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Ramón González-del-Campo 1 , Luis Garmendia 2 , Jordi Recasens 3

1 DSIC, Universidad Complutense de Madrid, Spain
E-mail: rgonzale@estad.ucm.es

2 DISIA, Universidad Complutense de Madrid, Spain
E-mail: lgarmend@fdi.ucm.es

3 Universitat Politecnica de Catalunya, Spain
E-mail: j.recasens@upc.edu

Abstract

In this paper are introduced some concepts of interval-valued fuzzy relations and some of their properties:
reflexivity, symmetry, T-transitivity, composition and local reflexivity. The existence and uniqueness of
T-transitive closure of interval-valued fuzzy relations is proved. An algorithm to compute the T-transitive
closure of finite interval-valued fuzzy relations is showed. Some properties and some examples is given
for t-representable and t-pseudo representable generalized t-norms.
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1. Introduction

Fuzzy sets, FS , were introduced by Zadeh in
1.965 20. Since then many generalizations of fuzzy
sets have been proposed to model the uncertainty
and the vagueness in linguistic variables replacing
the unit interval by another structure such as posets
or lattices 5,15,13. One of these generalizations are
type-2 fuzzy sets, FS 2, 21,22,23 were introduced by
Zadeh. A Type-2 fuzzy set A on a universe of dis-
course X , FS 2, is a fuzzy set whose membership
function is another fuzzy set on [0,1]:

A = {((x,u),µA(x,u)) | ∀x ∈ X ,∀u ∈ [0,1]}
Type-2 fuzzy sets have been widely studied and ap-
plied since in many cases the uncertainty can be bet-
ter expressed by a fuzzy set than by a single numeric
value. The problem with type 2 fuzzy sets though
is their computational complexity and the difficulty

for an expert to select the adequate fuzzy subset as
membership degree of an object to a linguistic la-
bel. This is why some simplifications have been pro-
posed, such as the use of only some families of fuzzy
sets such as triangular and trapezoidal ones.

Interval-valued fuzzy sets (I V FS ) were in-
troduced in the 60s by Grattan-Guinness 14, Jahn 16,
Sambuc 19 and Zadeh 21. They are extensions of
classical fuzzy sets where the membership value be-
tween 0 and 1 is replaced by an interval in [0,1].
They easily allow to model uncertainty and vague-
ness because sometimes it is easier for experts to
give a ”membership interval” than a membership
degree to objects on a universe. I V FS are a
special case of type-2 fuzzy sets that simplifies the
calculations while preserving their richness as well.
The intuitionistic fuzzy sets on X (I FS ) intro-
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duced by Atanassov 1 are also a extension of fuzzy
sets in which each element has a membership de-
gree, µ , and a non-membership degree, ν satisfying:
µ +ν 6 1.

A = {(x,µ(x),ν(x)) | x ∈ X ,µ(x),ν(x) ∈ [0,1]}
The value π = 1−µ−ν is a measure of the un-

certainty. Intuitionistic relations are been studied
widely 3,4,9,12,11,18.

This paper is organized as follows: In section
three the T -transitive closure of interval-valued
fuzzy relations is defined and it is showed that it
always exists and it is unique. In section four T -
transitive closure of interval-valued fuzzy relations
is studied. Traditionally, the study of conjunctions
between interval-valued fuzzy sets has been reduced
to be modeled with t-representable t-norms. How-
ever, not all generalized t-norms are t-representable.
Moreover, some of the non t-representable t-norms
sometimes satisfy even more properties than t-
representable t-norms 6. Probably the most impor-
tant property a fuzzy relation can fulfil is transitiv-
ity with respect a given t-norm. Since many times
the data are given by a proximity relation P (i.e.: a
reflexive and symmetric but not necessarily transi-
tive fuzzy relation), there are some methods to ob-
tain a transitive relation close to P to replace it when
transitivity is required. The most popular way to do
this is calculating its transitive closure. In section
four we introduce the concept of T-transitive closure
for an interval-valued fuzzy relation and its expres-
sion in a finite universe for any generalized t-norm.
A few methods to compute it and some examples
are given. In section five an algorithm to compute
the T -transitive closure is given and some exam-
ples shown. In section six a very simple application
is shown.

2. Preliminaries

Definition 2.1 7 Let L be the lattice of intervals in
[0,1] that satisfies:

1. L = {[x1,x2] ∈ [0,1]2 with x1 6 x2}.

2. [x1,x2] 6L [y1,y2] if and only if x1 6 y1 and
x2 6 y2

Also by definition:

[x1,x2]<L [y1,y2]⇔ x1 < y1,x2 6 y2 or
x1 6 y1,x2 < y2
[x1,x2] =L [y1,y2]⇔ x1 = y1,x2 = y2.

0L =L [0,0] and 1L =L [1,1] are the smallest and
the greatest elements in L respectively.

L is a complete lattice and the supremum and in-
fimum are defined as follows.
Definition 2.2 6 Let {[vi,wi]} be a set of intervals
on L. Then

1. ∧{[vi,wi]} ≡ [inf{vi}, inf{wi}]

2. ∨{[vi,wi]} ≡ [sup{vi},sup{wi}]

Definition 2.3 7 An interval-valued fuzzy set A on a
universe X can be represented by the mapping:

A = {(a, [x1,x2]) | a ∈ X , [x1,x2] ∈ L}
Definition 2.4 7 Let X be a universe and A and
B two interval-valued fuzzy sets. The equality be-
tween A and B is defined as: A =L B if and only if
A(a) =L B(a) ∀a ∈ X.
Definition 2.5 7 Let X be a universe and A and B
two interval-valued fuzzy sets. The inclusion of A in
to B is defined as: A⊆L B if and only if A(a)6L B(a)
∀a ∈ X.
Definition 2.6 7 A negation function for interval-
valued fuzzy sets N is a decreasing function, N :
L→ L, that satisfies:

1. N (0L) =L 1L

2. N (1L) =L 0L

If N (N ([x1,x2])) =L [x1,x2] for all [x1,x2] in L
then N is called an involutive negation.
Definition 2.7 A strong negation function for
interval-valued fuzzy sets, N , is a involutive func-
tion, N : L→ L, that satisfies:

1. N (0L) =L 1L

2. N (1L) =L 0L

Example 2.1 Let N be the involutive mapping de-
fined by :

N : L→ L
N ([x1,x2]) =L [1− x2,1− x1]
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Then N is a negation operator for interval-valued
fuzzy sets. It is trivial to prove that: N (0L) =L 1L,
N (1L) =L 0L and N (N ([x1,x2])) =L [x1,x2].

T-norms are generalized to the lattice L in a
straightforward way.

Definition 2.8 7 A t-norm on L function T is a
monotone increasing, symmetric and associative op-
erator, T : L2→ L, that satisfies: T (1L, [x1,x2]) =L
[x1,x2] for all [x1,x2] in L.

Due to monotony, it is easy to show:
T (Joint{[vi,wi]}, [y1,y2])>L

Joint{T ([vi,wi], [y1,y2])}
T (Meet{[vi,wi]}, [y1,y2])6L

Meet{T ([vi,wi], [y1,y2])}
Due to the associativity of T the conjunction of
three or more intervals can be defined inductively
as:

T (a,T (b,c)) =L T (T (a,b),c) =L a4b4 c
where4=L T .

where a =L [a1,a2], b =L [b1,b2] and c =L [c1,c2].

Example 2.2 Let In fL be defined as follows:
In fL([x1,x2], [y1,y2]) = Meet{[x1,x2], [y1,y2]}

It easy to prove that In fL is a t-norm on L.
T ([x1,x2], [y1,y2]) and T ([x1,x2], [y1,y2]) will
denote the lower and the higher values of
T ([x1,x2], [y1,y2]).
Definition 2.9 2 Let {xi} in [0,1]. A t-norm T in
([0,1],6) is left-continuous if it satisfies:

T (Sup xi,y) = Sup T (xi,y)
Right-continuity can be defined in a similar way.
This property is also called sup-preserving.

Definition 2.10 7 A t-norm on L operator T is t-
representable in L if there are two t-norms: T1 and
T2 (T1,T2, in ([0,1],6)) that satisfy:

T ([x1,x2], [y1,y2]) =L [T1(x1,y1),T2(x2,y2)]
where T1(v,w)6 T2(v,w) ∀v,w ∈ [0,1].

Let x =L [x1,x2] and y =L [y1,y2] be two intervals
on L:
Example 2.3 T =L [min(x1,y1),min(x2,y2)] is t-
representable in ([0,1],6). Note that min is the
highest t-norm.

Example 2.4 The following product t-norm on L T
is t-representable:

T ([x1,x2], [y1,y2]) =L [x1 ∗ y1,x2 ∗ y2]

Example 2.5 There are two generalizations of the
Lukasiewicz t-norm 6:

• Tw([x1,x2], [y1,y2]) =L
[max(0,x1 + y1−1),max(0,x2 + y2−1)]

• TW ([x1,x2], [y1,y2]) =L
[max(0,x1 + y1−1),max(0,x1 + y2−1,x2 + y1−
1)]

Note that Tw is t-representable but TW is not.

Definition 2.11 10 A t-norm on L operator T is
pseudo-t-representable in L I if there exists a t-norm
T in ([0,1],6) that satisfies:

T ([x1,x2], [y1,y2]) =L
[T (x1,y1),max{T (x1,y2),T (x2,y1)}]

The t-norm T is called the representant of T .
Example 2.6 It is showed some examples of
pseudo-t-representable t-norms on L:

T T

min(x,y) [min(x1,y1),max(min(x1 ,y2),min(x2 ,y1))]
x∗ y [x1 ∗ y1,max(x1 ∗ y2 ,x2 ∗ y1)]

max(0,x+ y−1) [max(0,x1 + y1−1),max(0,x1 + y2−1,x2 + y1−1)]

Definition 2.12 7 A t-conorm on L S is an increas-
ing, commutative, and associative operator S :
L2→ L, that satisfies: S (0L, [x1,x2]) =L [x1,x2].

Due to the associativity of S we can write:
S (a,S (b,c)) =L S (S (a,b),c) =L a5b5 c

where5=L S .

Example 2.7 Let SupL be defined as follows:
SupL([x1,x2], [y1,y2]) = Joint{[x1,x2], [y1,y2]}

It easy to prove that SupL is a t-conorm on L.

In this paper the following definitions are proposed.
Definition 2.13 Let {[vi,wi]} be in L. A t-norm on L
operator T is sup-preserving if and only if:

T (SupL{[vi,wi]}, [y1,y2]) =L
SupL{T ([vi,wi], [y1,y2])}

Definition 2.14 Given a t-norm on L T and a gen-
eralized negation N , the operator:

T ∗
N =L N (T (N ([x1,x2]),N ([y1,y2]))

is a t-conorm on L called dual t-conorm of T with
respect to N .

A t-norm, a negation and the dual t-conorm of T
with respect to N is called a De Morgan triplet.
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3. On the existence of T -transitive closure of
interval-valued fuzzy relations

Definition 3.1 An interval-valued fuzzy relation R :
X2→ L is a generalized T -indistinguishability if it
is reflexive, symmetric and T -transitive.
Definition 3.2 Let L be the lattice of intervals in
[0,1] and let P be a property. Let R : X2 → L be
a relation on a finite universe X. The P closure of R
is the relation RP : X×X → L that satisfies:

1. RP satisfies P.

2. R⊆L RP .

3. If R⊆L R′ and R′ satisfies P then RP ⊆L R′ .

Lemma 3.1 Let R be an interval-valued fuzzy rela-
tion in a universe X and let T be an arbitrary t-
norm on L. Then the T -transitive closure of R al-
ways exists.
Proof. In similar way than 2 let Meet the great-
est lower bound of any subset of elements on L.
Consider the set ΩR of T -transitive fuzzy rela-
tions containing R. Let us define the fuzzy relation
S∗R(a,b) =L MeetS∈ΩR{S(a,b)}. We will prove that
S∗R is T -transitive. Due to monotony of generalized
T -norms it is obtained:
T (S∗R(a,b),S

∗
R(b,c)) =

T (MeetS1∈ΩR{S1(a,b)},MeetS2∈ΩR{S2(b,c)})
6MeetS1∈ΩRMeetS2∈ΩR{T (S1(a,b),S2(b,c))}
6MeetS∈ΩR{T (S(a,b),S(b,c))}= S∗R(a,c)�
Lemma 3.2 If R be an interval-valued relation then
T -transitive closure is unique.

Proof. Let S1 and S2 be two relations. If S1 and S2
are transitive closures of R then according to def-
inition 3.2: S1 ⊆L S2 and S2 ⊆L S1, consequently
S1 =L S2

4. T -transitive closure of interval-valued fuzzy
relations

The calculation of T -transitive closure of interval-
valued fuzzy relations via sup − T is showed.
The sup−T product is associative if T is sup-
preserving and the universe is finite. Moreover, it is
proved that the sup−T product is continuous and

so is the calculation of the T -transitive closure for
finite universes. An algorithm to calculate the T -
transitive closure is provided.
Proposition 4.1 If T is t-representable with T1 and
T2 (T = [T1,T2]) then an interval-valued relation
R : X2 → L is T -transitive if and only if R is T1-
transitive and R is T2-transitive.
Definition 4.1 Let T be a t-norm on L. Let S be
a t-conorm on L and let 5 be the n-ary t-conorm
on L defined by associativity. Let R1 and R2 be
two interval-valued fuzzy relations on a finite set
X = {c1, . . . ,cm}. The S −T -composition of R1
and R2 is defined as follows:

(R1 �(S T ) R2)(cq,cr) =L
5ck∈XT (R1(cq,ck),R2(ck,cr))

where:
5ck∈XT (R1(cq,ck),R2(ck,cr)) =

=L T (R1(cq,c1),R2(c1,cr)) 5 ... 5
T (R1(cq,cm),R2(cm,cr))

Definition 4.2 The local equality relation of a
interval-valued fuzzy relation R on X is the fuzzy re-
lation ER is:

ER(a,b) ={
SupL ∀c∈X max(R(a,c),R(c,a)) a = b;
[0,0], a 6= b.

Definition 4.3 An interval-valued relation R is lo-
cally reflexive if ER ⊆L R.
It is easy to prove that if R is a reflexive interval-
valued relation then R is a locally reflexive interval-
valued relation.
Lemma 4.1 R is T -transitive if and only if R�SupLT
R⊆L R.

Proof. The proof is a straightforward generaliza-
tion of the proof for fuzzy relations.

• R is T -transitive⇒ R�SupLT R⊆L R:
(R�SupLT R)(a,b) =L
SupL c∈X{T (R(a,c),R(c,b))}6L R(a,b)
due to T (R(a,c),R(c,b))6L R(a,b) ∀a,b,c ∈ X

• R�SupLT R⊆L R⇒ R is T -transitive:
SupL d∈X{T (R(a,d),R(d,b))}6L R(a,b) ∀a,b∈
X
Then ∀c ∈ X T (R(a,c),R(c,b))6L R(a,b)

Co-published by Atlantis Press and Taylor & Francis 
                     Copyright: the authors 
                                    651



Transitive Closure of Interval-valued Fuzzy Relations

Proposition 4.2 Let X be an arbitrary universe. Let
{S1, ...,Sn} a set of interval-valued relations. If T
is a sup-preserving generalized T -norm, then it sat-
isfies:

R�SupLT (SupL ∀i=1..n{Si}) =L
SupL ∀i=1..n{R�SupLT Si}

Proof. The proof is a straightforward generaliza-
tion of the proof for fuzzy relations.

R�SupLT (SupL ∀i=1..n{Si})(a,c) =L
SupL b∈X{T (R(a,b),SupL ∀i=1..n{Si(b,c))}
=L SupL ∀i=1..n SupL b∈X{T (R(a,b),Si(b,c))}
=L (SupL ∀i=1..n{R�SupLT Si})(a,c)

Definition 4.4 Given a t-norm on L T , the T -
power R(n)T of a fuzzy relation R on X is recursively
defined as follows:

1. R(1)T ≡ R

2. R(n)T ≡ R(n−1)T �SupLT R

Lemma 4.2 If A⊆L B then A(k) ⊆L B(k)

Proof. Trivial due to monotony of T

Lemma 4.3 8 Let T be any t-norm on L, then:
T ([x1,x2], [y1,y2])6L In fL([x1,x2], [y1,y2])

∀[x1,x2], [y1,y2] ∈ L
Lemma 4.4 8 Let S be any t-conorm on L, then:

S ([x1,x2], [y1,y2])>L SupL([x1,x2], [y1,y2])
∀[x1,x2], [y1,y2] ∈ L

Lemma 4.5 If T is t-representable with T1, T2 in
([0,1],6) then:

R(n)T = [R(n)T1 ,R(n)T2 ]

Proof. R(n)T (cq,cr)≡ R(n)T
q,r =

= SupL k∈XT (R(n−1)T
q,k ,Rk,r)

= SupL k∈X [T1(R
(n−1)T
q,k ,Rk,r),T2(R

(n−1)T
q,k ,Rk,r)]

= [maxT1(R
(n−1)T
q,k ,Rk,r),maxT2(R

(n−1)T
q,k ,Rk,r)]

= [R(n−1)T
q,r ◦T1 Rq,r,R

(n−1)T
q,r ◦T2 Rq,r]

= [max k∈X T1(R
(n−2)T
q,k ,Rk,r) ◦T1

Rq,r,max k∈X T2(R
(n−2)T
q,k ,Rk,r)◦T2 Rq,r]

= [(R(n−2)T ◦T1 R(2)T1 )q,r,(R
(n−2)T ◦T2

R(2)T2 )q,r]

= ...︸︷︷︸
n−2 times

= [R(n)T1 ,R(n)T2 ]

Theorem 4.1 Let T be a t-representable t-norm
(T = [T1,T2]) and let R= [R,R] be a interval-valued
relation. Then, the T -transitive closure interval-
valued of R, RT , satisfies:

RT = [RT1 ,RT2 ]

Proof. Trivial due to lemma 4.5

Lemma 4.6 If T is pseudo-t-representable with T ,
then:
R(n)T = [R(n)T ,maxk:1..n{R(k−1)T ◦T R◦T R(n−k)T }]

Proof. Note that the composition of fuzzy relations
is associative and distributes over ”inf” and ”sup”
fuzzy relations. Note that R(1)T is the relation iden-
tity. It is verified to n = 2. Let’s suppose that

R(n)T = [R(n)T ,max
k:1..n
{R(k−1)T ◦T R◦T R(n−k)T }]

Then:
R(n+1)T =

= [R(n+1)T ,max{R(n)T ◦T R,R(n)T ◦T
R}]
= [R(n+1)T ,max{maxk:1..n{R(k−1)T ◦T
R◦T R(n−k)T }◦T R,R(n)T ◦T R}]
= [R(n+1)T ,maxk:1..n+1{R(k−1)T ◦T R ◦T
R(n−k)T }]

Theorem 4.2 Let X be an arbitrary universe and T
a sup-preserving t-norm. The transitive closure of R
is:

RT =L SupL ∀k∈N{R(k)T }

Proof. Let S = SupL ∀k∈N{R(k)T } be. By proposi-
tion 4.2:

S(2)T =L (SupL ∀k∈N{R(k)T })�SupLT

(SupL ∀l∈N{R(l)T }) =L SupL ∀k,l∈N{R(k+l)T }=L

SupL ∀m∈N\{0,1}{R(m)T } ⊆ S
By lemma 4.1, it follows that S is T-transitive.

Moreover, if R ⊆ S′ and S′ is T-transitive, then
again by lemma 4.1 and 4.2 it holds that:
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R(2)T ⊆L S′(2)T ⊆L S′, ...,R(k)T ⊆L S′(k)T ⊆L S′

hence S⊆L S′ and RT =L S

Corollary 4.1 If T is t-representable with T1, T2 in
([0,1],6), the transitive closure of R is:

RT =L SupL ∀k∈N{[R(k)T1 ,R(k)T2 ]}
Corollary 4.2 If T is pseudo-t-representable with
T , the transitive closure of R is:
RT =L SupL ∀k∈N{[R(n)T ,maxq:1..k{R(q−1)T ◦T R◦T

R(k−q)T }]}
Due associativity of T :

T ([x1,x2],T ([y1,y2], [z1,z2])) =L
T (T ([x1,x2], [y1,y2]), [z1,z2]) =L [x1,x2] M

[y1,y2] M [z1,z2]
In fL([x1,x2], In fL([y1,y2], [z1,z2])) =L
In fL(In fL([x1,x2], [y1,y2]), [z1,z2])) =L
[x1,x2] ML−in f [y1,y2] ML−in f [z1,z2]

Lemma 4.7 Let T be an arbitrary t-norm on L. Let
P be a path with a cycle:

P≡ R(a,a1) M R(a1,a2) M ... M R(at−1,at) M
R(at ,c1) M R(c1,c2) M ... M R(cq,at) M

R(at ,at+1) M ... M R(ak,b)
then

P≡ R(a,a1) M R(a1,a2) M ... M R(at−1,at) M
R(at ,c1)M R(c1,c2)M ...M R(cq,at)M R(at ,at+1)M

... M R(ak,b)6L R(a,a1) M R(a1,a2) M ... M
R(at−1,at) M R(at ,at+1) M ... M R(ak,b)

Proof. Trivial due to T ([x1,x2], [y1,y2])6L [y1,y2]
for all [x1,x2], [y1,y2] in L and associativity of T

Theorem 4.3 Let X be a finite universe with cardi-
nality n. The transitive closure of R, RT , is:

RT =L SupL k=1..n{R(k)T }

Proof.
R(k)T (a,b) =L

=L SupL a1,a2,...,ak−1R(a,a1)MR(a1,a2)M
... M R(ak−1,b)
6L SupL a1,a2,...,ak−1R(a,a1) MIn fL

R(a1,a2) MIn fL ... MIn fL R(ak−1,b) ac-
cording to lemma 4.3.

Now suppose k > n. Then R(k)⊆L R(n) because it ex-
ists a cycle (lemma 4.7). Therefore, the cases k > n
need not be considered

Corollary 4.3 If T is t-representable with T1, T2 in
([0,1],6), the transitive closure of R is:

RT =L SupL k=1..n{[R(k)T1 ,R(k)T2 ]}
Corollary 4.4 If T is pseudo-t-representable with
T , the transitive closure of R is:
RT =L SupL k=1..n{[R(n)T ,maxq:1..k{R(q−1)T ◦T R◦T

R(k−q)T }]}
Theorem 4.4 Let X be a finite universe with cardi-
nality n. If R is a locally reflexive relation, the tran-
sitive closure of R is:

RT =L SupL k=1..n−1{R(k)T }
The proof is a straightforward generalization of the
proof for fuzzy relations.

Proof. If R is a locally reflexive relation then
R(a,b) 6L R(a,a). Consider a cycle of length n,
then:

R(n)T (a,a) =L

=L SupL a1,a2,...,ak−1R(a,a1)MR(a1,a2)M
...,M R(ak−1,a)6L
SupL a1,a2,...,ak−1R(a,a1)MIn fL R(a1,a2)MIn fL

... MIn fL R(ak−1,a)6L R(a,a)

Theorem 4.5 Let X be a finite universe with cardi-
nality n. If R is a reflexive fuzzy relation on X then
the transitive closure of R is:

RT =L R(n−1)T

Proof. The proof is a straightforward generaliza-
tion of the proof for fuzzy relations.
R(a,b)(k)T =L

=L T (R(a,a),R(k)T (a,b))
6L SupL c∈X{T (R(a,c),R(k)T (c,b))}
=L R(k+1)T (a,b)

Therefore R(a,b)(k)T 6L R(k+1)T (a,b) ⇔ R(k)T ⊆
R(k+1)T

Corollary 4.5 If T is t-representable with T1, T2 in
([0,1],6), the transitive closure of R is:

RT =L {[R(n−1)T1 ,R(n−1)T2 ]}
Corollary 4.6 If T is pseudo-t-representable with
T , the transitive closure of R is:

RT =L
{[R(n−1)T ,maxq:1..n−1{R(q−1)T ◦T R◦T R(n−1−q)T }]}
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Definition 4.5 A distance d of the supremum
on L is defined for all x1,x2,y1,y2 ∈ [0,1] by
d([x1,x2], [y1,y2]) = max(|x1− y1|, |x2− y2|).
Definition 4.6 Let R,S be two interval-valued fuzzy
relations on a set X. The distance d between R and S
is defined by:

d(R,S) = supx,y∈X d(R(x,y),S(x,y))

Lemma 4.8 d is a distance on the set RX of interval-
valued fuzzy relations on X.

Proof.
The supremum of distances is a distance.

Theorem 4.6 Let T be a generalized continuous t-
norm and RX the set of interval-valued fuzzy rela-
tions on X. RX with the sup-T product is an ordered
topological semigroup.

Proof.

• Associativity is a straightforward exercise.
• The interval-valued relation E(x,y) ={

[1,1], x = y;
[0,0], otherwise.

is the identity element of

RX .
• Continuity: Since T is defined on a compact set,

it is uniformly continuous. Therefore:
∀ε > 0,∃δ > 0 such that
∀m,n,m′,n′,a,b,a′,b′ ∈ [0,1]

max(|m−a|, |m′−a′|, |n−b|, |n′−b′|)⇒
|T ([m,m′], [n,n′])−T ([a,a′], [b,b′])< ε(*)

We want to prove that given two interval-valued
fuzzy relations A,B ∈ RX :

∀ε > 0,∃δ > 0 such that ∀M,N ∈ RX
max(d(M,A),d(N,B))< δ ⇒ d(M◦N,A◦B)< ε

Given ε , we take δ > 0 satisfying (*). Then:
d(M ◦N,A◦B) =

supx,y∈X |supz∈XT (M(x,z),N(z,y))−
supz∈XT (A(x,z),B(z,y))|6

supx,y∈X supz∈X |T (M(x,z),N(z,y))−
T (A(x,z),B(z,y))|6 ε

• Monotonicity is an immediate consequence of the
monotonicity of T

Corollary 4.7 For any positive integer n the map
assigning to an interval-valued fuzzy relation M on

a finite set its nth power is non-decreasing and con-
tinuous if the corresponding t-norm on L T is con-
tinuous.

Corollary 4.8 If a t-norm on L T is continuous,
the map that assigns the T -transitive closure to the
interval-valued fuzzy relations on a finite set is non-
decreasing and continuous.

It is given a method to calculate the transitive
closure of a interval-valued fuzzy relation. Never-
theless, there are more effective methods and algo-
rithms. For example, it is possible to use an exten-
sion of the Floyd-Warshall algorithm 17

5. Algorithm to compute the T -transitive
closure of an interval-valued fuzzy relation

Let R be an interval-valued relation on a finite uni-
verse X with cardinality n and let T be a t-norm on
L. The T -transitive closure of R, RT , can be com-
puted using the following algorithm:

FOR{k=1}{n}

FOR{i=1}{n}

FOR{j=1}{n}

R(i,j)=Sup_L(R(i,j),T(R(i,k),R(k,j)))

ENDFOR

ENDFOR

ENDFOR

Example 5.1 Let T be a t-norm on L

In fL({[x1,x2], [y1,y2]}) =L [min(x1,y1),min(x2,y2)]

and let R : X × X → L be the following interval-
valued relation:

R =


[1,1] [0.6,0.8] [0.6,0.9] [0,0]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]


The computation of the T -transitive closure of R is
the following:

R =


[1,1] [0.6,0.8] [0.6,0.9] [0,0]

[1,1] [0.6,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]


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R =


[1,1] [0.6,0.8] [0.6,0.9] [0.6,0.8]

[1,1] [0.6,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]



R =


[1,1] [0.6,0.9] [0.6,0.9] [0.6,0.9]

[1,1] [0.6,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]



RT =


[1,1] [0.6,0.9] [0.6,0.9] [0.6,0.9]

[1,1] [0.6,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]


Note that RT = [Rmin,Rmin

] which we already by
theorem 4.1.

Example 5.2 Let T be a t-norm on
L Tw([x1,x2], [y1,y2]) =L [max(0,x1 + y1 −
1),max(0,x2 + y2 − 1)] and let R : X × X → L be
the following interval-valued relation:

R =


[1,1] [0.6,0.8] [0.6,0.9] [0,0]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]


The computation of the T -transitive closure of R is
the following:

R =


[1,1] [0.6,0.8] [0.6,0.9] [0,0]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]



R =


[1,1] [0.6,0.8] [0.6,0.9] [0.2,0.7]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]



R =


[1,1] [0.6,0.8] [0.6,0.9] [0.2,0.8]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]



RT =


[1,1] [0.6,0.8] [0.6,0.9] [0.2,0.8]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]


Note that RT = [RW ,RW

] also known by theorem 4.1

Example 5.3 Let T be a t-norm on L
T ([x1,x2], [y1,y2]) =L [W (x1,y1),min(x2,y2)] and
let R : X ×X → L be the following interval-valued
relation:

R =


[1,1] [0.6,0.8] [0.6,0.9] [0,0]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]


The computation of the T -transitive closure of R is
the following:

R =


[1,1] [0.6,0.8] [0.6,0.9] [0,0]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]



R =


[1,1] [0.6,0.8] [0.6,0.9] [0.2,0.8]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]



R =


[1,1] [0.6,0.8] [0.6,0.9] [0.2,0.9]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]



RT =


[1,1] [0.6,0.8] [0.6,0.9] [0.2,0.9]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]


Note that RT = [RW ,Rmin

] also known by theorem
4.1.

Example 5.4 Let T be a t-norm on
L TW ([x1,x2], [y1,y2]) =L [max(0,x1 + y1 −
1),max(0,x1 + y2 − 1,x2 + y1 − 1)] and let R :
X × X → L be the following interval-valued rela-
tion:

R =


[1,1] [0.6,0.8] [0.6,0.9] [0,0]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]


The computation of the T -transitive closure of R is
the following:

R =


[1,1] [0.6,0.8] [0.6,0.9] [0,0]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]


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R =


[1,1] [0.6,0.8] [0.6,0.9] [0.2,0.5]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]



R =


[1,1] [0.6,0.8] [0.6,0.9] [0.2,0.5]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]



RT =


[1,1] [0.6,0.8] [0.6,0.9] [0.2,0.5]

[1,1] [0.4,0.9] [0.6,0.9]
[1,1] [0.6,0.9]

[1,1]


Note that the generalized T -norm in this exam-

ple is not t-representable.

6. An Application

It is possible to model preference relations using
Interval-valued Fuzzy Sets. For example, it is pos-
sible to model the relation ”be better or equal than”.
Let R be a relation which describes the degree of
preference between pairs of objects. This relation
is reflexive and transitive. In this context, the T -
transitive closure can be used to impose coherence
to a set of dates.

Example 6.1 Let R be an interval-valued relation
which models the degree of the relation ”be bet-
ter or equal than” between four objects {a,b,c,d}.
It is possible to model the transitivity of this rela-
tion using the t-norm on L ∗L([x1,x2], [y1,y2]) =L

[x1 ∗ y1,x2 ∗ y2]:

R =


[1,1] [0.6,0.9] [0.6,0.7] [0,0]

[1,1] [0,0] [0.2,0.8]
[1,1] [0,0]

[1,1]


However, R is not a ∗L-transitive relation so some
membership degrees must be wrong.

RT =
[1,1] [0.6,0.9] [0.6,0.7] [0.16,0.72]

[1,1] [0.48,0.63] [0.2,0.8]
[1,1] [0.096,0.5]

[1,1]


It is possible to impose transitivity replacing R by
RT .

7. Conclusions

In this paper the main properties of interval-valued
fuzzy relations are studied: reflexivity, symmetry,
composition, local reflexivity and T-transitivity. The
existence and uniqueness of the T-transitive clo-
sure for L -fuzzy relations has been proved when
L is a complete lattice. Several expressions to
compute the T-transitive closure of I V FR are
proposed for any t-norm on L, any generalized t-
representable t-norm and any t-pseudo representable
t-norm. Finally, an algorithm based on the Floyd-
Warshall method to compute the T-transitive closure
of I V FR for any t-norm on L T is showed. Some
examples are provided.
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