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Abstract 

Owing to the dynamic characteristics of mobile environments, a mobile application needs to adapt to changing 

contexts to improve performance and resource utilization. We have developed an adaptive middleware 

infrastructure that simultaneously satisfies the individual needs of applications while maintaining overall system 

performance. A Model Reference Adaptive Control mechanism has been implemented in the middleware using 

control theory and fuzzy-based techniques. With reference to the model reference adaptive control theory, we also 

present a Self-Adaptive Fuzzy-based Service Adaptation Model (SA-FSAM) by taking historical adaptation 

information into account, and utilizing a closed-loop control mechanism to fine-tune adaptation decisions. The SA-

FSAM and a conventional threshold-based linear-control model have been evaluated using a campus assistant 

mobile application. With the introduction of self-adaptive elements in the control model, the SA-FSAM shows 

significant improvements in service adaptation decisions. 

Keywords: Fuzzy logic; control theory; service adaptation 

                                                
*
Corresponding Author: ccheung@acm.org 

1. Introduction 

For mobile applications to operate efficiently in mobile 

environments, they should be able to sense and evaluate 

the current operating context and then adapt their 

services to the context in order to optimize system 

performance. A generic context-aware middleware 

architecture—adaptive middleware infrastructure 

(AMI)—has been developed, which functions between 

the mobile applications and the operating system. The 

middleware approach simultaneously satisfies the 

individual needs of applications, while maintaining the 

overall operating system performance. In order to 

handle the vast amount of contextual information and 

numerous combinations of adaptive system services, 

fuzzy logic is utilized to cope with the uncertainties in 

adaptation control. The use of fuzzy logic serves two 

purposes: in addition to adaptation control, fuzzy logic 

is also applied on context reasoning and representing 

various low-level detector-based contexts and 

International Journal of Computational Intelligence Systems, Vol. 6, No. 4 (July, 2013), 778-795

Co-published by Atlantis Press and Taylor & Francis 
                     Copyright: the authors 
                                     778

willieb
Typewritten Text
Received 14 March 2011

willieb
Typewritten Text
Accepted 19 February 2013



Ronnie Cheung, Hassan B. Kazemian, Jiannong Cao 

 

 

composite abstract contexts, which simplifies input 

factors for adaptation decisions. By incorporating 

control engineering techniques, the middleware also 

employs a model reference adaptive control mechanism 

to handle the dynamic aspects of adaptive control. 

A fuzzy-based service adaptation model (FSAM) 

has been designed as the core inference engine in the 

middleware infrastructure. Our focus is on the service 

adaptation model, which compares context situations 

with the desired response from a model reference 

depository. Fuzzy linguistic variables were used to 

define context situations and the policies for adopting 

suitable services in the context-aware middleware. 

Fitness functions were designed to calculate the fitness 

degree for each service policy based on the distance 

between the service policy and the current context 

situation. The decision for service adaptation was made 

by selecting the policy with the best fitness degree with 

reference to a model reference depository. The 

experimental results have proved the effectiveness of 

the FSAM in our previous publications12. However, in-

depth experimental results also indicate certain 

limitations of the FSAM. When it comes to large-

granular fluctuations, the FSAM cannot handle the 

adaptation decisions effectively with drastic changes in 

context situations. Control-theory and fuzzy-based 

approaches are combined to develop the Self-Adaptive 

Fuzzy-based Service Adaptation Model (SA-FSAM) in 

the middleware. By employing model reference 

adaptive control techniques in control engineering, the 

SA-FSAM monitors service adaptation in a real-time 

manner. The self-adaptive fuzzy-based approach is 

described in the following sections. 

2. Background 

2.1.  Context-Aware Middleware 

According to Dey
14,18

, context is any information that 

can be used to characterize the situation of an entity. An 

entity is a person, place, or object that is considered 

relevant to the interaction between a user and an 

application, including location, time, activities, and the 

preferences of each entity. A system is context-aware if 

it uses the context information to provide relevant 

information and/or services to the user, where relevancy 

depends on the user’s task. Inferred from the analogy 

between context-awareness and human consciousness, 

context-aware applications can be characterized by a 

variety of detectors that monitor multiple contexts, a 

service adaptation engine, and actuators for executing 

adaptation decisions. There are two critical issues in the 

development of adaptive context-aware applications. 

First, it would be inefficient for individual applications 

to maintain the required contexts independently, and it 

would be infeasible for application developers to 

provide a detailed description of every possible 

potential context. This extra layer of contextual 

description can be implemented by a middleware 

approach. Second, it is challenging for application 

developers to provide each application with its own 

adaptation mechanism down to the system level. Again, 

a middleware approach provides programmable system 

services to the developers. With the context-aware 

middleware infrastructure AMI
10,11

, the balance between 

the mobile applications and the overall operating system 

performance is taken into account.  

2.2. Fuzzy-Based Approach 

Fuzzy theory
36

 has been used in industrial control and 

automation systems for a long time. Fuzzy logic 

controllers are very effective for complicated and 

imprecise processes, for which either no mathematical 

model exists or the mathematical model is severely 

nonlinear. Fuzzy logic controllers can attain 

performance close to that of human experts under such 

poorly defined environments32. Bettini et al.2 identified 

two important aspects that should be addressed in 

context representation and reasoning: high-level 

abstraction of contexts, and uncertainty in context 

information. Fuzzy logic provides rich semantic features 

to provide high-level abstraction of context information. 

In order to handle the vagueness in contextual 

information, a fuzzy-based approach to model service 

adaptation
10,11

 is developed in this research. Fuzzy logic 

is used to represent contextual information and 

formalize service adaptation mechanisms.  

2.3.  Control Theories and Fuzzy-Based 

Approaches 

Due to the highly dynamic characteristics of mobile 

environments, the variations in the ever-changing 

contexts are complicated. These variations are 
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categorized into small-granular oscillations and large-

granular fluctuations. Both categories of variations 

introduce undesirable effects in service adaptation. They 

also cause negative user experience and inefficiency in 

resource utilization. The use of fuzzy-based approaches 

can significantly alleviate these effects in the small-

granular oscillations in contexts. The fuzzy-based 

inference engine can generate smooth service adaptation 

by reducing unnecessary adaptation behavior between 

neighboring quality of service (QoS) levels. However, 

for large-granular fluctuations in contexts, it is possible 

to experience drastic service adaptations across different 

QoS levels. To control drastic adaptations from large-

granular fluctuations, the stability of the system and 

compliance with application preference need to be 

improved. It is necessary to provide mechanisms to 

define, detect, and reason with changes in context 

information resulting from the large-granular 

fluctuations. Control-theoretic techniques provide a 

solution to deal with adaptations resulting from drastic 

changes in context situations. 

Control-theoretic approaches have been widely 

applied to computing systems in recent years. The 

advantage of these approaches is the improvement of 

system performance with optimal resource exploitation. 

With control-theoretic mechanisms, the performance of 

large-scale and loose-coupled computing systems can be 

enhanced using a controlled-based approach. Self-

adaptive systems operate with the guidance of a central 

controller to assess their own behaviors in the 

surroundings to provide service adaptations. The 

fundamental principle behind self-adaptivity in control-

theoretic approaches is to monitor the system states 

continuously to adjust service adaptation. The 

operations are based on closed-loop control and open-

loop control mechanisms. As shown in Fig. 1, with a 

closed-loop control mechanism, the output signal is 

used to provide feedback to the system. The controller 

implements an algorithm to decide upon a suitable 

correction u to drive yp closer to up using process 

specific actuators. The feedback is used to reduce the 

effects of uncertainty that appear in the form of noise in 

the contextual information used for designing the 

controller. The closed-loop control mechanism 

outperforms open-loop control operations, with a 

tradeoff between complexity and stability. 

The major challenge in building context-aware 

adaptive systems is to develop the capability of the 

system to adjust its behavior in response to the 

environment in the form of self-adaptation. In the 

implementation, self-adaptivity refers the ability of the 

SA-FSAM middleware to adapt autonomously (i.e. with 

minimal interference) in response to contextual 

variations to improve QoS. A typical application might 

involve the need to improve response time when the 

available bandwidth is low and a dynamic relocation of 

the system sources is required in the adaptation process 

(for example, to allocate CPU resources to encrypt the 

data before transmission or reduce the level of details in 

a Web page). However, frequently oscillations in 

context variations appeared as noise or disturbances to 

the fuzzy controller, which might cause adaptation 

decisions to fluctuate too frequently. Feedback loops 

provide the generic mechanism for self-adaptation in the 

SA-FSAM middleware. The historical records of 

adaptation decisions and context variations provide 

feedback information for achieving self-adaptivity in the 

SA-FSAM middleware. By considering the adjustable 

parameters in the model (including the size of large-

granular fluctuation, the time window of past adaptation 

information, the damping effect of service adaptation, 

etc.), the SA-FSAM can be fine tuned on the basis of 

domain knowledge.  

The remainder of this paper is organized as follows. 

Section 3 provides a discussion on the related work. In 

Section 4, the details of the middleware architecture are 

presented. In Section 5, the SA-FSAM framework is 

presented, including definitions, formulas, algorithms, 

and a sample application. Section 6 illustrates the 

experimental results. Conclusions and future work are 

discussed in Section 7.  
 

 

 

 

 

         Fig. 1. A Feedback Loop 
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project27, an infrastructure was built to provide context 

awareness and semantic interoperability. Physical 

spaces like rooms, homes, buildings, and airports are 

converted into a programmable computing system 

called Smart Spaces. Regarding research on 

autonomous and multidimensional contexts, significant 

progress has been made on fusion services
6
 that extract 

and infer sensor-based contextual information using 

Bayesian networks. To deal with heterogeneous 

contexts, an adaptive online mechanism was presented 

by Kim and Varshney
21

 for QoS-sensitive applications. 

Winograd
34

 provided different architectures for 

handling contexts. Johanson and Fox20 proposed the use 

of a centralized Event Heap for handling contexts. 

Shafer, Brumitt and Cadiz
30

 performed experiments on 

multimodal interactions in context-aware environments. 

A reconfigurable context-sensitive middleware was 

proposed by Yau et al.
35

 to provide adaptive object 

containers for run-time context data acquisition, 

monitoring, and detection. The WebPADS
13

 project was 

developed by Chuang, Chan, Cao and Cheung to provide 

actively deployable and dynamically reconfigurable 

service chaining for adapting the dynamic changing 

contexts. A context-aware middleware architecture with 

the FSAM was introduced by Cheung, Yao, Cao and 

Chan
12

.  

Control theory, originally developed for handling 

industrial control and automation, has been applied to 

model physical systems. Control-theoretic approaches 

have been applied to computing systems with prevailing 

large-scale software systems and wide-area 

communication networks. The research community in 

software engineering domains and computing 

environments has established feedback loops as the core 

design elements in large-scale software development of 

adaptive systems
26

. Tu et al.
33

 provided an 

implementation of load shedding by applying feedback 

control in a real-time data stream database system to 

balance the database workload. Robertson
29

 proposed a 

closed-loop control mechanism for admission control in 

web server systems, and the experiments proved the 

stableness of the model. The major reason for using 

feedback was to reduce the effects of uncertainty in 

Internet load, which was difficult to model without 

feedback mechanisms.  

Fuzzy logic has been widely used since fuzzy set 

theory was first introduced by Zadeh
36

. A fuzzy logic 

controller1,17,19 comprises of a fuzzification interface, a 

knowledge base that consists of a rule base and a data 

base, a decision-making logic unit, and a defuzzification 

interface. In mobile computing, researchers have been 

focusing on the use of fuzzy logic for mobile location 

management
7
 and power control

8,31
 in wireless networks. 

However, these systems were developed for adaptations 

relating to a single aspect. Recently, researchers have 

shown increasing interest on fuzzy controlled QoS 

adaptation
16,25,28

 to fulfill application requirements in 

terms of more generic QoS specifications. In the 

CARISMA system, the context-aware middleware 

compared the application profile and the current context 

to evaluate which policy should be adopted
4,5

. In the 

context-aware system implemented by Kwan et al.
23

, the 

functionality of a service code module was adapted on 

the basis of the estimated resource usage. 

There has been a significant amount of research 

work on fuzzy-based adaptation. Ghinea et al.
16

 

developed a fuzzy logic-based descriptions of QoS 

specifications, as well as applying fuzzy logic to 

specifications based on user perceptions, and fuzzy 

programming was used to obtain a user-oriented 

ordering of the QoS parameters. Koliver et al.
22

 

proposed fuzzy rule-based techniques for assisting QoS 

adaptations in distributed multimedia systems. To deal 

with the uncertainty in variations in context 

environments, researchers have been building self-

adaptive systems that are capable of dealing with 

continuously changing environments and emerging 

requirements by introducing feedback loop mechanisms 

in the design
9
. Li and Nahrstedt

24 
introduced a fuzzy 

control model and a task control model to enhance the 

effectiveness of QoS adaptation decisions for a 

distributed visual tracking application. Applications were 

modeled as a serious of tasks assisted by a feedback loop. 

A middleware was used to implement the components to 

control adaptations so that various adaptive transient 

properties relating to stability and agility were addressed 

formally. These approaches were usually developed for 

specific problem domains (e.g., multimedia applications) 

while our SA-FSAM middleware emphasizes on a 

generic adaptation model that can be applied to different 

applications.  
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Fig. 2. Adaptive Middleware Infrastructure with Self-Adaptive Fuzzy-based Service Adaptation Model 

 

4. Adaptive Middleware Infrastructure 

An adaptive middleware infrastructure (AMI) is 

developed to facilitate generic applications to exercise 

context-awareness
10,11

. It aims at integrating all the 

relevant features by utilizing a unified framework to 

facilitate the development of context-aware computing. 

The advantage of introducing adaptation mechanisms 

into the middleware layer is that the middleware has 

both the knowledge of individual mobile applications 

and the operating environment. All the relevant features 

that AMI integrates include context detection, context 

composition, context reasoning, middleware service 

delivery, Type of Service (ToS) and Quality of Service 

(QoS) enforcement. As shown in Fig. 2, the features are 

embodied in the four major modules in the proposed 

system. 

The first module is the Context Space, which 

contains Context Detectors objects and Fuzzy Context 

Composers that reason and compose low level contexts 

into higher level representations. Examples of context 

detectors include wrappers for OS events, which could 

also be directly communicating with the device drivers. 

At a higher level, context detectors could also be 

detecting an application’s communication and 

computation activity. Fuzzy context composer gather 

low level information, marshalling the dynamic and 

uncertainty of the mobile environment, and describe the 

current context in a more generic and coarse form. For 

example, a fuzzy context composer could be monitoring 

all the network related detectors, and determine the 

quality of network connectivity – good, average, poor 

and no connectivity. High level contextual information 

is also useful for adaptation with mobile applications. 

The second module is the Middleware Service Space. 

This is the execution environment for both Public 

Middleware Services (one set of services that are shared 

among all mobile application) and Application Specific 

Middleware Services (each mobile application has its 

own set of services). These adaptive middleware 

services are categorized by their service nature into 

either public or application specific aspects. For 

example, a Web caching and prefetching middleware 

service is categorized as public since the cache pool 

benefits from the “economy of scale”, and the 

operations involved are generic among different mobile 

applications; a media transcoding service is categorized 
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as application specific, since different applications have 

different data semantics that require different settings 

for the media transcoding service to work properly. 

The third module is the Fuzzy Adaptation Engine 

(SA-FSAM), which adjusts the middleware services 

according to the current context and the mobile 

application’s specific ToS and QoS requirements. In 

order to control the middleware services, the adaptation 

engine makes use of the programmable properties of the 

middleware services. To adjust the controllable 

parameters for the middleware services, the adaptation 

engine calls the corresponding adjustment functions. 

The middleware services are responsible for exporting 

the required interface for adaptation control, and to 

adjust the internal logics to follow the adjustments 

specified by the adaptation engine. 

The fourth module is the Middleware Manager 

Space. It contains five system components, which 

coordinates all operations within the mobile middleware. 

The Administration Control Manager manages the 

admission of mobile applications that subscribe the 

services of the middleware. The duties include: 

authentication, type of service (ToS) and quality of 

service (QoS) negotiations, service subscription and un-

subscription. The Context Manager controls the runtime 

environment for the context objects, including the low 

level context detectors and high level context composers. 

The Context Repository Manager maintains the records 

of all contextual information, based on the predicted 

future trend of the contexts. The Middleware Service 

Manager controls the execution environment for both 

public middleware services and application-specific 

ones. It coordinates with admission control, and controls 

the resources for newly subscribed services. The ToS 

and QoS Enforcers monitor the ToS and QoS levels for 

each mobile application with inputs from the Context 

Space. 

5. Self-Adaptive  Fuzzy-Based  Service 

Adaptation Model 

5.1.  From FSAM to SA-FSAM 

The inference engine is the core module in our 

middleware architecture. Our major focus is on the 

mechanisms provided by the inference engine to 

provide adaptation service for upper layer applications. 

The FSAM is developed as the inference engine in the 

adaptive middleware infrastructure
3,10

. The fuzzy-based 

approach demonstrates its effectiveness in service 

adaptation. Our approach handles the vagueness in 

contextual information as well as adaptations in 

multidimensional contexts. Linguistic variables and 

membership functions are employed to represent 

contexts. The vagueness of contexts becomes 

measurable, computable, and quantified. A fitness 

function is then developed to establish the relationship 

between multidimensional contexts and the policies for 

service adaptation. Each policy is associated with a kind 

of service for mobile applications. For example, a 

mobile meeting application may switch to text chat 

when the network bandwidth does not provide 

reasonable QoS for voice communications. This is 

implemented by using a fitness function to compute the 

overall fitness for the current context to fit the 

corresponding communication policies. By measuring 

and comparing the fitness degree between the current 

contexts and a predefined optimal contextual situation, 

the most suitable policy is adopted. 

It is observed that although the adaptive middleware 

reacts to changes in the environment, it is not desirable 

to adapt too frequently to drastic changes in context 

situations. For example, for multimedia playback, being 

too sensitive to any change in contextual situations 

could deteriorate application performance. The frequent 

adjustments could be irritating to the user and waste 

precious computing resources. For this study, two 

different kinds of contextual variations are observed that 

cause undesirable service adaptation. By considering the 

size of granularity, the contextual variations are 

classified into two categories, which are presented in 

Fig. 3.  

The first category is called small-granular 

oscillations and the other is described as large-granular 

fluctuations. Both kinds of contextual variations occur 

as jitters in a time series. The small-granular oscillations 

are microscopic but frequent variations of contexts, 

which could result from individual or composite 

contextual values changing back and forth around 

certain threshold values in a marginal area. For example, 

a spatially diversified wireless environment could lead 

to undesirable jitters in service adaptation switching 

between neighboring QoS levels. The large-granular 

fluctuations are drastic changes in contextual values 
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occurring in a fracture of time, and result in drastic 

service adaptation jumping across different QoS levels.  

Both categories of variations can introduce 

undesirable effects on service adaptation, which also 

cause negative user experience and inefficiency in 

resource utilization. Therefore, service adaptations need 

to be insensitive at a certain level to contextual 

variations. Concerning the small-granular oscillations, 

fuzzy theory has been applied for solving this kind of 

problem. The FSAM was implemented to handle 

situations with small-granular oscillations context 

situations. However, concerning the large-granular 

fluctuations, the variations in contexts are so severe that 

an adaptation could jump from one QoS level to another 

QoS across multiple levels. Our current research 

combines control-theoretic approaches with our FSAM 

to solve the problem. 
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Fig. 3. Small-granular Oscillations and Large-Granular  
           Fluctuations 

5.2. Model Reference Adaptive Control in 

Context-Aware Middleware  

Building self-adaptive software systems with 

predictable performance is a major engineering 

challenge. Adaptive control theory provides a viable 

solution by modifying the control law in the controller 

to cope with changes in the controlled process. Using 

control theory, a second control loop is included in the 

control model, which is installed on top of the main 

controller. By employing Model Reference Adaption 

Control (MRAC) mechanisms in control engineering, 

the second loop adjusts the controller’s model by 

operating slowly to provide gradual adjustments to the 

controlling model, and operates with slower adjustments 

than the major feedback control loop (as shown in Fig. 

4). For example, a major feedback loop in the Web 

server farm reacts rapidly to bursts of Internet load to 

manage the QoS. A second slow-reacting feedback loop 

may adjust the control law in the controller to 

accommodate the anomalies emerging over time. 

   The SA-FSAM controller implements the concepts 

in Model Reference Adaptive Control to provide service 

adaptation that matches requirements of the application 

with reference to the current context situation. The 

Model Reference Adaptive Control (MRAC) model was 

originally proposed for flight-control problems
15

. In the 

MRAC model, the adaptive algorithm compares the 

output of the process yp with results from the control 

value u of the controller to the desired responses ym 

from a standard reference model depository (as shown 

in Fig. 4), and then adjusts the controller model by 

setting controller parameters to improve the fit for the 

best policy in the future. In the SA-FSAM 

implementation, the standard model reference 

depository contains the standard quality requirements 

for different application policies. For example, the 

requirements for text chat and voice chat are different 

from video communications. The service adaptation 

controller switches between different service policies 

(such as text chat, voice chat, and video 

communications) to meet QoS requirements for mobile 

applications, depending on the match between the 

current context and the parameters stored in the model 

reference depository. In the above example, the model 

reference depository may contain the quality 

requirements for network bandwidth, CPU clock rate, 

network delay, and free RAM space corresponding to 

different service quality levels for text chat, voice chat, 

and video communications respectively. 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Model Reference Adaptive Control (MRAC) 
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In the SA-FSAM framework, historical contextual 

information and service adaptation records are 

implemented as a main feedback loop to the main 

controller. This implementation provides a mechanism 

for handling frequent adaptations that appear as 

disturbances or noises resulting from frequent or drastic 

changes in contextual parameters. However, when such 

fluctuations jump across different QoS levels frequently, 

they produce undesirable experiences for user. 

Therefore, the fuzzy controller in the SA-FSAM 

middleware includes a second feedback loop in the 

model to provide adjustment mechanisms for the control 

rules in the controller. The feedback information (e.g. 

the number of service adaptations across two QoS levels 

in a time period) can also be used to improve the 

adjustment rules gradually to avoid undesirable 

adaptations due to large-granular context fluctuations. 

5.3.  The SA-FSAM Framework 

The major contribution of the Self-Adaptive Fuzzy-

based Service Adaptation Model (SA-FSAM) is that it 

introduces model reference adaptive control 

mechanisms with a fuzzy-based approach to fine tune 

adaptations decisions. It offers better application 

performance as well as optimized resource usage.  

In the design of the SA-FSAM, self-adaptivity is 

achieved by taking current contexts as well as historical 

contextual information into consideration. The principle 

behind the self-adaptivity mechanism is assisted by 

historical information. The middleware acquires the 

capability of making a judgment to decide on whether 

or not the current variation of contexts is drastic, and 

implements appropriate adjustment mechanisms to 

determine the appropriate adaptation policy accordingly. 

For example, the greater is the gap between the current 

contexts and the past contexts, the stronger is the 

applied damping effect. By using this approach, self-

adaptivity in the FSAM is implemented effectively. 

From another perspective, the inference engine becomes 

less susceptible to the variations in contexts by 

implementing the adjustment mechanisms in the MRAC 

model. 

It is noticed that for most adaptive context-aware 

middleware implementations, the feedback mechanisms 

are either hidden or ignored
9
. The explicit design of 

feedback control mechanisms has an important impact 

on the middleware’s design, architecture, and adaptive 

capabilities. By incorporating MRAC mechanisms and 

explicit control feedback loops in the design, the fuzzy 

controller can be implemented with the capability to 

maintain self-adaptivity and stableness in service 

adaptation. As shown in Fig. 5, when the output of the 

service adaptation engine meets certain conditions (e.g. 

number of service adaptations in a time period greater 

than a threshold value), the inference engine repeats the 

contextual reasoning by taking historical contextual 

information into account. A damping technique is 

applied in the adjustment mechanisms in the adaptation 

control engine to determine the degree of large-granular 

fluctuation alleviation. 

 

 

 

 

 

 

 

 
Fig. 5. The SA-FSAM Architecture 

 

To describe the details of the Self-Adaptive Fuzzy-

based Service Adaptation Model (SA-FSAM), examples 

of mobile services available on smart phones are used to 

demonstrate the effectiveness of service adaption. The 

mobile applications may provide different services s1 

and s2, corresponding to email service and chat service 

for mobile users.  Based on the FSAM model, the 

context-aware services running on mobile platforms are 

able to provide adaptations to meet different quality of 

service requirements. Taking the chat service as an 

example, it enables users to communicate through the 

mobile platform, by providing different quality of 

service levels relating to the chat service. In particular, 

due to the spatial and temporal variations of wireless 

communication and computing resources, the inference 

engine is able to react to the changing contexts and 

deliver the most suitable service policy. In order to 

maintain an acceptable user experience when the 

resource constraints become tight or even severe, the 

adaptation mechanisms are predefined by certain rules 

(or policies). For the chat application in the mobile 

platform, there are three adaptation policies 
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corresponding to three QoS levels: textChat, voiceChat, 

and videoChat.  

Service adaptation has to take into consideration 

different context parameters that are reported by the 

middleware. The context parameters c1, c2, c3, c4 may 

include network bandwidth, CPU clock rate, network 

delay and memory usage. A fuzzy-based approach is 

being used to model different context situations at 

different time intervals. In order to model context 

situations, linguistic variables are used to model the 

values associated with the context parameters. Instead 

of using linear values to represent the context situation 

at time t for network bandwidth, CPU clock rate, 

network delay and memory usage, a fuzzy-based 

context representation is used. For example, at time t, 

when c1= 10M, c2=1000MHz, c3=0.2ms, c4=200KB, the 

context situation is represented by the degree of 

membership associated with four membership functions. 

Using the linguistic variables {lv1=“high”, lv2=“low”}, 

four membership functions are defined to represent the 

degree of membership for context situations. A context 

situation at time t could be represented by a set of tuples 

that describes the degree of membership for the four 

membership functions corresponding to c1, c2, c3 and c4. 

Through the fuzzification process, the context situation 

at time t (when c1= 10M, c2=1000MHz, c3=0.2ms, 

c4=200KB) corresponds to the degree of membership 

for the membership functions:  µNetwork_maxRate high (10M), 

µCPU_clockRate high (1000), µNetwork_delay low (0.2), µRAM_freeSpace 

high (200). These membership functions are described in 

detail in section 6 of this paper. Using the FSAM model, 

µNetwork_maxRate high (10M)=0.5 means that the values of 

Network_maxRate is high with a degree of membership 

of 0.5 when the Network_maxRate is 10Mbps.  

Service adaptation is implemented by comparing the 

context situation with a standard reference for each 

policy. In the chat service example, the standard 

reference values refer to the most suitable context 

situations for the policies textChat, voiceChat, and 

videoChat respectively.  For example, a high CPU clock 

rate is appropriate for the videoChat service. The 

standard reference value for the clock rate that is 

suitable for the videoChat service is determined 

according to user experience. In the implementation of 

the fuzzy-based service adaptation model, standard 

reference values for each policy are also fuzzified using 

membership functions. For example, with the chat 

service, consider the policy that is associated with 

videoChat for chat service, the membership function µ-

CPU_clockRate high (best_value_of(c1)) corresponds to the 

most suitable value for the context parameter c1 

associated with the policy videoChat for the chat service. 

It is used for calculating the standard reference value 

associated with a certain policy for a particular service. 

For the chat service, the standard reference must include 

the fuzzified parameters for all the context values c1, c2, 

c3 and c4. Model reference adaptive control is 

implemented by developing a model reference 

depository for each service in the mobile platform. The 

model reference depository for the mobile application 

platform should include all the standard reference 

values for all policies. The current mobile application 

example provides two services: s1=chat service, 

s2=email service, and the model reference depository 

includes the standard reference values for all the 

policies for chat and email services (as shown in table 2). 

In the following paragraphs, the details of the SA-

FSAM are presented:   

Definition 1 (Service): A service is a functionality 

provided by the middleware in the application. The 

services are delivered at multiple QoS level with 

different resource constraints based on different policies. 

Let S= {s1, s2, s3,,…, sq} (1≤q), represents the service set, 

where si  (1≤ i≤ q) represents the i-th service, and q 

represents the total number of services available. 

Definition 2 (Policy): A policy represents a method 

used to deliver a service with a certain resource 

requirement and quality-of-service condition. Let Pi= 

{pi
1
, pi

2
,…, 

im

ip  | i∈[1, q]} be a set of policies, where 

pi
j  (with 1≤ j≤mi) represents the j-th policy 

corresponding to the i-th service si , and mi represents 

the total number of policies available for the i-th service 

si, and q represents the total number of services 

available. 

Definition 3 (Context): Let C={c1, c2,…, cn} be a set of 

context parameters, where ca (1≤ a≤ n) represents the a-

th context parameter, and n is the total number of 

context parameters detected by the middleware.  

Definition 4 (Context Situation): Context Situation is 

defined as the composite parameters to represent a 

context at any given time t. The Context Situation at 

time t is denoted by a set, which includes n pairs of 3-

element tuples:  
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SI(t) = {(ca, lvb,
ba lvcµ (value_of(ca, t)) | ca ∈ C,  

a∈[1,n] b∈[1,k]}  

where, ca (1≤ a≤ n) is the a-th context (e.g. 

c1=Network_maxRate), n is the total number of context 

parameters, lvb with (1≤b≤k) is a linguistic value (e.g. 

lv2=high), 
ba lvcµ (x) ∈ [0,1] is the predefined 

membership function for “ca is lvb”, value_of(ca,t) 

represents the value of context ca at time t.   

For example, when a=1, c1= Network_maxRate, 

lv2=high, t=current, and the value associated with 

value_of(ca, t)= value_of(Network_maxRate, current) = 

10 M bps, then a possible value of  µ Network_maxRate 

high(10Mbps) is 0.5. The value 0.5 means that 

Network_maxRate is high with a degree of 0.5 when the 

Network_maxRate is 10Mbps at the current time 

interval. 

Definition 5 (Standard Reference): Given a service si, 

with respect to each policy pi
j
 where (1≤ j≤mi), it is 

assumed that there exists a specific Context Situation 

associated with pi
j
. On the basis of such a Context 

Situation, the policy pi
j is the most suitable policy for 

service si , and should be adopted. Intrinsically, the most 

suitable policy means a tradeoff between resource 

constraints and the QoS level to be delivered. The most 

suitable Context Situation for policy pi
j  associated with 

service i is referred as a Standard Reference SR(pi
j
). 

Given a set of linguistic values LV = {lv1, lv2, …, 

lvk}, SR(pi
j
) can be represented by a set of 3-element 

tuples: 

     SR(pi
j
) = {(ca,, lvb,

ba lvcµ (best_value_of(ca)) | ca∈C,  

                       a∈[1,n], lvb∈LV, b∈[1,k]}. 

 where n is the total number of context parameters, 

and k is the total number of linguistic variables, and 

best_value_of(ca) refers to the most suitable value for 

context ca corresponding to policy pi
j  
for service i. 

Definition 6 (Model Reference Depository): With mi 

corresponding to the number of the policies for service 

si, the Model Reference Depository for Pi is defined to 

be the set of Standard Reference {SR(pi
1
), SR(pi

2
), … , 

( )im

iSR p }, and is denoted by SRD(Pi). The values for 

the Standard Reference Depository represent the most 

suitable contextual values for each policy. They can be 

obtained from empirical experiments. During the 

adaptation process, the Model Reference Depository 

values are organized into a two-dimensional table (as 

shown in Table 2). 

Formula 1 (Fitness Function): Given a service si (for 

example s1=chat service),  the Context Situation at time 

t is at certain distance away from any SR(pi
j
), the 

Fitness Function is defined to evaluate the fitness degree 

of the Context Situation at time t against the Standard 

Reference SR(pi
j
). The fitness function FF(SI(t), SR(pi

j
)) 

for the corresponding context situation and policy is 

defined as: 

FF (SI(t), SR(pi
j
)) =   

size_of ( ( ))

1

1

(best_value_of ( )) (value_of ( , ))

j
i

y

SR p
l

y y

y

c c tµ µ
=

−∑

    (1) 

where size_of(SR(pi
j
)) represents the number of 

tuples in SR(pi
j
), µ(x) is the membership function 

corresponding to the context parameter cy, ly is a 

positive integer corresponding to the weight attached 

to context parameter cy, and (value_of ( , ))yc tµ  

refers to the degree of membership for context 

parameter cy at time t. 

Formula 2 (Self-Adaptive Fitness Function): The 

Fitness Function is extended to the Self-Adaptive 

Fitness Function in order to enable self-adaptivity. 

Given a service si, the Self-Adaptive Fitness Function is 

the mapping from the jointed distances to the fitness 

degree of policy pi
j
 , which aggregates the distance of 

Context Situation at time t to the Standard Reference 

Context Situation SR(pi
j
), and the mean distance of the 

Context Situation at previous time intervals tm, tm-1,…, 

tm-k. 

SA-FF (SI(t), SR(pi
j
)) =  

size_of ( ( ))

1

1

(best_value_of( )) (value_of( , ))

(best_value_of( )) ( alue_of( , )) )
1

j
i

y

zlSR p

z z
l

y y y

m k

z m

c c t

c v c t
k

µ µ

µ µ=

−

=

 
− 

 − +
 +
 
 

∑∑
  

  (2) 

The Self-adaptive Fitness Function takes the current 

Context Situation and the Contextual Situation in 

previous k+1 time intervals into calculation. The 

parameter k is used to calculate the mean of the previous 

Context Situation, and is regarded as the damping factor 

to adjust the damping effect. The Self-adaptive Fitness 

Function applies when large-granular fluctuations occur. 

In formula (1) and formula (2), the denominators are 

used for the calculation of the distance between SI(t) 

and SP(pi
j
). After obtaining the fuzzy distance, the 
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Upon adaptation 
{  //Convert the current context value into the fuzzy-based context situation 

for each ca ∈C do 
      { 

for each ca-related predefined membership function 
a jc lv

µ (x) do 

            {  

SI(current) = SI(current)U { (ca, lvj, 
a jc lvµ (value_of(ca,current))) }; 

} 
      } 

//Select the most suitable policies for each needed service  

for  each si  ∈Sneed  do 

{ //Establish SRD for Pi’ 

              for each pi
j ∈Pi do 

             {//Calculate SR(pi
j) using related predefined membership function; 

SRD(Pi’) = SRD(Pi’) U  {SR(pi
j)}; 

} 
            //Calculate the Fitness Degree with Fitness Function for each policy 

 and select the most suitable one 

            for each pi
j ∈ Pi’ do 

            { 
         FD(pi

j
) = FF (SI(current), SR(pi

j
)); 

         if (FD(pi
j) is larger) then best_policy_for_si = pi

j; 
} 

             //get the set Psuitable for Sneed 

             Psuitable = Psuitable U  { best_policy_for_si }; 

} 
if (|Psuitable (t) - Psuitable (t-1)| is greater than Expected,) then  
{ 

for each pi
j ∈ Pi’ do 

           {//Calculate the Fitness Degree with Self-Adaptive Fitness  

Function again if large-granular fluctuation occurs.  

       FD(pi
j) = SA-FF (SI(current), SR(pi

j));   
       if (FD(pi

j) is larger) then best_policy_for_si = pi
j; 

} 
           //get the set Suitable for Sneed 

           Psuitable = Psuitable U  { best_policy_for_si }; 

} 
} //end of adaptation 

reciprocal value is calculated to obtain the fitness degree. 

When li=1, the function uses Hamming Distance; when 

li=2, the function uses Euclidean Distance, both are 

classical methods for calculating fuzzy distance between 

two states. When li=3, li is regarded as a weight value 

for contexts, which can be adjusted by specific 

applications to have an effect on policy selection
1
. 

Definition 7  (FSAM): The FSAM is a mapping from 

the current Context Situation SI(current) to a set of 

suitable policies Psuitable, using the fitness function FF in 

formula (1), where each element of Psuitable is the most 

suitable policy associated with a service si∈ Sneed. The 

number of elements in Psuitable is equal to the number of 

elements in Sneed.  

Definition 8 (SA-FSAM): The SA-FSAM is a mapping 

from the current Context Situation SI(current) to a set of 

suitable policies Psuitable, using the self-adaptive fitness 

function SA-FF in formula (2), where each element of 

Psuitable is the most suitable policy associated with a 

certain service si∈ Sneed. The number of elements in 

Psuitable is equal to the number of elements in Sneed.  The 

SA-FSAM and the FSAMs uses the same algorithm. By 

using the self-adaptive fitness function SA-FF in the 

SA-FSAM, self-adaptivity is achieved. 

For context-aware mobile middleware, application 

profile, user preference and system feedback are often 

considered as rules for service adaptation. In this paper, 

such rules are regarded as additional interventions. 

Three types of additional interventions are defined here: 

- Exclusive Intervention: For a given service si, 

certain pi
j
 in Pi cannot be used. 

- Preference Intervention: For a given service si, 

certain pi
j in Pi should be used. 

- Conditional Intervention: For a given service si, 

certain pi
j
 in Pi should be used under certain context 

situation. 

Before calculating the fitness degrees of policies, 

additional interventions are used to select the set of 

policies that can be possibly applied, i.e. additional 

intervention rules are used to filter Pi, and then get a 

subset of Pi (denoted as Pi’) whose elements satisfy all 

the intervention rules, and then we start to calculate 

SRD(Pi’) and use fitness function to obtain the final 

choice. As described in Fig. 6, the SA-FSAM algorithm 

includes four major steps:  

 

 

 

                         Fig. 6.  The SA-FSAM algorithm 

 

Step 1, each context is fuzzified into a linguistic 

variable with associated linguistic values. All the values 

are composed as Context Situation.  

Step 2, the Context Situation and a membership 

degree determined by predefined membership at time 

interval t, i.e. SI(t), is substituted into the Fitness 

Function to calculate the fitness degrees corresponding 

to each policy. 

Step 3, after all fitness degrees are compared, the 

policy with the largest fitness degree is specified as the 

most suitable policy Psuitable, i.e. If FD(pi
j
) is the 

maximum fitness degree, pi
j
 is selected as the most 

suitable policy Psuitable. 
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Step 4, if the distance between the current Psuitable 

and the Psuitable in the previous time interval is less than 

an expectation Expected, the corresponding QoS level is 

delivered. However, if the distance between the current 

Psuitable and the previous Psuitable is greater than Expected, 

which implies that large-granular fluctuations occur, the 

fitness degrees will be calculated once again with the 

Self-Adaptive Fitness Function. Until each available 

policy has been assigned a new fitness degree, the 

policy with the largest fitness degree is considered as 

the most suitable policy Psuitable, so that the most 

appropriate QoS level is determined again.  

In the SA-FSAM algorithm, the parameter Expected is 

set as the threshold value for determining whether or not 

a large-granular fluctuation occurs. It denotes the 

condition in the closed-loop control and should be 

attained according to application preference and user 

experience. As discussed before, the parameter K in the 

Self-Adaptive Fitness Function acts as the damping 

factor to adjust damping effect. The provision of Expected 

and the K in the SA-FF (Self-Adaptive Fitness Function) 

enables the context-aware middleware to precisely 

adjust the extent of self-adaptivity and the damping 

effect to provide adjustment mechanism for the service-

adaptation engine, so that the performance of the 

application can be fine-tuned according to the needs. 

6. Implementation and Evaluation  

The SA-FSAM is implemented as the inference engine 

in the middleware architecture. A Campus Assistant 

application is used to demonstrate and evaluate the 

effectiveness of adaptation decisions. The major 

functionalities of the Campus Assistant are to provide 

chat or email services at different QoS level according 

to the changing contexts, e.g. the network bandwidth 

and the memory. The variations in the context situations 

are simulated, and changes in the context values may 

trigger a service adaptation and corresponding 

adjustment mechanisms in the fuzzy controller. With the 

experimental results, the performance of the SA-FSAM 

is evaluated by comparing SA-FSAM with a 

conventional threshold-based linear control model. 

6.1. A Campus Assistant Application 

The Campus Assistant application is a mobile context-

aware application running on mobile platforms. 

Through the wireless access, the Campus Assistant 

enables users to communicate with each other in a real-

time interactive manner, or to receive and send emails, 

by providing Chat and Email services. In particular, due 

to the spatial and temporal variations of wireless 

communication and computing resources, the Campus 

Assistant application tries to detect the changing 

contexts and reflectively deliver the most suitable QoS 

level, while maintaining an acceptable user experience 

when the resource constraints become tight or even 

severe. Such adaptations are predefined by certain rules 

(or policies), in the application. The Chat service has 

three policies corresponding to three QoS levels for 

Chat service: textChat, voiceChat and videoChat. The 

Email service has five policies corresponding to five 

QoS levels for Email service: headMail, fullMail, 

encryptedMail, bigMail and encryptedBigMail. The 

contexts cover many aspects because of the multi-

dimensional characteristics including communication, 

computing, geographical, organizational, etc. To 

simplify context modeling without loss of generality, 

four kinds of contexts: Network_maxRate, 

CPU_clockRate, Network_delay, RAM_freeSpace are 

taken into account in the simulation.  

6.2. Setting in the Campus Assistant Application 

The Campus Assistant application, it is assumed that 

before carrying out each round of service adaptation, the 

middleware has obtained the following information: 

 

Service: S = {Chat, Email}, which represents two 

categories of services Chat and Email provided by 

middleware. 

  

Policy for S1  and S2:  

      P1    =   {textChat, voiceChat, videoChat} 

P2 = {headMail, fullMail, encryptedMail, bigMail, 

encryptedBigMail}, which denotes the policies relating 

to the services provided at different QoS levels. 

 

Context: C = {Network_maxRate, CPU_clockRate, 

Network_delay, RAM_freeSpace}, where C denotes 

four kinds of context include network bandwidth, CPU 

usage, network delay and memory usage. 

 

Linguistic Values: LV = {low, high} 
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Context Situation: SI(t), SI(t) is the 3-tuple vector to 

represent the fuzzified context: 

SI(t) = {(Network_maxRate, high, µNetwork_maxRate high  

(value_of(Network_maxRate, t))),  

                       (CPU_clockRate, high, µCPU_clockRate high (value_of  

(CPU_clockRate, t))), 

                      (Network_delay, low, µNetwork_delay low (value_of  

(Network_delay, t))), 

                      (RAM_freeSpace, high, µRAM_freeSpace high (value_of 

(RAM_freeSpace, t)))} 

 

The graphs of the membership functions for network 

bandwidth, CPU clock rate, network delay and RAM 

free space are described in Fig. 7. The corresponding 

formulas for the membership functions C1,  C2,   C3  and 

C4  are defined by (3), (4), (5) and (6).  Fig. 8 shows the 

variations of context values for the four context 

parameters. 

Standard Reference Context Situation: The most 

suitable values of contexts associated to each policy are 

application-specific and determined by relevant 

domains. They are predefined in the simulation and 

should be heuristically adjusted to the best values in 

practice. Table 1 shows the most suitable values 

(Standard Reference Context Situations) for the 

resource required by each policy. 
 
The membership function for Network_maxRate high: 

            0             B＜1Kbps 

C1 =  
10

Blog
1K

5
     1Kbps≤B≤100Mbps                   (3)     

           1             B＞100Mbps 

 

The membership function for CPU_clockRate high: 

              0          F＜2MHz 

C2=  10log
2

3

F
M       2MHz≤F≤2GHz                         (4) 

              1          F＞2GHz 

 
The membership function for Network_delay low: 

                 0                  T＞1000ms                        

C3=     
10log

0.11
4

T

−        0.1ms≤T≤1000ms            (5) 

                  1                T＜0.1ms 

The membership function for RAM_freeSpace high: 

                0                   R＜50KB 

C4=  
10log

50

4

R
K    50KB ≤ R ≤ 500MB (6) 

                     1                  R＞500MB 

 

Table 1 Most Suitable Context Values for the Policies 

 
Network_

maxRate(k

bps) 

CPU_cloc

kRate(MH

z) 

Network_del

ay(ms) 

RAM_freeS

pace(KB) 

textChat (p1
1) 4 20 500 0.2 

voiceChat (p1
2) 200 300 10 4 

videoChat (p1
3) 10000       1000 0.2 200 

headMail (p2
1) 2 4 n/a 0.2 

fullMail (p2
2) 10 10 n/a 0.4 

encryptedMail (p2
3) 10 100 n/a 10 

bigMail (p2
4) 500 50 n/a 2 

encryptedBigMail  

(p2
5) 

500      1000 n/a 100 

 

 

Fig. 7.  The Membership Functions 
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Model Reference Depository SRD(P1’) and 

SRD(P2’): Based on the most suitable values in Table 1 

and the membership functions (3), (4), (5) and (6), the 

values for SRD(P1’) and SRD(P2’) are calculated and 

listed in Table 2. It is assumed that the Chat service 

requires interaction between users so that the 

Network_delay is taken into account. For Email service, 

which does not require interaction rather than passive 

reading, Network_delay is neglected. 

Table 2 Model Reference Depository, SRD(P1’) and SRD(P2’) 

 

Network_ 

maxRate 
High  

CPU_clock 

Rate High 

Network_ 

delay Low 

RAM_ 

freeSpace  
High 

SR(p1
1) 0.12 0.33 0.08 0.15 

SR(p1
2) 0.46 0.72 0.50 0.48 

SR(p1
3) 0.80 0.90 0.92 0.90 

SR(p2
1) 0.06 0.10 n/a 0.15 

SR(p2
2) 0.20 0.23 n/a 0.23 

SR(p2
3) 0.20 0.57 n/a 0.58 

SR(p2
4) 0.54 0.47 n/a 0.40 

SR(p2
5) 0.54 0.90 n/a 0.83 

 

With the above information, the steps for developing 

the SA-FSAM are illustrated. First, the predefined 

membership functions are used to map the current 

context into the Context Situation as follows: 

SI(t) = { (Network_maxRate, high, Network_maxRate highµ (value_of  

(Network_maxRate, t))),  

          (CPU_clockRate, high, CPU_clockRate highµ  (value_of  

(CPU_clockRate, t))),  

          (Network_delay, low, (v Network_delay lowµ (value_of  

(Network_delay, t))), 

          (RAM_freeSpace, high, RAM_freeSpace highµ  (value_of 

(RAM_freeSpace, t)))} 
 

Secondly, the Fitness Function and Self-Adaptive 

Fitness Function are utilized to calculate the fitness 

degrees of the current context for each policy. The SA-

FSAM algorithm is applied and the values of the current 

context SRD(P1) and SRD(P2) are substituted into the 

formulas FF and SA-FF, respectively.  

Regarding the Self-Adaptive Fitness Function, the 

threshold value of expectation Expected is set to 2, which 

implies that any service adaptation jumping across two 

QoS levels will be detected as a large-granular 

fluctuation. The damping factor K in SA-FF is set to 

two, which means that the historical information at the 

previous two time intervals is considered. Finally, the 

policy Psuitable which has the maximum fitness degree 

will be the most suitable one to be adopted. 

 

For Chat service:   
 
Psuitable = Max {FF(SI(t), SR(P1

1)), FF(SI(t), SR(P1
2)), 

FF(SI(t), SR(P1
3))} 

 

For Email service:  

 
Psuitable =Max {FF(SI(t), SR(P2

1)), FF(SI(t),SR(P2
2)), 

FF(SI(t),SR(P2
3)), FF(SI(t),SR(P2

4))                                                                
FF(SI(t),SR(P2

5))  

6.3.  Experimental Results 

We simulate the variations in contexts values by 

generating 160 sets of 4-element tuples such as 

Network_maxRate, CPU_clockRate, Network_delay 

and RAM_freeSpace. It is assumed that the context 

parameters for network bandwidth, network delay, CPU 

usage and memory usage represent the major influence 

on the performance of mobile applications. The 160 sets 

of 4-element tuples are fed into the SA-FSAM inference 

engine round by round in a time series manner. For 

evaluation, a conventional threshold-based linear-

control approach is also implemented in the Campus 

Assistant application. 

By referring to the formula for QoS parameter 

aggregation in the video distribution system by Koliver 

et al.
22

, we follow their approach to produce the 

conventional context aggregation values. The QoS 

parameters are considered as a subset of the contexts 

and the formula is generalized to be used in service 

adaptation. A service adaptation mode M is defined by 

the formula: M = (f1 w1 + f2 w2 + …+  fi wi), where fi 

denotes the adaptation factor of each independent 

context, wi represents the weight value for each context,  

i={1,2,3,4}, and wi is used to adjust the individual effect 

on adaptation of each context and alleviate the 

compensation among them. According to the predefined 

association between the mode M and each policy, the 

most suitable policy is adopted to deliver the most 

suitable service, according to the context at a given time 

t. In the mapping from each context ci to its adaptation 
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factor: fi = si ci, where ci ∈ Ci ,i={1,2,3,4}, si is a scaling 

factor to normalize fi , Ci = [min, max] determines a 

valid numerical range for each context, and min is the 

lower bound while max is the upper bound. When the 

context is out of the range of Ci,, it is rejected and 

neglected. 
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   Fig. 8. Variations of Contexts 

 

In the implementation, the setting of the threshold-

based linear control is outlined as follows: 
Context: C = {Network_maxRate, CPU_clockRate, 

Network_delay, RAM_freeSpace} 

Weight: wi  = 1 

Scaling Factor: si = 1 

Adaptation Factor: fi,, = ci, where i={1,2,3,4} 

For Chat service:  M = c1/ c3 + c2 + c4 

For Email service: M = c1  + c2 + c4  

 

The threshold values are defined in Table 3 and 

Table 4 respectively. 

 

Table 3 Thresholds of Adaptation Mode for Chat 

Chat Policy  M 

textChat(p1
1
)  [min, 53.2 ) 

voiceChat(p1
2
) [53.2, 926) 

videoChat (p1
3
) [926, max) 

 

Table 4 Thresholds of Adaptation Mode for Email 

Email Policy M 

headMail (p2
1
) [min, 15.2) 

fullMail (p2
2
) [15.2, 38) 

encryptedMail (p2
3
) [38, 98) 

bigMail (p2
4
) [98, 496) 

encryptedBigMail(p2
5
) [496, max) 

 

    With the 160 sets of tuples as the input (there are 8 

groups while each group contains 20 sets of tuples), the 

performance of the SA-FASM and FASM models and 

the threshold-based linear control was evaluated. The 

three models produce the results to determine the 

respective service adaptation. The adaptation decisions 

are recorded in the log files and compared as in shown 

Fig. 9 and Fig. 10. In general, it is observed that the 

variations caused by the small-granular oscillations of 

context are filtered by the fuzzy inference engines 

associated with both the SA-FASM and FASM models. 

With the FSAM and the SA-FSAM, there is no service 

adaptation from time interval t = 3 to time interval t = 

38 for Email service (as shown in Fig. 9). For Chat 

Service there are no service adaptations for the FSAM 

and SA-FSAM from the time interval t = 52 to time 

interval t = 78 (as shown in Fig. 10). In contrast, the 

threshold-based inference engine is sensitive and 

produces zigzag fluctuations in service adaptation. In a 

situation of severely fluctuations in context values, the 

service adaptations become overactive and keep 

changing accordingly. These small-granular oscillations 

in service adaptation may lead to unbearable 

deterioration of QoS and consumption of large amounts 

of precious communication and computational resources.  

From a microscopic view, it is not difficult to 

observe that the adaptation curves generated by the SA-

FASM and FSAMs are relatively smoother than those 

by the threshold-based linear control. It indicates that 

the fuzzy-based approaches have better tolerance to 

these marginal small-granular oscillations of context, 

which helps to improve the effectiveness of the service 

adaptation and resource utilization. 

However, in the event of large-granular fluctuation 

in context values, which is the Email service from the 

time interval t = 104 to time interval t = 115 shown in 

Fig. 9, the large-granular fluctuations in service 

adaptation are not handled using the FSAM. The 

conventional fuzzy-based technique cannot process such 

fluctuations, since the variations of contexts are neither 

marginal nor minor. Using the SA-FSAM approach, the 

closed-loop control enables the inference engine to 

detect the change adaptations that are greater than one 

QoS level, and adjust the radical change with the Self-

adaptive Fitness Function. The past adaptations in the 

previous two time intervals have a joint effect on the 

current adaptation decision to decide the damping effect. 

By including self-adaptivity in a time series, the 

adaptations of the application system to those large-

granular fluctuations become adjustable.  
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 Fig. 9. Email Service Adaptation 
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Fig.10. Chat Service Adaptation  
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It can be seen from Fig. 9 that for Email service, the 

SA-FSAM eliminates the zigzag adaptations in the 

FSAM in the time internal t = 113. The SA-FSAM 

migrates smoothly to the next QoS level compared with 

the FSAM, avoiding drastic changes in QoS level 

resulting from adaptation decisions. 

 
7. Conclusions and Future Work  

In this research, a generic adaptive middleware 

infrastructure is introduced. The middleware 

infrastructure accommodates a self-adaptive model for 

service adaptation. A Model Reference Adaptive 

Control mechanism is implemented in the SA-FSAM 

middleware. Control-theory and fuzzy-based 

approaches are combined to develop the SA-FSAM in 

the middleware. The core work lies on the Fitness 

Function and the Self-Adaptive Fitness Function. A 

campus assistant application is used to demonstrate the 

adaptation process. Based on the experimental results, it 

is observed that the SA-FSAM inference engine 

effectively alleviates the small-granular oscillations in 

context, and also smoothes the large-granular 

fluctuations that occur due to drastic changes in context 

information. The mechanisms behind the SA-FSAM are 

utilization of historical adaptation information and 

closed-loop control. With introduction of model 

reference adaptive control mechanisms, the static 

FSAM is enhanced to a dynamic control process. The 

performance of the context-aware middleware is 

enhanced in terms of resource utilization by avoiding 

drastic changes in adaptation decisions.  

Certain limitations lie in the proposed framework. In 

practical scenarios, the research work provides a generic 

framework for mobile application development. 

However, the effectiveness also relies on the fuzzy 

membership functions used for defining context 

situations. It requires domain knowledge, user 

experience, and application preference to construct 

suitable membership functions for different context 

parameters. One direction of the future work would aim 

at developing suitable membership functions for 

different context situation parameters. Another direction 

of future research would be to enhance the adjustment 

mechanisms in the model reference adaptive control 

process by making use of the historical records of 

context values and services adaptations to make context 

predictions. 
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