

Model Reference Adaptive Control in Fuzzy-Based

Context-Aware Middleware

Ronnie Cheung*

University of South Australia

Australia

Hassan B. Kazemian

London Metropolitan University
United Kingdom

Jiannong Cao

Hong Kong Polytechnic University

Hong Kong

Abstract

Owing to the dynamic characteristics of mobile environments, a mobile application needs to adapt to changing

contexts to improve performance and resource utilization. We have developed an adaptive middleware

infrastructure that simultaneously satisfies the individual needs of applications while maintaining overall system

performance. A Model Reference Adaptive Control mechanism has been implemented in the middleware using

control theory and fuzzy-based techniques. With reference to the model reference adaptive control theory, we also

present a Self-Adaptive Fuzzy-based Service Adaptation Model (SA-FSAM) by taking historical adaptation

information into account, and utilizing a closed-loop control mechanism to fine-tune adaptation decisions. The SA-

FSAM and a conventional threshold-based linear-control model have been evaluated using a campus assistant

mobile application. With the introduction of self-adaptive elements in the control model, the SA-FSAM shows

significant improvements in service adaptation decisions.

Keywords: Fuzzy logic; control theory; service adaptation

*
Corresponding Author: ccheung@acm.org

1. Introduction

For mobile applications to operate efficiently in mobile

environments, they should be able to sense and evaluate

the current operating context and then adapt their

services to the context in order to optimize system

performance. A generic context-aware middleware

architecture—adaptive middleware infrastructure

(AMI)—has been developed, which functions between

the mobile applications and the operating system. The

middleware approach simultaneously satisfies the

individual needs of applications, while maintaining the

overall operating system performance. In order to

handle the vast amount of contextual information and

numerous combinations of adaptive system services,

fuzzy logic is utilized to cope with the uncertainties in

adaptation control. The use of fuzzy logic serves two

purposes: in addition to adaptation control, fuzzy logic

is also applied on context reasoning and representing

various low-level detector-based contexts and

International Journal of Computational Intelligence Systems, Vol. 6, No. 4 (July, 2013), 778-795

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 778

willieb
Typewritten Text
Received 14 March 2011

willieb
Typewritten Text
Accepted 19 February 2013

Ronnie Cheung, Hassan B. Kazemian, Jiannong Cao

composite abstract contexts, which simplifies input

factors for adaptation decisions. By incorporating

control engineering techniques, the middleware also

employs a model reference adaptive control mechanism

to handle the dynamic aspects of adaptive control.

A fuzzy-based service adaptation model (FSAM)

has been designed as the core inference engine in the

middleware infrastructure. Our focus is on the service

adaptation model, which compares context situations

with the desired response from a model reference

depository. Fuzzy linguistic variables were used to

define context situations and the policies for adopting

suitable services in the context-aware middleware.

Fitness functions were designed to calculate the fitness

degree for each service policy based on the distance

between the service policy and the current context

situation. The decision for service adaptation was made

by selecting the policy with the best fitness degree with

reference to a model reference depository. The

experimental results have proved the effectiveness of

the FSAM in our previous publications12. However, in-

depth experimental results also indicate certain

limitations of the FSAM. When it comes to large-

granular fluctuations, the FSAM cannot handle the

adaptation decisions effectively with drastic changes in

context situations. Control-theory and fuzzy-based

approaches are combined to develop the Self-Adaptive

Fuzzy-based Service Adaptation Model (SA-FSAM) in

the middleware. By employing model reference

adaptive control techniques in control engineering, the

SA-FSAM monitors service adaptation in a real-time

manner. The self-adaptive fuzzy-based approach is

described in the following sections.

2. Background

2.1. Context-Aware Middleware

According to Dey
14,18

, context is any information that

can be used to characterize the situation of an entity. An

entity is a person, place, or object that is considered

relevant to the interaction between a user and an

application, including location, time, activities, and the

preferences of each entity. A system is context-aware if

it uses the context information to provide relevant

information and/or services to the user, where relevancy

depends on the user’s task. Inferred from the analogy

between context-awareness and human consciousness,

context-aware applications can be characterized by a

variety of detectors that monitor multiple contexts, a

service adaptation engine, and actuators for executing

adaptation decisions. There are two critical issues in the

development of adaptive context-aware applications.

First, it would be inefficient for individual applications

to maintain the required contexts independently, and it

would be infeasible for application developers to

provide a detailed description of every possible

potential context. This extra layer of contextual

description can be implemented by a middleware

approach. Second, it is challenging for application

developers to provide each application with its own

adaptation mechanism down to the system level. Again,

a middleware approach provides programmable system

services to the developers. With the context-aware

middleware infrastructure AMI
10,11

, the balance between

the mobile applications and the overall operating system

performance is taken into account.

2.2. Fuzzy-Based Approach

Fuzzy theory
36

 has been used in industrial control and

automation systems for a long time. Fuzzy logic

controllers are very effective for complicated and

imprecise processes, for which either no mathematical

model exists or the mathematical model is severely

nonlinear. Fuzzy logic controllers can attain

performance close to that of human experts under such

poorly defined environments32. Bettini et al.2 identified

two important aspects that should be addressed in

context representation and reasoning: high-level

abstraction of contexts, and uncertainty in context

information. Fuzzy logic provides rich semantic features

to provide high-level abstraction of context information.

In order to handle the vagueness in contextual

information, a fuzzy-based approach to model service

adaptation
10,11

 is developed in this research. Fuzzy logic

is used to represent contextual information and

formalize service adaptation mechanisms.

2.3. Control Theories and Fuzzy-Based

Approaches

Due to the highly dynamic characteristics of mobile

environments, the variations in the ever-changing

contexts are complicated. These variations are

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 779

 Model Reference Adaptive Control

categorized into small-granular oscillations and large-

granular fluctuations. Both categories of variations

introduce undesirable effects in service adaptation. They

also cause negative user experience and inefficiency in

resource utilization. The use of fuzzy-based approaches

can significantly alleviate these effects in the small-

granular oscillations in contexts. The fuzzy-based

inference engine can generate smooth service adaptation

by reducing unnecessary adaptation behavior between

neighboring quality of service (QoS) levels. However,

for large-granular fluctuations in contexts, it is possible

to experience drastic service adaptations across different

QoS levels. To control drastic adaptations from large-

granular fluctuations, the stability of the system and

compliance with application preference need to be

improved. It is necessary to provide mechanisms to

define, detect, and reason with changes in context

information resulting from the large-granular

fluctuations. Control-theoretic techniques provide a

solution to deal with adaptations resulting from drastic

changes in context situations.

Control-theoretic approaches have been widely

applied to computing systems in recent years. The

advantage of these approaches is the improvement of

system performance with optimal resource exploitation.

With control-theoretic mechanisms, the performance of

large-scale and loose-coupled computing systems can be

enhanced using a controlled-based approach. Self-

adaptive systems operate with the guidance of a central

controller to assess their own behaviors in the

surroundings to provide service adaptations. The

fundamental principle behind self-adaptivity in control-

theoretic approaches is to monitor the system states

continuously to adjust service adaptation. The

operations are based on closed-loop control and open-

loop control mechanisms. As shown in Fig. 1, with a

closed-loop control mechanism, the output signal is

used to provide feedback to the system. The controller

implements an algorithm to decide upon a suitable

correction u to drive yp closer to up using process

specific actuators. The feedback is used to reduce the

effects of uncertainty that appear in the form of noise in

the contextual information used for designing the

controller. The closed-loop control mechanism

outperforms open-loop control operations, with a

tradeoff between complexity and stability.

The major challenge in building context-aware

adaptive systems is to develop the capability of the

system to adjust its behavior in response to the

environment in the form of self-adaptation. In the

implementation, self-adaptivity refers the ability of the

SA-FSAM middleware to adapt autonomously (i.e. with

minimal interference) in response to contextual

variations to improve QoS. A typical application might

involve the need to improve response time when the

available bandwidth is low and a dynamic relocation of

the system sources is required in the adaptation process

(for example, to allocate CPU resources to encrypt the

data before transmission or reduce the level of details in

a Web page). However, frequently oscillations in

context variations appeared as noise or disturbances to

the fuzzy controller, which might cause adaptation

decisions to fluctuate too frequently. Feedback loops

provide the generic mechanism for self-adaptation in the

SA-FSAM middleware. The historical records of

adaptation decisions and context variations provide

feedback information for achieving self-adaptivity in the

SA-FSAM middleware. By considering the adjustable

parameters in the model (including the size of large-

granular fluctuation, the time window of past adaptation

information, the damping effect of service adaptation,

etc.), the SA-FSAM can be fine tuned on the basis of

domain knowledge.

The remainder of this paper is organized as follows.

Section 3 provides a discussion on the related work. In

Section 4, the details of the middleware architecture are

presented. In Section 5, the SA-FSAM framework is

presented, including definitions, formulas, algorithms,

and a sample application. Section 6 illustrates the

experimental results. Conclusions and future work are

discussed in Section 7.

 Fig. 1. A Feedback Loop

3. Related Work

Various researches on context-aware computing have

been carried out in the past few years. In the Gaia

Controller

Process

Actuator

u
yp up

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 780

Ronnie Cheung, Hassan B. Kazemian, Jiannong Cao

project27, an infrastructure was built to provide context

awareness and semantic interoperability. Physical

spaces like rooms, homes, buildings, and airports are

converted into a programmable computing system

called Smart Spaces. Regarding research on

autonomous and multidimensional contexts, significant

progress has been made on fusion services
6
 that extract

and infer sensor-based contextual information using

Bayesian networks. To deal with heterogeneous

contexts, an adaptive online mechanism was presented

by Kim and Varshney
21

 for QoS-sensitive applications.

Winograd
34

 provided different architectures for

handling contexts. Johanson and Fox20 proposed the use

of a centralized Event Heap for handling contexts.

Shafer, Brumitt and Cadiz
30

 performed experiments on

multimodal interactions in context-aware environments.

A reconfigurable context-sensitive middleware was

proposed by Yau et al.
35

 to provide adaptive object

containers for run-time context data acquisition,

monitoring, and detection. The WebPADS
13

 project was

developed by Chuang, Chan, Cao and Cheung to provide

actively deployable and dynamically reconfigurable

service chaining for adapting the dynamic changing

contexts. A context-aware middleware architecture with

the FSAM was introduced by Cheung, Yao, Cao and

Chan
12

.

Control theory, originally developed for handling

industrial control and automation, has been applied to

model physical systems. Control-theoretic approaches

have been applied to computing systems with prevailing

large-scale software systems and wide-area

communication networks. The research community in

software engineering domains and computing

environments has established feedback loops as the core

design elements in large-scale software development of

adaptive systems
26

. Tu et al.
33

 provided an

implementation of load shedding by applying feedback

control in a real-time data stream database system to

balance the database workload. Robertson
29

 proposed a

closed-loop control mechanism for admission control in

web server systems, and the experiments proved the

stableness of the model. The major reason for using

feedback was to reduce the effects of uncertainty in

Internet load, which was difficult to model without

feedback mechanisms.

Fuzzy logic has been widely used since fuzzy set

theory was first introduced by Zadeh
36

. A fuzzy logic

controller1,17,19 comprises of a fuzzification interface, a

knowledge base that consists of a rule base and a data

base, a decision-making logic unit, and a defuzzification

interface. In mobile computing, researchers have been

focusing on the use of fuzzy logic for mobile location

management
7
 and power control

8,31
 in wireless networks.

However, these systems were developed for adaptations

relating to a single aspect. Recently, researchers have

shown increasing interest on fuzzy controlled QoS

adaptation
16,25,28

 to fulfill application requirements in

terms of more generic QoS specifications. In the

CARISMA system, the context-aware middleware

compared the application profile and the current context

to evaluate which policy should be adopted
4,5

. In the

context-aware system implemented by Kwan et al.
23

, the

functionality of a service code module was adapted on

the basis of the estimated resource usage.

There has been a significant amount of research

work on fuzzy-based adaptation. Ghinea et al.
16

developed a fuzzy logic-based descriptions of QoS

specifications, as well as applying fuzzy logic to

specifications based on user perceptions, and fuzzy

programming was used to obtain a user-oriented

ordering of the QoS parameters. Koliver et al.
22

proposed fuzzy rule-based techniques for assisting QoS

adaptations in distributed multimedia systems. To deal

with the uncertainty in variations in context

environments, researchers have been building self-

adaptive systems that are capable of dealing with

continuously changing environments and emerging

requirements by introducing feedback loop mechanisms

in the design
9
. Li and Nahrstedt

24
introduced a fuzzy

control model and a task control model to enhance the

effectiveness of QoS adaptation decisions for a

distributed visual tracking application. Applications were

modeled as a serious of tasks assisted by a feedback loop.

A middleware was used to implement the components to

control adaptations so that various adaptive transient

properties relating to stability and agility were addressed

formally. These approaches were usually developed for

specific problem domains (e.g., multimedia applications)

while our SA-FSAM middleware emphasizes on a

generic adaptation model that can be applied to different

applications.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 781

r

Fig. 2. Adaptive Middleware Infrastructure with Self-Adaptive Fuzzy-based Service Adaptation Model

4. Adaptive Middleware Infrastructure

An adaptive middleware infrastructure (AMI) is

developed to facilitate generic applications to exercise

context-awareness
10,11

. It aims at integrating all the

relevant features by utilizing a unified framework to

facilitate the development of context-aware computing.

The advantage of introducing adaptation mechanisms

into the middleware layer is that the middleware has

both the knowledge of individual mobile applications

and the operating environment. All the relevant features

that AMI integrates include context detection, context

composition, context reasoning, middleware service

delivery, Type of Service (ToS) and Quality of Service

(QoS) enforcement. As shown in Fig. 2, the features are

embodied in the four major modules in the proposed

system.

The first module is the Context Space, which

contains Context Detectors objects and Fuzzy Context

Composers that reason and compose low level contexts

into higher level representations. Examples of context

detectors include wrappers for OS events, which could

also be directly communicating with the device drivers.

At a higher level, context detectors could also be

detecting an application’s communication and

computation activity. Fuzzy context composer gather

low level information, marshalling the dynamic and

uncertainty of the mobile environment, and describe the

current context in a more generic and coarse form. For

example, a fuzzy context composer could be monitoring

all the network related detectors, and determine the

quality of network connectivity – good, average, poor

and no connectivity. High level contextual information

is also useful for adaptation with mobile applications.

The second module is the Middleware Service Space.

This is the execution environment for both Public

Middleware Services (one set of services that are shared

among all mobile application) and Application Specific

Middleware Services (each mobile application has its

own set of services). These adaptive middleware

services are categorized by their service nature into

either public or application specific aspects. For

example, a Web caching and prefetching middleware

service is categorized as public since the cache pool

benefits from the “economy of scale”, and the

operations involved are generic among different mobile

applications; a media transcoding service is categorized

Detector

Detector
Detector

 Context
Composer

Public Middleware
Services Application Specific

Middleware Services

 Middleware Manager Space
Service Manager

Context Manager ToS and QoS
Enforcer Context Repository

Manager

Adaptive Middleware Infrastructure

Mobile App.

SA-FSAM
(Self-adaptive
Fuzzy-based

Service
Adaptation
Model)

Mobile App. Mobile App. Mobile App. Mobile App.

Admin Control Manager

Middleware

Context Space
(Context detection &

Composition) Composer
Context Middleware Service Space

Context Historical Depository Service QoS Monitor

Inference Engine
(Context aggregation &

Reasoning)

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 782

Ronnie Cheung, Hassan B. Kazemian, Jiannong Cao

as application specific, since different applications have

different data semantics that require different settings

for the media transcoding service to work properly.

The third module is the Fuzzy Adaptation Engine

(SA-FSAM), which adjusts the middleware services

according to the current context and the mobile

application’s specific ToS and QoS requirements. In

order to control the middleware services, the adaptation

engine makes use of the programmable properties of the

middleware services. To adjust the controllable

parameters for the middleware services, the adaptation

engine calls the corresponding adjustment functions.

The middleware services are responsible for exporting

the required interface for adaptation control, and to

adjust the internal logics to follow the adjustments

specified by the adaptation engine.

The fourth module is the Middleware Manager

Space. It contains five system components, which

coordinates all operations within the mobile middleware.

The Administration Control Manager manages the

admission of mobile applications that subscribe the

services of the middleware. The duties include:

authentication, type of service (ToS) and quality of

service (QoS) negotiations, service subscription and un-

subscription. The Context Manager controls the runtime

environment for the context objects, including the low

level context detectors and high level context composers.

The Context Repository Manager maintains the records

of all contextual information, based on the predicted

future trend of the contexts. The Middleware Service

Manager controls the execution environment for both

public middleware services and application-specific

ones. It coordinates with admission control, and controls

the resources for newly subscribed services. The ToS

and QoS Enforcers monitor the ToS and QoS levels for

each mobile application with inputs from the Context

Space.

5. Self-Adaptive Fuzzy-Based Service

Adaptation Model

5.1. From FSAM to SA-FSAM

The inference engine is the core module in our

middleware architecture. Our major focus is on the

mechanisms provided by the inference engine to

provide adaptation service for upper layer applications.

The FSAM is developed as the inference engine in the

adaptive middleware infrastructure
3,10

. The fuzzy-based

approach demonstrates its effectiveness in service

adaptation. Our approach handles the vagueness in

contextual information as well as adaptations in

multidimensional contexts. Linguistic variables and

membership functions are employed to represent

contexts. The vagueness of contexts becomes

measurable, computable, and quantified. A fitness

function is then developed to establish the relationship

between multidimensional contexts and the policies for

service adaptation. Each policy is associated with a kind

of service for mobile applications. For example, a

mobile meeting application may switch to text chat

when the network bandwidth does not provide

reasonable QoS for voice communications. This is

implemented by using a fitness function to compute the

overall fitness for the current context to fit the

corresponding communication policies. By measuring

and comparing the fitness degree between the current

contexts and a predefined optimal contextual situation,

the most suitable policy is adopted.

It is observed that although the adaptive middleware

reacts to changes in the environment, it is not desirable

to adapt too frequently to drastic changes in context

situations. For example, for multimedia playback, being

too sensitive to any change in contextual situations

could deteriorate application performance. The frequent

adjustments could be irritating to the user and waste

precious computing resources. For this study, two

different kinds of contextual variations are observed that

cause undesirable service adaptation. By considering the

size of granularity, the contextual variations are

classified into two categories, which are presented in

Fig. 3.

The first category is called small-granular

oscillations and the other is described as large-granular

fluctuations. Both kinds of contextual variations occur

as jitters in a time series. The small-granular oscillations

are microscopic but frequent variations of contexts,

which could result from individual or composite

contextual values changing back and forth around

certain threshold values in a marginal area. For example,

a spatially diversified wireless environment could lead

to undesirable jitters in service adaptation switching

between neighboring QoS levels. The large-granular

fluctuations are drastic changes in contextual values

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 783

 Model Reference Adaptive Control

occurring in a fracture of time, and result in drastic

service adaptation jumping across different QoS levels.

Both categories of variations can introduce

undesirable effects on service adaptation, which also

cause negative user experience and inefficiency in

resource utilization. Therefore, service adaptations need

to be insensitive at a certain level to contextual

variations. Concerning the small-granular oscillations,

fuzzy theory has been applied for solving this kind of

problem. The FSAM was implemented to handle

situations with small-granular oscillations context

situations. However, concerning the large-granular

fluctuations, the variations in contexts are so severe that

an adaptation could jump from one QoS level to another

QoS across multiple levels. Our current research

combines control-theoretic approaches with our FSAM

to solve the problem.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20
0

1

2

3

4

5

6
Large-granular Fluctuations

Time (t)

C
o
n
te

x
t

V
a
lu

e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6
Small-granular Oscillations

Time (t)

C
o
n
te

x
t

V
a
lu

e

Fig. 3. Small-granular Oscillations and Large-Granular
 Fluctuations

5.2. Model Reference Adaptive Control in

Context-Aware Middleware

Building self-adaptive software systems with

predictable performance is a major engineering

challenge. Adaptive control theory provides a viable

solution by modifying the control law in the controller

to cope with changes in the controlled process. Using

control theory, a second control loop is included in the

control model, which is installed on top of the main

controller. By employing Model Reference Adaption

Control (MRAC) mechanisms in control engineering,

the second loop adjusts the controller’s model by

operating slowly to provide gradual adjustments to the

controlling model, and operates with slower adjustments

than the major feedback control loop (as shown in Fig.

4). For example, a major feedback loop in the Web

server farm reacts rapidly to bursts of Internet load to

manage the QoS. A second slow-reacting feedback loop

may adjust the control law in the controller to

accommodate the anomalies emerging over time.

 The SA-FSAM controller implements the concepts

in Model Reference Adaptive Control to provide service

adaptation that matches requirements of the application

with reference to the current context situation. The

Model Reference Adaptive Control (MRAC) model was

originally proposed for flight-control problems
15

. In the

MRAC model, the adaptive algorithm compares the

output of the process yp with results from the control

value u of the controller to the desired responses ym

from a standard reference model depository (as shown

in Fig. 4), and then adjusts the controller model by

setting controller parameters to improve the fit for the

best policy in the future. In the SA-FSAM

implementation, the standard model reference

depository contains the standard quality requirements

for different application policies. For example, the

requirements for text chat and voice chat are different

from video communications. The service adaptation

controller switches between different service policies

(such as text chat, voice chat, and video

communications) to meet QoS requirements for mobile

applications, depending on the match between the

current context and the parameters stored in the model

reference depository. In the above example, the model

reference depository may contain the quality

requirements for network bandwidth, CPU clock rate,

network delay, and free RAM space corresponding to

different service quality levels for text chat, voice chat,

and video communications respectively.

Fig. 4. Model Reference Adaptive Control (MRAC)

Controller

Adjustment

Mechanism

up yp

u
Process

Model
Reference

depository

ym

Controller

Parameters

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 784

Ronnie Cheung, Hassan B. Kazemian, Jiannong Cao

In the SA-FSAM framework, historical contextual

information and service adaptation records are

implemented as a main feedback loop to the main

controller. This implementation provides a mechanism

for handling frequent adaptations that appear as

disturbances or noises resulting from frequent or drastic

changes in contextual parameters. However, when such

fluctuations jump across different QoS levels frequently,

they produce undesirable experiences for user.

Therefore, the fuzzy controller in the SA-FSAM

middleware includes a second feedback loop in the

model to provide adjustment mechanisms for the control

rules in the controller. The feedback information (e.g.

the number of service adaptations across two QoS levels

in a time period) can also be used to improve the

adjustment rules gradually to avoid undesirable

adaptations due to large-granular context fluctuations.

5.3. The SA-FSAM Framework

The major contribution of the Self-Adaptive Fuzzy-

based Service Adaptation Model (SA-FSAM) is that it

introduces model reference adaptive control

mechanisms with a fuzzy-based approach to fine tune

adaptations decisions. It offers better application

performance as well as optimized resource usage.

In the design of the SA-FSAM, self-adaptivity is

achieved by taking current contexts as well as historical

contextual information into consideration. The principle

behind the self-adaptivity mechanism is assisted by

historical information. The middleware acquires the

capability of making a judgment to decide on whether

or not the current variation of contexts is drastic, and

implements appropriate adjustment mechanisms to

determine the appropriate adaptation policy accordingly.

For example, the greater is the gap between the current

contexts and the past contexts, the stronger is the

applied damping effect. By using this approach, self-

adaptivity in the FSAM is implemented effectively.

From another perspective, the inference engine becomes

less susceptible to the variations in contexts by

implementing the adjustment mechanisms in the MRAC

model.

It is noticed that for most adaptive context-aware

middleware implementations, the feedback mechanisms

are either hidden or ignored
9
. The explicit design of

feedback control mechanisms has an important impact

on the middleware’s design, architecture, and adaptive

capabilities. By incorporating MRAC mechanisms and

explicit control feedback loops in the design, the fuzzy

controller can be implemented with the capability to

maintain self-adaptivity and stableness in service

adaptation. As shown in Fig. 5, when the output of the

service adaptation engine meets certain conditions (e.g.

number of service adaptations in a time period greater

than a threshold value), the inference engine repeats the

contextual reasoning by taking historical contextual

information into account. A damping technique is

applied in the adjustment mechanisms in the adaptation

control engine to determine the degree of large-granular

fluctuation alleviation.

Fig. 5. The SA-FSAM Architecture

To describe the details of the Self-Adaptive Fuzzy-

based Service Adaptation Model (SA-FSAM), examples

of mobile services available on smart phones are used to

demonstrate the effectiveness of service adaption. The

mobile applications may provide different services s1

and s2, corresponding to email service and chat service

for mobile users. Based on the FSAM model, the

context-aware services running on mobile platforms are

able to provide adaptations to meet different quality of

service requirements. Taking the chat service as an

example, it enables users to communicate through the

mobile platform, by providing different quality of

service levels relating to the chat service. In particular,

due to the spatial and temporal variations of wireless

communication and computing resources, the inference

engine is able to react to the changing contexts and

deliver the most suitable service policy. In order to

maintain an acceptable user experience when the

resource constraints become tight or even severe, the

adaptation mechanisms are predefined by certain rules

(or policies). For the chat application in the mobile

platform, there are three adaptation policies

Fuzz ification

Model Reference

Depository

Fuzzy Inference

Engine with MRAC Contexts

Context

Situation

Membership

Function

Most Suitable

Service

Repository for
Context History

QoS Service

Monitor

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 785

 Model Reference Adaptive Control

corresponding to three QoS levels: textChat, voiceChat,

and videoChat.

Service adaptation has to take into consideration

different context parameters that are reported by the

middleware. The context parameters c1, c2, c3, c4 may

include network bandwidth, CPU clock rate, network

delay and memory usage. A fuzzy-based approach is

being used to model different context situations at

different time intervals. In order to model context

situations, linguistic variables are used to model the

values associated with the context parameters. Instead

of using linear values to represent the context situation

at time t for network bandwidth, CPU clock rate,

network delay and memory usage, a fuzzy-based

context representation is used. For example, at time t,

when c1= 10M, c2=1000MHz, c3=0.2ms, c4=200KB, the

context situation is represented by the degree of

membership associated with four membership functions.

Using the linguistic variables {lv1=“high”, lv2=“low”},

four membership functions are defined to represent the

degree of membership for context situations. A context

situation at time t could be represented by a set of tuples

that describes the degree of membership for the four

membership functions corresponding to c1, c2, c3 and c4.

Through the fuzzification process, the context situation

at time t (when c1= 10M, c2=1000MHz, c3=0.2ms,

c4=200KB) corresponds to the degree of membership

for the membership functions: µNetwork_maxRate high (10M),

µCPU_clockRate high (1000), µNetwork_delay low (0.2), µRAM_freeSpace

high (200). These membership functions are described in

detail in section 6 of this paper. Using the FSAM model,

µNetwork_maxRate high (10M)=0.5 means that the values of

Network_maxRate is high with a degree of membership

of 0.5 when the Network_maxRate is 10Mbps.

Service adaptation is implemented by comparing the

context situation with a standard reference for each

policy. In the chat service example, the standard

reference values refer to the most suitable context

situations for the policies textChat, voiceChat, and

videoChat respectively. For example, a high CPU clock

rate is appropriate for the videoChat service. The

standard reference value for the clock rate that is

suitable for the videoChat service is determined

according to user experience. In the implementation of

the fuzzy-based service adaptation model, standard

reference values for each policy are also fuzzified using

membership functions. For example, with the chat

service, consider the policy that is associated with

videoChat for chat service, the membership function µ-

CPU_clockRate high (best_value_of(c1)) corresponds to the

most suitable value for the context parameter c1

associated with the policy videoChat for the chat service.

It is used for calculating the standard reference value

associated with a certain policy for a particular service.

For the chat service, the standard reference must include

the fuzzified parameters for all the context values c1, c2,

c3 and c4. Model reference adaptive control is

implemented by developing a model reference

depository for each service in the mobile platform. The

model reference depository for the mobile application

platform should include all the standard reference

values for all policies. The current mobile application

example provides two services: s1=chat service,

s2=email service, and the model reference depository

includes the standard reference values for all the

policies for chat and email services (as shown in table 2).

In the following paragraphs, the details of the SA-

FSAM are presented:

Definition 1 (Service): A service is a functionality

provided by the middleware in the application. The

services are delivered at multiple QoS level with

different resource constraints based on different policies.

Let S= {s1, s2, s3,,…, sq} (1≤q), represents the service set,

where si (1≤ i≤ q) represents the i-th service, and q

represents the total number of services available.

Definition 2 (Policy): A policy represents a method

used to deliver a service with a certain resource

requirement and quality-of-service condition. Let Pi=

{pi
1
, pi

2
,…,

im

ip | i∈[1, q]} be a set of policies, where

pi
j (with 1≤ j≤mi) represents the j-th policy

corresponding to the i-th service si , and mi represents

the total number of policies available for the i-th service

si, and q represents the total number of services

available.

Definition 3 (Context): Let C={c1, c2,…, cn} be a set of

context parameters, where ca (1≤ a≤ n) represents the a-

th context parameter, and n is the total number of

context parameters detected by the middleware.

Definition 4 (Context Situation): Context Situation is

defined as the composite parameters to represent a

context at any given time t. The Context Situation at

time t is denoted by a set, which includes n pairs of 3-

element tuples:

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 786

Ronnie Cheung, Hassan B. Kazemian, Jiannong Cao

SI(t) = {(ca, lvb,
ba lvcµ (value_of(ca, t)) | ca ∈ C,

a∈[1,n] b∈[1,k]}

where, ca (1≤ a≤ n) is the a-th context (e.g.

c1=Network_maxRate), n is the total number of context

parameters, lvb with (1≤b≤k) is a linguistic value (e.g.

lv2=high),
ba lvcµ (x) ∈ [0,1] is the predefined

membership function for “ca is lvb”, value_of(ca,t)

represents the value of context ca at time t.

For example, when a=1, c1= Network_maxRate,

lv2=high, t=current, and the value associated with

value_of(ca, t)= value_of(Network_maxRate, current) =

10 M bps, then a possible value of µ Network_maxRate

high(10Mbps) is 0.5. The value 0.5 means that

Network_maxRate is high with a degree of 0.5 when the

Network_maxRate is 10Mbps at the current time

interval.

Definition 5 (Standard Reference): Given a service si,

with respect to each policy pi
j
 where (1≤ j≤mi), it is

assumed that there exists a specific Context Situation

associated with pi
j
. On the basis of such a Context

Situation, the policy pi
j is the most suitable policy for

service si , and should be adopted. Intrinsically, the most

suitable policy means a tradeoff between resource

constraints and the QoS level to be delivered. The most

suitable Context Situation for policy pi
j associated with

service i is referred as a Standard Reference SR(pi
j
).

Given a set of linguistic values LV = {lv1, lv2, …,

lvk}, SR(pi
j
) can be represented by a set of 3-element

tuples:

 SR(pi
j
) = {(ca,, lvb,

ba lvcµ (best_value_of(ca)) | ca∈C,

 a∈[1,n], lvb∈LV, b∈[1,k]}.

 where n is the total number of context parameters,

and k is the total number of linguistic variables, and

best_value_of(ca) refers to the most suitable value for

context ca corresponding to policy pi
j
for service i.

Definition 6 (Model Reference Depository): With mi

corresponding to the number of the policies for service

si, the Model Reference Depository for Pi is defined to

be the set of Standard Reference {SR(pi
1
), SR(pi

2
), … ,

()im

iSR p }, and is denoted by SRD(Pi). The values for

the Standard Reference Depository represent the most

suitable contextual values for each policy. They can be

obtained from empirical experiments. During the

adaptation process, the Model Reference Depository

values are organized into a two-dimensional table (as

shown in Table 2).

Formula 1 (Fitness Function): Given a service si (for

example s1=chat service), the Context Situation at time

t is at certain distance away from any SR(pi
j
), the

Fitness Function is defined to evaluate the fitness degree

of the Context Situation at time t against the Standard

Reference SR(pi
j
). The fitness function FF(SI(t), SR(pi

j
))

for the corresponding context situation and policy is

defined as:

FF (SI(t), SR(pi
j
)) =

size_of (())

1

1

(best_value_of ()) (value_of (,))

j
i

y

SR p
l

y y

y

c c tµ µ
=

−∑

 (1)

where size_of(SR(pi
j
)) represents the number of

tuples in SR(pi
j
), µ(x) is the membership function

corresponding to the context parameter cy, ly is a

positive integer corresponding to the weight attached

to context parameter cy, and (value_of (,))yc tµ

refers to the degree of membership for context

parameter cy at time t.

Formula 2 (Self-Adaptive Fitness Function): The

Fitness Function is extended to the Self-Adaptive

Fitness Function in order to enable self-adaptivity.

Given a service si, the Self-Adaptive Fitness Function is

the mapping from the jointed distances to the fitness

degree of policy pi
j
 , which aggregates the distance of

Context Situation at time t to the Standard Reference

Context Situation SR(pi
j
), and the mean distance of the

Context Situation at previous time intervals tm, tm-1,…,

tm-k.

SA-FF (SI(t), SR(pi
j
)) =

size_of (())

1

1

(best_value_of()) (value_of(,))

(best_value_of()) (alue_of(,)))
1

j
i

y

zlSR p

z z
l

y y y

m k

z m

c c t

c v c t
k

µ µ

µ µ=

−

=

 
− 

 − +
 +
 
 

∑∑

 (2)

The Self-adaptive Fitness Function takes the current

Context Situation and the Contextual Situation in

previous k+1 time intervals into calculation. The

parameter k is used to calculate the mean of the previous

Context Situation, and is regarded as the damping factor

to adjust the damping effect. The Self-adaptive Fitness

Function applies when large-granular fluctuations occur.

In formula (1) and formula (2), the denominators are

used for the calculation of the distance between SI(t)

and SP(pi
j
). After obtaining the fuzzy distance, the

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 787

 Model Reference Adaptive Control

Upon adaptation
{ //Convert the current context value into the fuzzy-based context situation

for each ca ∈C do
 {

for each ca-related predefined membership function
a jc lv

µ (x) do

 {

SI(current) = SI(current)U { (ca, lvj,
a jc lvµ (value_of(ca,current))) };

}
 }

//Select the most suitable policies for each needed service

for each si ∈Sneed do

{ //Establish SRD for Pi’

 for each pi
j ∈Pi do

 {//Calculate SR(pi
j) using related predefined membership function;

SRD(Pi’) = SRD(Pi’) U {SR(pi
j)};

}
 //Calculate the Fitness Degree with Fitness Function for each policy

 and select the most suitable one

 for each pi
j ∈ Pi’ do

 {
 FD(pi

j
) = FF (SI(current), SR(pi

j
));

 if (FD(pi
j) is larger) then best_policy_for_si = pi

j;
}

 //get the set Psuitable for Sneed

 Psuitable = Psuitable U { best_policy_for_si };

}
if (|Psuitable (t) - Psuitable (t-1)| is greater than Expected,) then
{

for each pi
j ∈ Pi’ do

 {//Calculate the Fitness Degree with Self-Adaptive Fitness

Function again if large-granular fluctuation occurs.

 FD(pi
j) = SA-FF (SI(current), SR(pi

j));
 if (FD(pi

j) is larger) then best_policy_for_si = pi
j;

}
 //get the set Suitable for Sneed

 Psuitable = Psuitable U { best_policy_for_si };

}
} //end of adaptation

reciprocal value is calculated to obtain the fitness degree.

When li=1, the function uses Hamming Distance; when

li=2, the function uses Euclidean Distance, both are

classical methods for calculating fuzzy distance between

two states. When li=3, li is regarded as a weight value

for contexts, which can be adjusted by specific

applications to have an effect on policy selection
1
.

Definition 7 (FSAM): The FSAM is a mapping from

the current Context Situation SI(current) to a set of

suitable policies Psuitable, using the fitness function FF in

formula (1), where each element of Psuitable is the most

suitable policy associated with a service si∈ Sneed. The

number of elements in Psuitable is equal to the number of

elements in Sneed.

Definition 8 (SA-FSAM): The SA-FSAM is a mapping

from the current Context Situation SI(current) to a set of

suitable policies Psuitable, using the self-adaptive fitness

function SA-FF in formula (2), where each element of

Psuitable is the most suitable policy associated with a

certain service si∈ Sneed. The number of elements in

Psuitable is equal to the number of elements in Sneed. The

SA-FSAM and the FSAMs uses the same algorithm. By

using the self-adaptive fitness function SA-FF in the

SA-FSAM, self-adaptivity is achieved.

For context-aware mobile middleware, application

profile, user preference and system feedback are often

considered as rules for service adaptation. In this paper,

such rules are regarded as additional interventions.

Three types of additional interventions are defined here:

- Exclusive Intervention: For a given service si,

certain pi
j
 in Pi cannot be used.

- Preference Intervention: For a given service si,

certain pi
j in Pi should be used.

- Conditional Intervention: For a given service si,

certain pi
j
 in Pi should be used under certain context

situation.

Before calculating the fitness degrees of policies,

additional interventions are used to select the set of

policies that can be possibly applied, i.e. additional

intervention rules are used to filter Pi, and then get a

subset of Pi (denoted as Pi’) whose elements satisfy all

the intervention rules, and then we start to calculate

SRD(Pi’) and use fitness function to obtain the final

choice. As described in Fig. 6, the SA-FSAM algorithm

includes four major steps:

 Fig. 6. The SA-FSAM algorithm

Step 1, each context is fuzzified into a linguistic

variable with associated linguistic values. All the values

are composed as Context Situation.

Step 2, the Context Situation and a membership

degree determined by predefined membership at time

interval t, i.e. SI(t), is substituted into the Fitness

Function to calculate the fitness degrees corresponding

to each policy.

Step 3, after all fitness degrees are compared, the

policy with the largest fitness degree is specified as the

most suitable policy Psuitable, i.e. If FD(pi
j
) is the

maximum fitness degree, pi
j
 is selected as the most

suitable policy Psuitable.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 788

Ronnie Cheung, Hassan B. Kazemian, Jiannong Cao

Step 4, if the distance between the current Psuitable

and the Psuitable in the previous time interval is less than

an expectation Expected, the corresponding QoS level is

delivered. However, if the distance between the current

Psuitable and the previous Psuitable is greater than Expected,

which implies that large-granular fluctuations occur, the

fitness degrees will be calculated once again with the

Self-Adaptive Fitness Function. Until each available

policy has been assigned a new fitness degree, the

policy with the largest fitness degree is considered as

the most suitable policy Psuitable, so that the most

appropriate QoS level is determined again.

In the SA-FSAM algorithm, the parameter Expected is

set as the threshold value for determining whether or not

a large-granular fluctuation occurs. It denotes the

condition in the closed-loop control and should be

attained according to application preference and user

experience. As discussed before, the parameter K in the

Self-Adaptive Fitness Function acts as the damping

factor to adjust damping effect. The provision of Expected

and the K in the SA-FF (Self-Adaptive Fitness Function)

enables the context-aware middleware to precisely

adjust the extent of self-adaptivity and the damping

effect to provide adjustment mechanism for the service-

adaptation engine, so that the performance of the

application can be fine-tuned according to the needs.

6. Implementation and Evaluation

The SA-FSAM is implemented as the inference engine

in the middleware architecture. A Campus Assistant

application is used to demonstrate and evaluate the

effectiveness of adaptation decisions. The major

functionalities of the Campus Assistant are to provide

chat or email services at different QoS level according

to the changing contexts, e.g. the network bandwidth

and the memory. The variations in the context situations

are simulated, and changes in the context values may

trigger a service adaptation and corresponding

adjustment mechanisms in the fuzzy controller. With the

experimental results, the performance of the SA-FSAM

is evaluated by comparing SA-FSAM with a

conventional threshold-based linear control model.

6.1. A Campus Assistant Application

The Campus Assistant application is a mobile context-

aware application running on mobile platforms.

Through the wireless access, the Campus Assistant

enables users to communicate with each other in a real-

time interactive manner, or to receive and send emails,

by providing Chat and Email services. In particular, due

to the spatial and temporal variations of wireless

communication and computing resources, the Campus

Assistant application tries to detect the changing

contexts and reflectively deliver the most suitable QoS

level, while maintaining an acceptable user experience

when the resource constraints become tight or even

severe. Such adaptations are predefined by certain rules

(or policies), in the application. The Chat service has

three policies corresponding to three QoS levels for

Chat service: textChat, voiceChat and videoChat. The

Email service has five policies corresponding to five

QoS levels for Email service: headMail, fullMail,

encryptedMail, bigMail and encryptedBigMail. The

contexts cover many aspects because of the multi-

dimensional characteristics including communication,

computing, geographical, organizational, etc. To

simplify context modeling without loss of generality,

four kinds of contexts: Network_maxRate,

CPU_clockRate, Network_delay, RAM_freeSpace are

taken into account in the simulation.

6.2. Setting in the Campus Assistant Application

The Campus Assistant application, it is assumed that

before carrying out each round of service adaptation, the

middleware has obtained the following information:

Service: S = {Chat, Email}, which represents two

categories of services Chat and Email provided by

middleware.

Policy for S1 and S2:

 P1 = {textChat, voiceChat, videoChat}

P2 = {headMail, fullMail, encryptedMail, bigMail,

encryptedBigMail}, which denotes the policies relating

to the services provided at different QoS levels.

Context: C = {Network_maxRate, CPU_clockRate,

Network_delay, RAM_freeSpace}, where C denotes

four kinds of context include network bandwidth, CPU

usage, network delay and memory usage.

Linguistic Values: LV = {low, high}

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 789

 Model Reference Adaptive Control

Context Situation: SI(t), SI(t) is the 3-tuple vector to

represent the fuzzified context:

SI(t) = {(Network_maxRate, high, µNetwork_maxRate high

(value_of(Network_maxRate, t))),

 (CPU_clockRate, high, µCPU_clockRate high (value_of

(CPU_clockRate, t))),

 (Network_delay, low, µNetwork_delay low (value_of

(Network_delay, t))),

 (RAM_freeSpace, high, µRAM_freeSpace high (value_of

(RAM_freeSpace, t)))}

The graphs of the membership functions for network

bandwidth, CPU clock rate, network delay and RAM

free space are described in Fig. 7. The corresponding

formulas for the membership functions C1, C2, C3 and

C4 are defined by (3), (4), (5) and (6). Fig. 8 shows the

variations of context values for the four context

parameters.

Standard Reference Context Situation: The most

suitable values of contexts associated to each policy are

application-specific and determined by relevant

domains. They are predefined in the simulation and

should be heuristically adjusted to the best values in

practice. Table 1 shows the most suitable values

(Standard Reference Context Situations) for the

resource required by each policy.

The membership function for Network_maxRate high:

 0 B＜1Kbps

C1 =
10

Blog
1K

5
 1Kbps≤B≤100Mbps (3)

 1 B＞100Mbps

The membership function for CPU_clockRate high:

 0 F＜2MHz

C2= 10log
2

3

F
M 2MHz≤F≤2GHz (4)

 1 F＞2GHz

The membership function for Network_delay low:

 0 T＞1000ms

C3=
10log

0.11
4

T

− 0.1ms≤T≤1000ms (5)

 1 T＜0.1ms

The membership function for RAM_freeSpace high:

 0 R＜50KB

C4=
10log

50

4

R
K 50KB ≤ R ≤ 500MB (6)

 1 R＞500MB

Table 1 Most Suitable Context Values for the Policies

Network_

maxRate(k

bps)

CPU_cloc

kRate(MH

z)

Network_del

ay(ms)

RAM_freeS

pace(KB)

textChat (p1
1) 4 20 500 0.2

voiceChat (p1
2) 200 300 10 4

videoChat (p1
3) 10000 1000 0.2 200

headMail (p2
1) 2 4 n/a 0.2

fullMail (p2
2) 10 10 n/a 0.4

encryptedMail (p2
3) 10 100 n/a 10

bigMail (p2
4) 500 50 n/a 2

encryptedBigMail

(p2
5)

500 1000 n/a 100

Fig. 7. The Membership Functions

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 790

Ronnie Cheung, Hassan B. Kazemian, Jiannong Cao

Model Reference Depository SRD(P1’) and

SRD(P2’): Based on the most suitable values in Table 1

and the membership functions (3), (4), (5) and (6), the

values for SRD(P1’) and SRD(P2’) are calculated and

listed in Table 2. It is assumed that the Chat service

requires interaction between users so that the

Network_delay is taken into account. For Email service,

which does not require interaction rather than passive

reading, Network_delay is neglected.

Table 2 Model Reference Depository, SRD(P1’) and SRD(P2’)

Network_

maxRate
High

CPU_clock

Rate High

Network_

delay Low

RAM_

freeSpace
High

SR(p1
1) 0.12 0.33 0.08 0.15

SR(p1
2) 0.46 0.72 0.50 0.48

SR(p1
3) 0.80 0.90 0.92 0.90

SR(p2
1) 0.06 0.10 n/a 0.15

SR(p2
2) 0.20 0.23 n/a 0.23

SR(p2
3) 0.20 0.57 n/a 0.58

SR(p2
4) 0.54 0.47 n/a 0.40

SR(p2
5) 0.54 0.90 n/a 0.83

With the above information, the steps for developing

the SA-FSAM are illustrated. First, the predefined

membership functions are used to map the current

context into the Context Situation as follows:

SI(t) = { (Network_maxRate, high, Network_maxRate highµ (value_of

(Network_maxRate, t))),

 (CPU_clockRate, high, CPU_clockRate highµ (value_of

(CPU_clockRate, t))),

 (Network_delay, low, (v Network_delay lowµ (value_of

(Network_delay, t))),

 (RAM_freeSpace, high, RAM_freeSpace highµ (value_of

(RAM_freeSpace, t)))}

Secondly, the Fitness Function and Self-Adaptive

Fitness Function are utilized to calculate the fitness

degrees of the current context for each policy. The SA-

FSAM algorithm is applied and the values of the current

context SRD(P1) and SRD(P2) are substituted into the

formulas FF and SA-FF, respectively.

Regarding the Self-Adaptive Fitness Function, the

threshold value of expectation Expected is set to 2, which

implies that any service adaptation jumping across two

QoS levels will be detected as a large-granular

fluctuation. The damping factor K in SA-FF is set to

two, which means that the historical information at the

previous two time intervals is considered. Finally, the

policy Psuitable which has the maximum fitness degree

will be the most suitable one to be adopted.

For Chat service:

Psuitable = Max {FF(SI(t), SR(P1

1)), FF(SI(t), SR(P1
2)),

FF(SI(t), SR(P1
3))}

For Email service:

Psuitable =Max {FF(SI(t), SR(P2

1)), FF(SI(t),SR(P2
2)),

FF(SI(t),SR(P2
3)), FF(SI(t),SR(P2

4))
FF(SI(t),SR(P2

5))

6.3. Experimental Results

We simulate the variations in contexts values by

generating 160 sets of 4-element tuples such as

Network_maxRate, CPU_clockRate, Network_delay

and RAM_freeSpace. It is assumed that the context

parameters for network bandwidth, network delay, CPU

usage and memory usage represent the major influence

on the performance of mobile applications. The 160 sets

of 4-element tuples are fed into the SA-FSAM inference

engine round by round in a time series manner. For

evaluation, a conventional threshold-based linear-

control approach is also implemented in the Campus

Assistant application.

By referring to the formula for QoS parameter

aggregation in the video distribution system by Koliver

et al.
22

, we follow their approach to produce the

conventional context aggregation values. The QoS

parameters are considered as a subset of the contexts

and the formula is generalized to be used in service

adaptation. A service adaptation mode M is defined by

the formula: M = (f1 w1 + f2 w2 + …+ fi wi), where fi

denotes the adaptation factor of each independent

context, wi represents the weight value for each context,

i={1,2,3,4}, and wi is used to adjust the individual effect

on adaptation of each context and alleviate the

compensation among them. According to the predefined

association between the mode M and each policy, the

most suitable policy is adopted to deliver the most

suitable service, according to the context at a given time

t. In the mapping from each context ci to its adaptation

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 791

Ronnie Cheung, Hassan B. Kazemian, Jiannong Cao

factor: fi = si ci, where ci ∈ Ci ,i={1,2,3,4}, si is a scaling

factor to normalize fi , Ci = [min, max] determines a

valid numerical range for each context, and min is the

lower bound while max is the upper bound. When the

context is out of the range of Ci,, it is rejected and

neglected.

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000
Variation of Network Bandwidth

N
e
tw

o
rk

_
_
m

a
x
R
a
te

(K
b
p
s
)

0 20 40 60 80 100 120 140 160
0

200

400

600

800

1000

Variation of CPU rate

C
P
U
_
_
c
lo
c
k
R
a
te

(M
H
z
)

0 20 40 60 80 100 120 140 160
0

50

100

150
Variation of Network Delay

N
e
tw

o
rk

_
_
d
e
la
y
(m

s
)

0 20 40 60 80 100 120 140 160
0

200

400

600
Variation of Memory Available

R
A
M

_
_
fr
e
e
S
p
a
c
e
(K

B
)

 Fig. 8. Variations of Contexts

In the implementation, the setting of the threshold-

based linear control is outlined as follows:
Context: C = {Network_maxRate, CPU_clockRate,

Network_delay, RAM_freeSpace}

Weight: wi = 1

Scaling Factor: si = 1

Adaptation Factor: fi,, = ci, where i={1,2,3,4}

For Chat service: M = c1/ c3 + c2 + c4

For Email service: M = c1 + c2 + c4

The threshold values are defined in Table 3 and

Table 4 respectively.

Table 3 Thresholds of Adaptation Mode for Chat

Chat Policy M

textChat(p1
1
) [min, 53.2)

voiceChat(p1
2
) [53.2, 926)

videoChat (p1
3
) [926, max)

Table 4 Thresholds of Adaptation Mode for Email

Email Policy M

headMail (p2
1
) [min, 15.2)

fullMail (p2
2
) [15.2, 38)

encryptedMail (p2
3
) [38, 98)

bigMail (p2
4
) [98, 496)

encryptedBigMail(p2
5
) [496, max)

 With the 160 sets of tuples as the input (there are 8

groups while each group contains 20 sets of tuples), the

performance of the SA-FASM and FASM models and

the threshold-based linear control was evaluated. The

three models produce the results to determine the

respective service adaptation. The adaptation decisions

are recorded in the log files and compared as in shown

Fig. 9 and Fig. 10. In general, it is observed that the

variations caused by the small-granular oscillations of

context are filtered by the fuzzy inference engines

associated with both the SA-FASM and FASM models.

With the FSAM and the SA-FSAM, there is no service

adaptation from time interval t = 3 to time interval t =

38 for Email service (as shown in Fig. 9). For Chat

Service there are no service adaptations for the FSAM

and SA-FSAM from the time interval t = 52 to time

interval t = 78 (as shown in Fig. 10). In contrast, the

threshold-based inference engine is sensitive and

produces zigzag fluctuations in service adaptation. In a

situation of severely fluctuations in context values, the

service adaptations become overactive and keep

changing accordingly. These small-granular oscillations

in service adaptation may lead to unbearable

deterioration of QoS and consumption of large amounts

of precious communication and computational resources.

From a microscopic view, it is not difficult to

observe that the adaptation curves generated by the SA-

FASM and FSAMs are relatively smoother than those

by the threshold-based linear control. It indicates that

the fuzzy-based approaches have better tolerance to

these marginal small-granular oscillations of context,

which helps to improve the effectiveness of the service

adaptation and resource utilization.

However, in the event of large-granular fluctuation

in context values, which is the Email service from the

time interval t = 104 to time interval t = 115 shown in

Fig. 9, the large-granular fluctuations in service

adaptation are not handled using the FSAM. The

conventional fuzzy-based technique cannot process such

fluctuations, since the variations of contexts are neither

marginal nor minor. Using the SA-FSAM approach, the

closed-loop control enables the inference engine to

detect the change adaptations that are greater than one

QoS level, and adjust the radical change with the Self-

adaptive Fitness Function. The past adaptations in the

previous two time intervals have a joint effect on the

current adaptation decision to decide the damping effect.

By including self-adaptivity in a time series, the

adaptations of the application system to those large-

granular fluctuations become adjustable.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 792

 Model Reference Adaptive Control

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

headMail

fullMail

encryptedMail

bigMail

encryptedBigMail

Service Adaptation with Linear Control

Time Interval (t)

Q
o
S

 L
e
v
e
l

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

headMail

fullMail

encryptedMail

bigMail

encryptedBigMail

Service Adaptation with SA-FSAM

Time Interval (t)

Q
o
S

 L
e
v
e
l

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

headMail

fullMail

encryptedMail

bigMail

encryptedBigMail

Service Adaptation with FSAM

Time Interval (t)

Q
o
S

 L
e
v
e
l

 Fig. 9. Email Service Adaptation

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

textChat

voiceChat

videoChat

Service Adaptation with Linear Control

Time Interval (t)

Q
o
S

 L
e
v
e
l

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

textChat

voiceChat

videoChat

Service Adaptation with FSAM

Time Interval (t)

Q
o
S

 L
e
v
e
l

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

textChat

voiceChat

videoChat

Service Adaptation with SA-FSAM

Time Interval (t)

Q
o
S

 L
e
v
e
l

Fig.10. Chat Service Adaptation

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 793

Ronnie Cheung, Hassan B. Kazemian, Jiannong Cao

It can be seen from Fig. 9 that for Email service, the

SA-FSAM eliminates the zigzag adaptations in the

FSAM in the time internal t = 113. The SA-FSAM

migrates smoothly to the next QoS level compared with

the FSAM, avoiding drastic changes in QoS level

resulting from adaptation decisions.

7. Conclusions and Future Work

In this research, a generic adaptive middleware

infrastructure is introduced. The middleware

infrastructure accommodates a self-adaptive model for

service adaptation. A Model Reference Adaptive

Control mechanism is implemented in the SA-FSAM

middleware. Control-theory and fuzzy-based

approaches are combined to develop the SA-FSAM in

the middleware. The core work lies on the Fitness

Function and the Self-Adaptive Fitness Function. A

campus assistant application is used to demonstrate the

adaptation process. Based on the experimental results, it

is observed that the SA-FSAM inference engine

effectively alleviates the small-granular oscillations in

context, and also smoothes the large-granular

fluctuations that occur due to drastic changes in context

information. The mechanisms behind the SA-FSAM are

utilization of historical adaptation information and

closed-loop control. With introduction of model

reference adaptive control mechanisms, the static

FSAM is enhanced to a dynamic control process. The

performance of the context-aware middleware is

enhanced in terms of resource utilization by avoiding

drastic changes in adaptation decisions.

Certain limitations lie in the proposed framework. In

practical scenarios, the research work provides a generic

framework for mobile application development.

However, the effectiveness also relies on the fuzzy

membership functions used for defining context

situations. It requires domain knowledge, user

experience, and application preference to construct

suitable membership functions for different context

parameters. One direction of the future work would aim

at developing suitable membership functions for

different context situation parameters. Another direction

of future research would be to enhance the adjustment

mechanisms in the model reference adaptive control

process by making use of the historical records of

context values and services adaptations to make context

predictions.

Acknowledgments

The authors would like to thank Gang Yao for providing

the simulation results for the evaluations.

References

1. C. V. Altrock, Fuzzy Logic and Neuro-Fuzzy, Applications

Explained (Prentice Hall, 1995).

2. C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D.

Nicklas, A. Ranganathan, D. Riboni. A Survey of Context

Modelling and Reasoning Techniques, Pervasive and

Mobile Computing, 6(2) (2010) 161-180.

3. J. Cao, N. Xing, A. T. S. Chan, Y. Feng, B. Jin, Service

Adaptation Using Fuzzy Theory in Context-aware

Mobile Computing Middleware. Proceedings of the 11th

IEEE International Conference on Embedded and Real-

Time Computing Systems and Applications, (Hong Kong,

China, 2005), pp. 496–501.

4. L. Capra L., Mobile Computing Middleware for Context-

Aware Applications. Proceedings of the 24th International

Conference on Software Engineering, (Limerick, Ireland,

2000), pp. 723–724.

5. L. Capra, W. Emmerich, C. Mascolo, CARISMA: Context-

aware Reflective Middleware System for Mobile

Applications. IEEE Transactions on Software Engineering,

29(10) (2003) 929–945.

6. P. Castro, M. Mani, S. Mathur, R. Muntz, Managing

Context for Internet Video Conferences: The Multimedia

Internet Recorder and Archive. Proceedings of Multimedia

and Computer Networks , (San Jose, CA., 2000), pp. 1-12

7. P. M. L. Chan, R. E. Sheriff, Y. F. Hu, P. Conforto, C.

Tocci, Mobility Management Incorporating Fuzzy Logic

for Heterogeneous an IP environment., IEEE

Communications Magazine, 39(12) (2001) 42–51.

8. P. R. Chang, B. C. Wang, Adaptive Fuzzy Power control

for CDMA Mobile Radio Systems. IEEE Transactions on

Vehicular Technology, 45(2) (1996) 225–236.

9. B. H. Cheng, R. de Lemos, H. Giese et al., Software

engineering for self-adaptive systems: A research roadmap.

In: Cheng, B.H., de Lemos, R., Giese, H., Inverardi, P.,

Magee, J. (eds.) Software Engineering for Self-Adaptive

Systems, LNCS, vol. 5525 (Springer, Heidelberg, 2009).

10. R. Cheung, An Adaptive Middleware Infrastructure

Incorporating Fuzzy Logic for Mobile Computing,

Proceedings of the International Conference on Next

Generation Web Services Practices. IEEE Computer

Society Press, (South Korea, 2005), pp. 449–451.

11. R. Cheung, J. Cao, G. Yao, A. T. S. Chan, A Fuzzy-based

Service Adaptation Middleware for Context-aware

Computing. Proceedings of the IFIP International

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 794

 Model Reference Adaptive Control

Conference on Embedded and Ubiquitous Computing,

(Korea, 2006), pp. 580–590.

12. R. Cheung, G. Yao, J. Cao, A. T. S Chan, A Fuzzy Service

Adaptation Engine for Context-aware Mobile Computing

Middleware. International Journal of Pervasive Computing

and Communications, 4(2) (2008) 147–165.

13. S. N. Chuang, A. T. S. Chan, J. Cao, R. Cheung, Dynamic

Service Reconfiguration for Wireless Web Access.

Proceedings of the 12th International World Wide Web

Conference, ACM Press, (Budapest, Hungary, 2003), pp.

58–67.

14. A. K. Dey, Understanding and using context.. Personal and

Ubiquitous Computing, 5(1) (2001) 4-7.

15. G. Dumont, M. Huzmezan, Concepts, Methods and

Techniques in Adaptive Control. Proceedings of the IEEE

American Control Conference, (Anchorage, USA, 2002),

Vol 2 1137–1150.

16. G. Ghinea, G. A. Magoulas, C. Siamitros, Perceptual

Considerations in a QoS Framework: a Fuzzy Logic

Formulation. IEEE Fourth Workshop on Multimedia Signal

Processing, (Cannes , France, 2001), pp. 353–358.

17. K. Hirota, W. Pedrycz, Analysis and Synthesis of Fuzzy

Systems by the use of Fuzzy Sets. Fuzzy Sets and Systems,

10(1) (1983) 1–13.

18. J. Hong, E. Suh, S. Kim S., Context-Aware Systems: A

literature Review and Classifications, Expert Systems with

Applications, 36(4) (2009) 8509-8522.

19. J. R. Jang, Self-learning Fuzzy Controllers Based on

Temporal Back Propagation. IEEE Transactions on Neural

Networks, 3(5) (1992) 714–713.

20. B. Johanson, A. Fox, The Event Heap: An Enabling

Infrastructure for Interactive Workspaces. Proceedings of

the 4th IEEE Workshop on Mobile Computer Systems and

Applications. IEEE CS Press, (Callicoon (NY), USA, 2002),

pp. 1-19

21. S. Kim, P. K. Varshney, Adaptive Online Bandwidth

Allocation and Reservation for QoS Sensitive Multimedia

Networks, Computer Communications 28(17) (2005) 1959–

1969.

22. C. Koliver, J. M. Farines, K. Nahrstedt, QoS Adaptation

Based on Fuzzy Theory. Soft Computing for

Communications (Springer-Verlag, 2004).

23. V. W. M. Kwan, F. C. M. Lau, C. L. Wang, Functionality

Adaptation: A Context-aware Service Code Adaptation for

Pervasive Computing Environments. Proceedings of

IEEE/WIC International Conference on Web Intelligence,

(Halifax, Canada, 2003) , pp. 358–364.

24. B. Li, K. Nahrstedt, A Control-based Middleware

Framework for Quality of Service Adaptations. IEEE

Journal on Selected Areas in Communications, 17(9) (1999)

1632–1650.

25. K. R. Lo, C. J. Chang, C. Chang, C. B. Shung, A QoS-

guaranteed fuzzy channel allocation controller for

hierarchical cellular systems. IEEE Transactions on

Vehicular Technology, 49(5) (2000) 1588–1598.

26. H. A. Müller, M. Pezzè, M. Shaw, Visibility of control in

adaptive systems. Proceedings of the Second International

Workshop on Ultra-Large-Scale Software-Intensive

Systems, Workshop at 30th IEEE/ACM International

Conference on Software Engineering, (Leipzig, Germany,

2008), pp. 23-26.

27. M. Roman, C. K. Hess, R. Cerqueira, R. H. Campbell, K.

Narhstedt, Gaia: A Middleware Infrastructure to Enable

Active Spaces. IEEE Pervasive Computing, 1 (2002) 74–83.

28. B. Qiu, The application of fuzzy prediction for the

improvement of QoS performance. Proceedings of IEEE

International Conference on Communications, Vol 3

(Atlanta, GA , USA, 1998), pp. 1769–1773.

29. A., Robertson, B. Wittenmark, M. Kihl, Analysis and

design of admission control in Web-server systems.

Proceedings of American Control Conference, Vol 1 (2003,

Denver, CO), pp. 254–259.

30. S. A. N. Shafer, B. Brumitt, J. Cadiz, Interaction Issues in

Context-Aware Interactive Environments. Special issue on

Context-Aware Computing, Human-Computer Interaction,

16(2) (2001) 363–378.

31. Y. M. Siu, K. K. Soo, CDMA Mobile Systems with Tailor-

made Power Control to Each Mobile Station. Proceeding

of the First International Conference on 3G Mobile

Communication Technologies, (London, UK, 2000), pp.

46–50.

32. H. Takagi, Cooperative System of Neural Network, Fuzzy

Logic and its Application to Consumer Products, Industrial

Applications of Fuzzy Control and Intelligent Systems,

(Von Nostrand Reinhold, New York, 1993).

33. Y. Tu, S. Liu, S. Prabhakar, B. Yao, Load Shedding in

Stream Databases: A Control-based Approach, Proceedings

of the 32nd International Conference on Very Large Data

Bases, Vol 32 (Seoul, Korea, 2006) pp. 787–798.

34. T. Winograd, Architectures for Context. Human-Computer

Interaction, Human Computer Interaction 16(2) (2001)

401-419.

35. S. Yau, F. Karim, Y. Wang, B. Wang, S. Gupta,

Reconfigurable Context-Sensitive Middleware for

Pervasive Computing. IEEE Pervasive Computing, July-

Sept (2002) 33–40.

36. L. A. Zadeh, Fuzzy sets, Information and Control 8(3)

(1965) 338–353.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 795

