has his/her own unique 

characteristics with regard to knowledge, skills, 
experience and personality, the different decision 
makers tend to utilize different ways (such as real 
values, interval values and linguistic labels) to present 
their cognitions of information. The approaches 
mentioned above can not satisfy the practical situation. 
In this paper, we will propose a novel multiple criteria 
group decision-making methodology based on ideal 
points that work well with heterogeneous information 
(real values, interval values, linguistic labels in different 
linguistic term sets represented by different semantic), 
which allows the decision makers express free their 
assessments according to their preferences. Moreover, 
in view of the decision situations should be different 
when facing different decision problems, and then, the 
decision attitudes of decision makers are also different. 
In the decision framework we will construct can also 
offer decision makers the possibility of expressing their 
decision attitudes according to their interests and the 
nature of decision problems to increase flexibility of 
decision analysis. 

The rest of this paper is organized as follows. 
Section 2 is devoted to briefly review some foundational 
concepts and definitions on linguistic variable. In 
Section 3 we introduce the proposed method in detail. In 
Section 4 an illustrative example is included to 
demonstrate the process of the proposed method, and 
the paper is concluded in Section 5. 

2. Preliminaries 

For the sake of clarity, some basic concepts and 
definitions on linguistic variable are stated as follows. 

2.1. Linguistic term set 

Definition 113. A linguistic variable is one whose values 
are not numbers but rather words or sentences in a 
natural or artificial language, i.e., linguistic terms. 

The concept of linguistic variable is very useful in 
dealing with situations that are too complex or too ill-
defined to reasonably describe using conventional 
quantitative expressions. 
Definition 214. Let { },  {0,...,  }iS s i H g   , be a 
finite and totally ordered term set with odd cardinal, any 
term si represents a possible value for a linguistic real 
variable, where the middle term represents an 
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uncertainty of “approximately 0.5” and the remaining 
terms are placed symmetrically around it. 
Definition 3. The linguistic term set satisfies the 
following additional characteristics:14 
(i) The set is ordered:  if i js s i j  . 

(ii) There is a negation operator: ( )i jNeg s s , 
j T i  (T + 1 is the cardinality). 

(iii) Maximization operator: (  )  if i j i i jmax s s s s s , . 
(iv) Minimization operator: ( ,  )  if i j i i jmin s s s s s  . 

For example, a set of seven terms, S, could be given 
as follows: S={s0=none,s1=very low,s2=low,s3=medium, 
s4=high,s5=very high,s6=perfect}. 

2.2. Trapezoidal fuzzy number 

Definition 4. For a trapezoidal fuzzy number 
( , , , )A a b c d , a b c d   , its membership function 

is 
          0,               

( ) ( ) ,  

( )          1,                    

( ) ( ) ,  

         0,                

A

x a

x a b a a x b

x b x c

x d c d c x d

x d




      
    



 .           (1) 

This parametric representation is achieved by the 4–
tuple (a, b, c, d), where b and c indicate the interval in 
which the membership value is 1, a and d indicate the 
left and right limits of the definition domain of the 
trapezoidal membership function13. Specifically, 
when b c , A is reduced to triangular fuzzy 
number ( , , )a b c d , when ,a b c d  , A is reduced to 
interval number ( , )a b c d  , when a b c d   , A is 
reduced to crisp number. On the contrary, triangular 
fuzzy number, interval number, crisp number can be 
regarded as the very special cases of trapezoidal fuzzy 
number. 

In generally, each linguistic term i Ts S  is 
characterized by trapezoidal fuzzy number 
( , , , )i i i ia b c d , , , , [0,1]i i i ia b c d  , {0,1,..., }i g in the 
interval of [0, 1]. For example, we may assign the 
semantics of Fig. 1 to a linguistic term set of seven 
terms. In linguistic decision making procedure, different 
DMs have different uncertainty degrees on decision 
problem, they usually use several linguistic term sets 
with different granularity of uncertainty to conduct 
decision making. The use of several linguistic term sets 
gives decision makers more flexibility. The more 

linguistic terms used, the smaller the range that each 
linguistic term cover. 

 

Fig. 1. A set of seven terms with their semantics. 

In the process of the linguistic information 
proceeding, however, some results may not exactly 
match any linguistic terms in S. To preserve all the 
given information, Xu15extended the discrete term set S 
to a continuous term set { | [0, ]}S s q   , whose 
elements meet s s   if   , and where, if s S  , 
then we call s  the original term, otherwise, we call 
s the virtual term, and q is a large enough positive 
integer. In general, the decision maker uses the original 
terms to evaluate criteria and alternatives, and the 
virtual terms can only appear in calculation. 
Definition 516. Let any two linguistic labels ,s s S   , 
the primary algebraic operations are shown as follows: 

s s s     .                         (2) 
, [0,1]s s    .                  (3) 

( , )d s s     .                   (4) 

3. The proposed method 

Assume that a group of K decision-makers 

1{ ,..., }kD D D  is responsible for selecting m 
alternatives 1{ ,..., }mA A A under each of n selection 
criteria 1{ ,..., }nC C C . Criteria can be classified into 
benefit criteria (B) and cost criteria(C).  
(1) Construct decision matrices 

,  1, 2,...,k k
ij m n

D x k K


    . 

The assessments provided by DMs can be crisp 

values ijx R , interval values ,L U
ij ij ijx x x    , 

( ,L U
ij ijx x , )L U

ij ijx x R , and  linguistic values in 

different linguistic term sets represented by trapezoidal 
fuzzy function or triangular fuzzy functions 

0 1{ , ,..., }ij gx S s s s  , 3 11g  14. 

(2) Homogenize heterogeneous information  
To homogenize the heterogeneous information, here 

we select a linguistic terms set, called basic linguistic 
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term set (BLTS)17, to served as medium of unifying 
heterogeneous information. 

Select basic linguistic term set  
To maintain the uncertainty degrees associated to 

each one of the possible domains to be unified and the 
ability of discrimination to express the performance 
values, we select the linguistic term set with the 
maximum granularity as the basic linguistic term set 
(BLTS), 0 1{ , ,..., }T tS s s s .  

Normalize numerical and interval-valued 
information. 

Sometimes, the assessments with numerical and 
interval valued information can be expressed in 
different units. However, each linguistic term is 
characterized by trapezoidal or triangular fuzzy number 
in [0,1] interval. To ensure compatibility among the 
numerical and interval valued evaluations with the 
linguistic ones, all the estimated numerical and interval 
values should be normalized firstly into a comparable 
scale. 

The numeric value ijx is normalized into[0,1]interval 
by following: 

2

1

,  1,..., ,  1,...,
m

ij ij ij
i

r x x i m j n


   .               (5) 

The interval value [ , ]L R
ij ijx x is normalized by:4 

2 2

1

( ) ( ) ,  1,..., ,  1,...,
m

L L L R
ij ij ij ij

i

n x x x i m j n


      .(6) 

2 2

1

( ) ( ) , 1,..., ,  1,...,
m

R R L R
ij ij ij ij

i

n x x x i m j n


      . (7) 

Transform heterogeneous information into BLTS 
Herrera et al.17provided a transform function 

between linguistic term sets with different granularity. 
The idea of the transformation technique is to assign a 
degree of membership to every linguistic term in ST for 
each linguistic term being transformed. The degree of 
membership is computed by finding the interaction of 
two linguistic terms belonging to ST and S, respectively.  

As mentioned above, numerical and interval values 
can be regarded as specifically trapezoidal fuzzy 
number, such as: 

(1)When heterogeneous information is numerical 
NH , then the normalized numerical value [0,1]ijr  can 

be represented with membership function: 
1,   

( )
0,  ij

ij

r

y r
y

otherwise


 


.                                 (8) 

(2)When heterogeneous information is interval 
valued IH , then the normalized interval value 

[ , ] [0,1]L R
ij ijI n n  can be represented with membership 

function: 

1,   [ , ]
( )

0,  

L R
ij ij

I

y I n n
y

otherwise


   


.                     (9) 

Hence, the transformation function also 
appropriately used to convert the normalized numerical 
and interval-valued assessments, the ranges of which 
belong to [0,1], into BLTS. 
Definition 617,18,19. Let H be heterogeneous information 
(numerical NH , interval valued IH and linguistic 

LH in linguistic term set 0 1{ , ,..., }gS s s s ), and basic 
term set 0 1{ , ,..., } ( )T tS s s s T g  , then the 
transformation function 

THS is defined as: 
: ( )

THS TH F S   

0 0( ) {( , ),..., ( , )}, ,  [0,1]
THS t t i T iH s s s S      (10) 

              max min{ ( ), ( )},  [0,1]
ii H s i

y
y y     .    

where F(ST) is the set of fuzzy sets defined in 

0 1{ , ,..., }T tS s s s , and ( )H y , ( )
is y are the 

membership functions of the fuzzy sets associated to the 
H and si , respectively. The max-min operation is a 
classical tool for setting the matching degree between 
fuzzy sets. 

Note that each numerical, interval-valued and 
linguistic value is expressed by means of a fuzzy set on 
the BLTS, F(ST). In order to clarify the transformation 
function, we provide the following examples. 

Example 1. Let 0.78 be a numerical value and [0.25, 
0.67] an interval value to be transformed into a fuzzy set 
in 0 1 2 3 4 5 6{ , , , , , , }S s s s s s s s , their uniformed values are: 

T(0.78)={(s0,0),(s1,0),(s2,0),(s3,0),(s4,0.14),(s5,0.86),(
s6,0)}.  

T([0.25,0.67])={(s0,0),(s1,0.5),(s2,1),(s3,1),(s4,1),(s5,0
),(s6,0)}.Graphically, they are represented in Fig. 2. 

 

Fig. 2. The results of numerical value 0.78 and interval 
value[0.25,0.67] are transformed into a fuzzy set in ST. 

Example 2. Let 5
1s  be the second linguistic term in 

the set with five terms represented by trapezoidal fuzzy 
number, 5

3s  be the forth linguistic term in the set with 
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five terms represented by triangular fuzzy number. They 
are transformed into a fuzzy set in S  0 1 2{ , , ,s s s  

3 4 5 6, , , }s s s s represented by trapezoidal fuzzy number. 
Their transformed values are: 

T( 5
1s )={(s0,0.3),(s1,1),(s2,1),(s3,0.3),(s4,0),(s5,0),(s6,0

)} 
T( 5

3s )={(s0,0),(s1,0),(s2,0),(s3,0.375),(s4,0.875),(s5,0.
875),(s6,0.375)}. Graphically, they are represented in 
Fig. 3. 

 

Fig. 3. The results of 5
1s and 5

3s are transformed into a fuzzy 
set in ST. 

It is clear that the heterogeneous information is 
transformed as a fuzzy set on a BLTS. These fuzzy sets 
are difficult to manage and hard to understand by DMs. 
So, in order to simplify the computations and improve 
the comprehensibility of the results obtained in this 
phase, we shall transform the collective values 
expressed by means of fuzzy sets on the BLTS into 
continues linguistic in the BLTS as: 

    1

0
0

( )  ,   
THS i i i i Ti

i

H s s S
   






   
 

  .   (11) 

(3) Aggregate all DMs’ opinions 
The collective assessments of alternatives against 

each criteria ijx can be calculated as3: 
1 21 ( ... )k

ij ij ij ijx K x x x     1,..., ,  1,...,i m j n  . (12) 

(4) Determine the positive ideal solution and negative 
ideal solution. 

The positive ideal solution A consists of all of best 
values attainable of criteria. 

    
.1 .{ ,..., }

    max , , min ,

n

ij b ij cii

A x x

x j x j

  

  
.        (13) 

The negative ideal solution A is composed of all 
worst values attainable of criteria 

    
.1 .{ ,..., }

    min , , max ,

n

ij b ij ci i

A x x

x j x j

  

  
.        (14) 

where b , c denote the benefit criteria set, and the 

cost criteria set, respectively.  

(5) Calculate the separation measures of individual 
criteria. 

The separation of each criteria from its positive ideal 
value is defined as 

( , )ij j ijd d x x  .                           (15) 

Similarly, the separation of each criteria from its 
negative ideal value is given as 

( , )ij j ijd d x x  .                             (16) 

(6) Calculate the overall separation measures of 
alternatives. 

In general, the overall separation measures of 
alternatives are measured by distance measures, which 
usually using the weighted hamming distance (WHD), 
the weighted euclidean distance(WED), the weighted 
minkowski distance(WMD) or the weighted chebyshev 
distance(WCD), etc. They simply compute the distance 
measures without considering the DMs’ attitudes. 
However, in some cases, the decision is assumed to be 
completely dependent on DMs in a decision process. 
Therefore, the DMs’ attitudes can be considered as an 
important factor in making suitable decision. In other 
words, sometimes DMs are interesting to consider the 
possibility of parameterizing the results from the 
maximum distance to the minimum distance. 

The OWA operator20 for aggregating values (e.g., 
“satisfaction levels” with respect to criteria) was 
introduced by Yager (1988), which more explicitly 
recognize the “attitudinal character” of the decision-
makers by using linguistic quantifier, such as: “at least 
some criteria must be taken into account”. The OWA 
operator enables to move continuously from logical 
“and” to logical “or” i.e., from non-compensatory to 
full-compensatory situation. 
Definition 720. An ordered weighted averaging (OWA) 
operator of dimension n is a mapping :  nOWA R R , 
that has an associated n vector W: 0,   1, 2,...,jw j n   

and 
1

1
n

jj
w


 , which has the following form: 

1 2
1

( , ,..., )
n

n j j
j

OWA w   


  .               (17) 

where j  is the jth largest of the arguments 
 ( 1, 2,..., )j j n  . 

Definition 8. Let 1( ,..., ) a a a
nS s s and 

1( ,..., )b b b
nS s s be two collections of linguistic 

arguments, then an ordered weighted distance (OWD) 
measure is defined as: 
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( )
1

( , )
n

a b
j j

j

OWD S S w d


  .             (18) 

where ( , )a b
j j jd d s s be the distance between a

js  and b
js , 

and is calculated by Eq. (4); ( )   is any permutation of 

(1,..., )n  such that ( 1) ( ),    2,...,j j j n    , and 

1( ,..., )nw w w is the weighting vector of the ordered 

values of the differences, with 0,    1,...,jw j n   and 

1

1
n

j
j

w


 . 

Similar to OWA operator, the fundamental aspect of 
the OWD measure is the reordering step. From a 
generalized perspective of the reordering step, it is 
possible to distinguish between the descending OWD 
(DOWD) measure and the ascending OWD (AOWD) 
measure. 

To apply the OWD measure (or OWA operator) to 
decision making, a crucial issue is to determine its 
weight vector. Different approaches have been 
suggested for obtaining the weight vector21,22. The most 
common approach is the one based on the use of a 
linguistic quantifier21, Q, which is used to indicate the 
portion of the criteria DMs feel is necessary for a good 
solution. The linguistic quantifier allows DMs to 
translate their decision attitudes with a linguistic term 
such as “most” or “many”. The OWD measure can 
adjust the weight of a criteria based on the attitudes of 
DMs. Yager (1996)21 recommended obtaining the 
weights of OWA operator as follows: 

1
, 1,...,j

j j
w Q Q j n

n n

        
   

.         (19) 

The simplest and most commonly quantifier, Q, is 
defined as: 

( ) , 0, [0,1]Q r r r    .                      (20) 

 
The decision attitude is specified with parameter , 

its changes represent a continuum of different decision 
attitudes between the two extreme cases of requiring “at 
least one” and “all” the criteria to be satisfied. The 
common decision attitudes and their corresponding 
parameter α are as following23: 
● All (AND operator)               α→∞:(1000) 
● Most                                      α=5 
● Many                                     α=2 
● Half (mean operator)             α=1 
● Some                                      α=0.5 
● Few                                        α=0.2 

● At least one (OR operator)     α→0:(0.001) 
 
By combining (18),(19) and (20), we have: 

( )
1

1
( , )

n
a b

j
j

j j
OWD S S d

n n

 




         
     

 .             (21) 

The OWD measure is capable of synthesizing the 
linguistic information in consideration with the DMs’ 
attitudes. So it expresses directly the intensity of 
compromise or the type of compromise wanted by the 
DMs. 

According to the basic principle of the TOPSIS, the 
shorter distance of alternative to the positive ideal 
solution and the farther distance of alternative to the 
negative ideal solution, the better alternative is. In this 
paper, the overall separation measures of alternatives to 
positive solution are defined according to AOWD as: 

2
( )

1

( ) ,  ( 1,..., )
n

i j i j
j

w d i m  



  .           (22) 

being :  {1, 2,..., } {1,2,..., }n n  , 1, 2,..., 1j n   ,  
i.e., ( )i jd 

  is the jth smallest value in the set 

 (1) (2) ( ), ,...,i i i nd d d  
   . 
The overall separation measures of alternatives to 

negative solution based on DOWD are defined as: 

2
( )

1

( ) ,  ( 1,..., )
n

i j i j
j

w d i m  



  .           (23) 

being :  {1, 2,..., } {1,2,..., }n n  , 1, 2,..., 1j n   , i.e., 

( )i jd 
  is the jth largest value in the set 

 (1) (2) ( ), ,...,i i i nd d d  
   . 

(7) Calculate the relative closeness of each alternative 
to the ideal solutions. 

( ),  1,...,i i i iC i m        .               (24) 

(8) Rank the alternatives according to the relative 

closenesses. The bigger the iC , the better the 

alternative Ai. 
 

In sum, the multi–criteria group decision making 
with heterogeneous information based on ideal points 
concept can be summed up as follows: 
 Construct decision matrices ,  1,...,kD k K . 

Decision makers provide their assessments with 
their own preferred representation formats, and 
decide their decision attitude according to real 
decision situation.  

 Select basic linguistic term set ST. 
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 Calculate the normalized numerical values ijx  by 
Eq.(5)and interval values [ , ]L R

ij ijx x by Eqs. (6) and 
(7), respectively. 

 Unify heterogeneous information by Eqs.(10) and 
(11). 

 Aggregate all DMs’ opinions by Eq.(12). 
 Determine the positive ideal solution A and 

negative ideal solution A  by Eqs.(13) and (14), 
respectively. 

 Calculate the separation measures of individual 
criteria ijd  and ijd   by Eqs.(15) and (16) , 
respectively. 

 Determine weights of criteria by Eqs.(19) and (20). 
 Calculate the overall separation measures of 

alternatives i
 and i

 by Eqs.(22) and (23). 
 Rank the alternatives according to the relative 

closenesses iC by Eq.(24). 

4. Numerical example 

In this section, an example is used to illustrate the use of 
proposed method. We consider extending the linguistic 
information used in the numerical example from Ref.3 
to the form of heterogeneous information. Three 
candidates A1, A2 and A3 remain for further evaluation. 
A committee of five decision-makers, D1, D2, D3 , D4 

and D5 has been formed to conduct the interview and to 
select the most suitable candidate. Five benefit criteria 
are considered: 

(1) emotional steadiness (C1), 
(2) oral communication skill (C2), 
(3) personality (C3), 
(4) past experience (C4), 
(5) self–confidence (C5). 
The proposed method is currently applied to solve 

this problem and the computational procedure is 
summarized as follows: 

(1) According to these DMs’ preferences, they use 
different formats information to represent their opinions 
over the alternatives set as following: 

D1 provides his assessments in the linguistic term set 
with 5 labels represented by trapezoidal fuzzy 
number: 0 1 2 3 4{ , , , , }s s s s s ={Bad, Poor, Fair, Good, 
Perfect} 

D2 provides his assessments in the linguistic term set 
with 7 labels represented by trapezoidal fuzzy number: 

0 1 2 3 4 5 6{ , , , , , , }s s s s s s s ={Bad, Very Poor, Poor, Fair, 
Good, Very Good, Perfect} 

D3 provides his assessments in linguistic term set 
with 5 labels represented by triangular fuzzy number: 

0 1 2 3 4{ , , , , }s s s s s ={Bad, Poor, Fair, Good, Perfect} 
D4 provides his preferences with interval number in 

[0,1]interval. 
D5 provides his assessments with real number in 

[0,1] interval. 
The assessments of the three alternatives under all 

criteria are provided by DMs as follows: 

3 2 3 4 2

1
3 4 4 4 2

3 4 2 4 3

   

   

   

s s s s s

D s s s s s

s s s s s

 
   
  

, 
4 5 3 6 3

2
5 6 6 6 6

6 4 5 5 5

    

    

    

s s s s s

D s s s s s

s s s s s

 
   
  

, 

3 2 3 4 2

3
3 4 3 4 2

2 4 4 3 2

   

   

   

s s s s s

D s s s s s

s s s s s

 
   
  

, 5

0.7 0.8 0.6 0.9 0.5

0.8 1.0 0.9 0.7 0.9

0.9 0.7 0.8 0.9 0.8

D

 
   
  

, 

4

[.55,.83] [.52,.75] [.25,.67] [.80,.95]    [.54,.60]

[.45,.77] [.95,   1]  [.72,.95] [.90,   1]    [.73,.85]

[.65,.84] [.67,.80] [.62,.77] [.60,.74] [.65,.83]

D

 
   
  

. 

In order to verify the proposed method, in the case, 
we adopt to seven common decision attitudes to 
compare analysis. 

(2)Select basic linguistic term set. According to the 
granularity, the linguistic terms set of 7 labels 
represented by trapezoidal fuzzy number severed as 
BLTS. 

In the case, the criteria evaluated with numerical and 
interval valued information are in [0,1]interval, so the 
sub–steps that normalize numerical and interval valued 
criteria values without consideration. 

(3) Unify heterogeneous information by using 
Eqs.(10) and (11), the unified information and the ones 
represented by continuous terms set in BLTS of each 
criteria with respect to each alternative provided by each 
DM are shown in Table1–5, respectively. In the sequel, 
OI, HI and CL denote original information, 
homogenized information, and the continuous linguistic 
sets represented information, respectively. 

Table 1. Unified results of linguistic values in the 
set with 5 labels represented by trapezoidal fuzzy 
number. 

OI HI CL 
s3  (s3,0.3),  (s4,1),  (s5,1),  (s6,0.3) s4.5 
s2  (s2,0.7),  (s3,1),  (s4,0.7) s3.4 
s4  (s5,0.7),  (s6,1) s5.6 
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Table 2. Unified results of linguistic values in the 
set with 5 labels represented by triangular fuzzy 
number. 

OI HI CL 
s3 (s3,0.375), (s4,0.875), (s5,0.875), (s6,0.375) s4.5 
s2 (s1,0.125), (s2,0.625), (s3,1), (s4,0.625), (s5,0.125) s3 
s4  (s4,0.125), (s5,0.625), (s6,0.750) s5.4 

Table 4. Unified results of interval values. 

OI HI CL 
[0.55,0.83]  (s3,0.9),  (s4,1),  (s5,1) s3.9 
[0.52,0.75] (s3,1),  (s4,1),  (s5,0.5) s3.8 
[0.25,0.67] (s1,0.5),  (s2,1),  (s3,1),  (s4,1) s2.7 
[0.80,0.95] (s5,1),  (s6,0.9) s5.5 
[0.54,0.60] (s3,1),  (s4,1),  (s5,0.74) s3.9 
[0.45,0.77] (s2,0.1),  (s3,1),  (s4,1),  (s5,0.74) s3.8 

[0.95,1] (s5,0.1),  (s6,1) s5.9 
[0.72,0.95] (s4,0.86),  (s5,1),  (s6,0.9) s5 

[0.90,1] (s5,0.7),  (s6,1) s5.6 
[0.73,0.85] (s4,0.83),  (s5,1) s4.5 
[0.65,0.84] (s4,1),  (s5,1) s4.5 
[0.67,0.80] (s4,1),  (s5,1) s4.5 
[0.62,0.77] (s3,0.06), (s4,1), (s5,0.74) s4.4 
[0.60,0.74] (s3,0.3),  (s4,1),  (s5,0.38) s4 
[0.65,0.83] (s4,1),  (s5,1) s4.5 

Table 5. Unified results of crisp values. 

OI HI CL 
0.7 (s4,1) s4 
0.8 (s5,1) s5 
0.6 (s3,0.3),  (s4,0.7) s3.7 
0.9 (s5,0.7),  (s6,0.3) s5.3 
0.5 (s3,1) s3 
1 (s6,1) s6 

(4)The collective assessments of alternatives against 
each criteria are calculated by using Eq.(12), the results 
are shown in Table. 6. 

Table 6 The collective assessments of criteria 
versus alternatives. 

 C1 C2 C3 C4 C5 
A1 s4.18 s4.04 s3.68 s5.56 s3.56 
A2 s4.58 s5.78 s5.28 s5.72 s4.44 
A3 s4.66 s4.7 s4.64 s4.88 s4.4 

(5) Determine ideal points by using Eqs.(13) and 
(14), the positive and negative ideal solutions are shown 
in Table 7. 

(6) The separation measures of individual criteria 
are obtained by Eqs.(15) and (16), respectively. The 
separation measures of individual criteria to their 
positive ideal points and negative ideal points against 
alternatives are listed in Table 8 and Table 9, 
respectively. 

Table 7. The positive/negative ideal solutions. 

 Positive ideal point Negative ideal point 
C1

1x =s4.66 1x =s4.18 

C2
2x =s5.78 2x =s4.04 

C3
3x =s5.28 3x =s3.68 

C4
4x =s5.72 4x =s4.88 

C5
5x =s4.44 5x =s3.56 

Table 8. The separation measures of individual 
criteria to their positive ideal solution. 

 C1 C2 C3 C4 C5 
A1 0.48 1.74 1.60 0.16 0.88 
A2 0.08 0 0 0 0 
A3 0 1.08 0.64 0.84 0.04 

Table 9. The separation measures of individual 
criteria to their negative ideal solution. 

 C1 C2 C3 C4 C5 
A1 0 0 0 0.68 0 
A2 0.4 1.73 1.60 0.64 0.88 
A3 0.48 0.66 0.96 0 0.84 

(7) The ordered weights are determined by Eqs.(19) 
and (20). The weights under the common decision 
attitudes are listed in Table 10.  

Table 10. The weights under the common 
decision attitudes. 

Decision 
attitude 

α w1 w2 w3 w4 w5 

All 1000 0.000 0.000 0.000 0.000 1.000
Most 5 0.000 0.010 0.068 0.250 0.672
Many 2 0.040 0.120 0.200 0.280 0.360
Half 1 0.200 0.200 0.200 0.200 0.200
Some 0.5 0.447 0.185 0.143 0.119 0.106
Few 0.2 0.725 0.108 0.0.70 0.053 0.044
At least one 0.00001 1.000 0.000 0.000 0.000 0.000

(8) Calculate the overall separation measures of 
alternatives from the positive and negative ideal 
solutions by Eqs.(22) and (23), respectively. The overall 
separation measures of alternatives from the positive 
ideal solutions and negative ideal solutions are listed in 
Table 11 and Table 12, respectively. 

Table 11. The overall separation measures of 
alternatives from the positive ideal solution. 

 All Most Many Half Some Few At least one
A1 1.74 1.63 1.31 0.97 0.66 0.39 0.16 
A2 0.08 0.05 0.03 0.02 0.01 0 0 
A3 1.08 0.98 0.76 0.52 0.31 0.14 0 
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Table 12. The overall separation measures of 
alternatives from the negative ideal solution. 

 All Most Many Half Some Few At least one
A1 0.68 0 0.03 0.14 0.30 0.49 0.68 
A2 1.73 0.50 0.76 1.05 1.31 1.54 1.73 
A3 0.96 0.17 0.41 0.59 0.74 0.86 0.96 

(9) The overall relative closenesses of alternatives 
are calculated by Eq.(24). The final results under the 
seven situations are shown in Table 13, and they are 
represented graphically in Fig. 4. 

Table 13. The overall relative closenesses under 
different decision attitudes. 

 All Most Many Half Some Few At least one
A1 0.28 0 0.02 0.12 0.31 0.56 0.81 
A2 0.96 0.91 0.96 0.98 0.99 1 1 
A3 0.47 0.15 0.35 0.53 0.70 0.86 1 

 

0

0.2

0.4

0.6

0.8

1

1.2

All Most Many Half Some Few At least one

A1 A2 A3
 

Fig. 4. Comparison of overall relative closenesses under 
different decision attitudes. 

The above results indicate that the final ranks all are 

2 3 1x x x  , which imply the proposed TOPSIS 
method can provide robust results under different 
decision situations. In addition, these ranking results 
that obtained from the group of DMs and DM5 are 
consistent have even more support the proposed method. 
Moreover, we extend the Deng et al.’s24 TOPSIS 
method, and the MCDM method of Yager20 to our 
heterogeneous information context, then the ranking 
results calculated by the two methods are the same as 
the results calculated by the method proposed, so it is 
demonstrated that the method proposed in this paper is 
feasible and effective. 

5. Conclusions 

Owing to the facts that the decision information provide 
by decision makers can be of a diversity nature, and 
decision making in different decision situations needing 
different decision strategies. In the paper, we proposed a 

more flexible multiple criteria group decision making 
method based on ideal points concept, which not only 
allows DMs represent their assessments in different 
representation formats, such as real values, interval 
values and linguistic values, but also offers DMs the 
possibility of expressing their decision attitudes 
according to their interests and the nature of decision 
problem. In the proposed method, the heterogeneous 
information is homogenized as a fuzzy set on a 
predefined basic linguistic terms set (BLTS), then the 
homogenized information is further transformed to 
continuous linguistic terms in the BLTS to simplify the 
computations and improve the comprehensibility. The 
separation measure based on ordered weighted distance 
is introduced to reflect the different decision attitudes of 
DMs according to their interests and real decision 
situations. The proposed method is effective and 
feasible just as shown in the illustrative example. It is 
expected that the proposed method can be applied to the 
fields of supply chain management, mobile-business. 
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