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Abstract

One of key issues for α-n(t) ary resolution automated reasoning based on lattice-valued logic with truth-
value in a lattice implication algebra is to investigate the α-n(t) ary resolution of some generalized literals.
In this article, the determination of α-resolution of any 3-ary generalized literals which include the im-
plication operators not more than 2 in LP(X). It not only lay the foundation for practical implementation
of automated reasoning algorithm in LP(X), but also provides the strong support for α-n(t) ary resolution
automated reasoning approaches.

Keywords: Incomparability; lattice implication algebra; Lattice-valued logic; automated reasoning; α −
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1. Introduction

As is known to all, one significant function of artifi-
cial intelligence is to make computer simulate hu-
man being in dealing with uncertain information.
And logic establishes the foundation for it. How-
ever, certain information process is based on the
classic logic. Non-classical logics consist of these
logics handling a wide variety of uncertainties (such
as fuzziness, randomness, and so on ) and fuzzy
reasoning. Therefore, non-classical logic has been
proved to be a formal and useful technique for com-
puter science to deal with fuzzy and uncertain in-
formation. Many-valued logic, as the extension
and development of classical logic, has always been

a crucial direction in non-classical logic. Lattice-
valued logic, an important many-valued logic, has
two prominent roles: One is to extend the chain-
type truth-valued field of the current logics to some
relatively general lattices. The other is that the in-
completely comparable property of truth value char-
acterized by the general lattice can more effectively
reflect the uncertainty of human being’s thinking,
judging and decision. Hence, lattice-valued logic
has become a research field and strongly influenced
the development of algebraic logic, computer sci-
ence and artificial intelligent technology. In order
to investigate a many-valued logical system whose
propositional value is given in a lattice, in 1993, Xu
first established the lattice implication algebra by
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combining lattice and implication algebra, and ex-
plored many useful structures 9,13.

As the use of non-classical logics becomes in-
creasingly important in computer science, AI and
logic programming, the developing efficient auto-
mated theorem proving based on non-classical logic
is also an active area of research (e.g., for fuzzy logic
and many-valued logic, among others). The essen-
tial idea in many of those methods is to transform
the resolution algorithm into fuzzy logic and many-
valued logic to that of classical logic. To the best of
our knowledge, proof theory for lattice-valued logic
has so far not been extensively developed. There
has also been investigations of resolution-based au-
tomated reasoning in lattice-valued logic based on
LIA (e.g., among others, 1,2,3,4,5,6,7,8,12,13,14,15). The
aim of dealing with incomparability leads to the
complexity of logical formula in LIA based lattice-
valued logic. Correspondingly, the resolution meth-
ods in LIA based lattice-valued logic have new fea-
tures such as (a) resolution is based on general-
ized literals, which contain constants and implica-
tion connectives; (b) resolution is proceeded at a
different truth-valued level α chosen from the truth-
valued fieldłLIA and the number of resolution gen-
eralized literals is fixed at 2 in each resolution in α-
resolution deduction. So, the α-resolution is also
called α-2 ary resolution; (c) it is not easy to judge
directly if two generalized literals are α-resolvent
or not, because the structure of generalized literal
is very complex. Due to these new features, it is
not feasible to apply directly the resolution-based
automated reasoning theory and methods in classi-
cal logic and in many chain-type many-valued logics
into that of lattice-valued logic with incomparability.
Hence, an α-2 ary resolution principle for a lattice-
valued propositional logic LP(X) has been proposed
in 12,13, which can be used to prove whether a lattice-
valued logical formula in LP(X) is false at a truth-
value level α (i.e., α-false) or not, and the theorems
of soundness and completeness for the α-2 ary res-
olution principle were also proved. In addition, the
work in 13 extends the α-2 ary resolution principle
for LP(X) to the corresponding lattice-valued first-
order logic LF(X).

With the development of research, it shows that

α-2 ary resolution automated reasoning based on
lattice-valued logic aiming at processing uncertain
information with incomparability is scientific and
effective. But there are limitations in α-2 ary res-
olution automated reasoning in two aspects: (1) α-
2 ary resolution can only process the resolution of
2-ary generalized literals; (2) the number of resolu-
tion generalized literals is fixed at 2 in each resolu-
tion in α-2 ary resolution deduction. These limita-
tions make the α-2 ary resolution automated reason-
ing theory and applications are limited, and also di-
rectly affect the efficiency of α-2 ary resolution au-
tomated reasoning. The complexity of lattice-valued
logic systems based on LIAs and the logical formu-
lae, will limit the efficiency of α-2 ary resolution
automated reasoning. Therefore, it is necessary to
study resolution automated reasoning theory, meth-
ods, algorithms and procedures which improve the
resolution automated reasoning efficiency under the
premise of keeping the depict ability in complex-
ity problems. To resolve these limitations, Xu 18

extended the number of resolution generalized lit-
eral from 2 to n, and proposed the general form of
α-resolution, and the soundness and completeness
are also built. In α-n(t) ary resolution, the number
n(t) of resolution generalized literals is not fixed at
some number, but it will be different in the each res-
olution, where n(t) means the number of resolution
generalized literals in the tth resolution.

In order to study the α-n(t) ary resolution auto-
mated reasoning, it is very important to determine if
many generalized literals group are α-resolvent or
not, it also effect the reasoning process. So, we will
especially focus on how to determine if generalized
literals group are α-resolvent (i.e., α-resolution) or
not.

In this paper, we mainly discuss the α-solution
of 3-ary generalized literals which include not more
than 2 implication operators. It will be of great use
to provide foundation to study α-resolvent of many
generalized literals group . Thus, it will be further to
lay the foundation on researching α-n(t) ary resolu-
tion automated reasoning.
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2. Preliminaries

Definition 1. 10 Let (L,∨,∧,O, I) be a bounded lat-
tice with an order-reversing involution ′, the greatest
element I and the smallest element O, and

→: L×L−→ L

be a mapping. L = (L,∨,∧,′ ,→,O, I) is called a
lattice implication algebra if the following condi-
tions hold for any x,y,z ∈ L:

(I1) x→ (y→ z) = y→ (x→ z);
(I2) x→ x = I;
(I3) x→ y = y

′ → x
′
;

(I4) x→ y = y→ x = I implies x = y;
(I5) (x→ y)→ y = (y→ x)→ x;
(l1) (x∨ y)→ z = (x→ z)∧ (y→ z);
(l2) (x∧ y)→ z = (x→ z)∨ (y→ z).
In this paper, we denote L as a lattice implica-

tion algebra (L,∨,∧,′ ,→,O, I).
We list some basic properties of lattice implica-

tion algebras. It is useful to develop these topics in
other sections.

Theorem 1. 14 Let L be a lattice implication alge-
bra. Then for any x,y,z ∈ L, the following conclu-
sions hold:

(1) if I → x = I, then x = I;
(2) I → x = x and x→ O = x′;
(3) O→ x = I and x→ I = I;
(4) (x→ y)→ ((y→ z)→ (x→ z)) = I;
(5) (x→ y)∨ (y→ x) = I;
(6) if x 6 y, then x→ z > y→ z and z→ x 6 z→

y;
(7) x 6 y if and only if x→ y = I;
(8) (z→ x)→ (z→ y) = (x∧z)→ y = (x→ z)→

(x→ y);
(9) x→ (y∨ z) = (y→ z)→ (x→ z);
(10) x → (y → z) = (x∨ y) → z if and only if

x→ (y→ z) = x→ z = y→ z;
(11) z 6 y→ x if and only if y 6 z→ x.

Definition 2. 11 Let X be a set of propositional
variables, T = L ∪ {′,→} be a type with ar(′)=1,
ar(→)=2 and ar(α)=0 for any α ∈ L. The proposi-
tional algebra of the lattice-valued propositional cal-
culus on the set X of propositional variables is the
free T algebra on X is denoted by LP(X).

Theorem 2. 14 LP(X) is the minimal set Y which
satisfies:

(1) X ∪L⊆ Y.
(2) if p,q ∈ Y , then p′, p→ q ∈ Y.

Definition 3. 14 A valuation of LP(X) is a proposi-
tional algebra homomorphism ν : LP(X)→ L.

Definition 4. 14 Let p ∈ LP(X),α ∈ L, If there ex-
ists a valuation ν of LP(X) such that ν(p) > α , p
is satisfiable by a truth-value level α , in short, α-
satisfiable; If ν(p) > α for every valuation ν , p is
valid by the truth-value level α , in short, α-valid. If
α = I, then p is valid simply.

Definition 5. 11 Let p ∈ LP(X). If ν(p) 6 α for any
valuation ν of LP(X), p is always false by the truth-
valued level α , in short, α-false. If α = O, then p is
valid.

Definition 6. 11 A lattice-valued propositional log-
ical formula f is called an extremely simple form,
in short, ESF, if a lattice-valued propositional log-
ical formula f ∗ obtained by deleting any constant
or literal or implication item appearing in f is not
equivalent to f .

Definition 7. 11 A lattice-valued propositional logi-
cal formula f is called an indecomposable extremely
simple form, in short, IESF, if:

(1) f is an ESF containing connective → and ′.
(2) for any g ∈ LP(X), if g ∈ f in LP(X), then

g is an ESF containing connective → and ′ at most,
where

LP(X) = (LP(X)� =,∨,∧,′ ,→) is a lattice im-
plication algebra.

LP(X)�= = {p|p ∈ LP(X)}, p = {q ∈
LP(X)|q = p}.
Definition 8. 14 All the constants, literals and IESFs
are generalized literals.

Definition 9. 14 Let α ∈ L, and G1,G2 be two gen-
eralized clauses of the form:

G1 = g1∨·· ·∨gi∨·· ·∨gn,
G2 = h1∨·· ·∨h j ∨·· ·∨gn

If gi∧h j 6 α , then
G = g1 ∨ ·· · ∨ gi−1 ∨ gi+1 ∨ ·· · ∨ gn ∨ h1 ∨ ·· · ∨

h j−1∨h j+1∨·· ·∨gn
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is an α-resolvent of G1 and G2, denoted by G =
Rα(G1,G2), and gi and h j form an α-resolution pair,
denoted by (gi,h j)−α .

Let g be a generalized literal in LP(X):
Dα(g) = {h|(g,h)−α,h is a generalized literal

in LP(X)}. Dα(g) is the α-resolution field of g.

Definition 10. 18 Let Ci = pi1 ∨ ·· · ∨ pimi
be gener-

alized clauses of LP(X), Hi = {pi1, · · · , pimi
} the set

of all disjuncts occurring in Ci, i = 1,2, · · · ,m,α ∈ L.
For any i ∈ {1,2, · · · ,m}, if there exist generalized
literals xi ∈ Hi such that x1∧ x2∧·· ·∧ xm 6 α , then

C1(x1 = α)∨C2(x2 = α)∨·· ·∨Cm(xm = α)

is called an α-resolvent of C1,C2, · · · ,Cm, de-
noted by Rp(g−α)(C1(x1),C2(x2), · · · ,Cm(xm)), x1,
x2, · · · ,xm are called an α-resolution group.

The α-resolution group x1,x2, · · · ,xm, denoted
by (x1,x2, · · · ,xm)−α .

Definition 11. Let g be a generalized literal in
LP(X) and α ∈ L. Denote

Dm
α(g) = {(h1,h2, · · · ,hm)|(g,h1,h2, · · · ,hm)−α},

where h1,h2, · · · ,hm are generalized literals in
LP(X). Dm

α(g) is the (m + 1)-ary α-resolution field
of g.

From the Definition 10 and Definition 11, we can
obtain the following result, easily.

Theorem 3. Let g,h1,h2, · · · ,hm are generalized lit-
erals in LP(X).

(1) (h1,h2, · · · ,hm) ∈ Dm
α(g)⇔

(g,h1,h2, · · · ,hi−1,hi+1, · · · ,hm) ∈ Dm
α(hi).

(2) If g = α ∈ L, then Dm
α(g) is the set of any

generalized literals group in LP(X).
(3) If g is a constant and g � α , then

(h1,h2, · · · ,hm) ∈Dm
α(g) if and only if h1∧h2∧·· ·∧

hm 6 α .
In this paper, we always assume that α satisfies

the condition:
(1) α is a dual numerator and
(2) α ′∧ (α ′→ α) 6 α and ∨β∈L(β ∧β ′) 6 α .
We mainly discuss the α-solvent of 3-ary gener-

alized literals which include the number of implica-
tion operators not more than 2.

3. Determination of 3-ary α-resolution in
LP(X)

In α-3 ary resolution, it is very important to
judge the α-solvent of 3-ary generalized literals. As
the complexity of generalized literals, so it is diffi-
cult to discuss the α-solvent of any three generalized
literals. In this section, we mainly discuss the α-
solvent of 3-ary generalized literals which include
not more than 2 implication operators. The deter-
mination of α-solvent of 3-ary generalized literals
considering all the elements in the following sets in
LP(X).

w1 = { f | f is a generalized literal in LP(X), and
there exist p,q ∈L , p 6= q, such that f 6 p→ q};

w2 = { f | f is a generalized literal in LP(X), and
there exist p ∈L ,a ∈ L, such that f 6 p→ a};

w3 = { f | f is a generalized literal in LP(X), and
there exist p,q∈L , p 6= q, such that f 6 (p→ q)′};

w4 = { f | f is a generalized literal in LP(X), and
there exist p ∈L ,a ∈ L,a′ 
 α , such that f 6 (p→
a)′}.

w = L ∪L ∪4
i wi, where L is the set of con-

stants and L is the set of all literals in LP(X). Let
hi ∈ w, i = 1,2,3, if hi 6 α for some i ∈ {1,2,3},
then h1∧h2∧h3 6 α . Hence, the topic of this paper
will be discussed under the condition hi � α for any
i = 1,2,3.

3.1. The Structure of D2
α(g) when h1 = g ∈ L

If g 6 α , obviously, h1∧h2∧h3 6 α for any general-
ized literals h2,h3 in LP(X). So the following discus-
sions under the condition g 
 α , the different cases
are presented in table 1.

Table 1. Different Cases of Structure of D2
α (g) when h1 = g∈ L.

h2

L L w1 w2 w3 w4
L A1
L A2 B1

h3 w1 A3 B2 C1
w2 A4 B3 C2 D1
w3 A5 B4 C3 D2 E1
w4 A6 B5 C4 D4 E2 F1
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A. Assume h2 = g2 ∈ L.
A1. If h3 ∈ L, then h1∧h2∧h3 
 α .
A2. If h3 ∈L , then h1∧h2∧h3 
 α .
A3. If h3 ∈ w1, then h1∧h2∧h3 
 α .
A4. If h3 ∈ w2,then h1∧h2∧h3 
 α .
A5. If h3 ∈ w3, then h1∧h2∧h3 
 α .
A6. If h3 ∈ w4, then h1∧h2∧h3 
 α .
B. Assume h2 = x2 ∈L .
B1. If h3 = x3 ∈L and x2 = x′3, then h1 ∧ h2 ∧

h3 6 α .
B2. If h3 ∈ w1 and h3 6 (x3 → y3),

B21. If h3 = ((x3 → y3) → z3)′ and x2 = z3,
then h1∧h2∧h3 6 g∧ x2∧ z′3 6 α .

B22. Otherwise, h1∧h2∧h3 
 α .
B3. When h3 ∈ w2 and h3 6 (x3 → α3)

B31. If x2 = x3 and α ′ → α3 6 α , then
h1∧h2∧h3 6 α . In fact, if v(x2) 6 α for any valua-
tion v, we have we have h1∧h2∧h3 6 α . If v(x2)

α , as v(x2)∧ v(x2)′ 6 α and α is a dual numera-
tor, it follows that v(x2)′ 6 α , and so v(x2) > α ′.
We have v(x2) → α3 6 α ′ → α3 6 α . Therefore
h1∧h2∧h3 6 α .

B32. If h3 = ((x3 → α3)→ y3)′, then h1∧h2∧
h3 6 g∧ x2 ∧ y′3. And so, when x2 = y3, we have
h1∧h2∧h3 6 α .

B4. If h3 ∈ w3, h3 6 (x3 → y3)′, and x2 = x′3 or
x2 = y3 , we have h1∧h2∧h3 6 α .

B5. If h3 ∈ w4 and h3 6 (x3 → α3)′, then
h1 ∧ h2 ∧ h3 6 g∧ x2 ∧ x3. Thus, when x2 = x′3, it
follows that h1∧h2∧h3 6 α .

C. Assume h2 ∈ w1 and h2 6 x2 → y2.
C1. If h3 ∈ w1, and h3 6 x3 → y3

C11. When h2 = x2 → y2, h3 = ((x3 → y3)→
α3)′ and α ′

3 6 α , h1∧h2∧h3 6 α .
C12. When h2 = ((x2 → y2) → α2)′ , h3 =

((x3 → y3)→ α3)′ and α ′
2 6 α or α ′

3 6 α , h1∧h2∧
h3 6 α .

C13. Otherwise, h1∧h2∧h3 
 α .
C2. If h3 ∈ w2 and h3 6 x3 → α3, then h1∧h2∧

h3 6 h1∧ (x2 → y2)∧ (x3 → α3).
C21. When h2 = x2 → y2 and h3 = ((x3 →

y3) → α3)′, and x2 → y2 = x3 → y3,α ′ → α3 6 α ,
h1∧h2∧h3 6 α .

C22. Otherwise, h1∧h2∧h3 
 α .
C4. If h3 ∈ w3 and h3 6 (x3 → y3)′, x2 = x3 and

y2 = y3, then h1∧h2∧h3 6 α .

C4. If h3 ∈ w4 and h3 6 (x3 → α3)′ and α ′
3 6 α ,

then h1∧h2∧h3 6 α .
C31. When h2 = ((x2 → y2)→ z2)′ and h3 =

((x3 → (y3 → α3))′, then h1∧h2∧h3 6 g∧z2∧x3 or
h1∧h2∧h3 6 g∧ z2∧ y3. If z′2 = x3 or z′2 = y3, then
h1∧h2∧h3 6 α .

C32. Otherwise, h1∧h2∧h3 
 α .
D. Assume h2 ∈ w2 and h2 6 x2 → α2.
D1. If h3 ∈ w2 and h3 6 x3 → α3, then h1∧h2∧

h3 6 h1∧ (x2 → α2)∧ (x3 → α3).
D11. When x2 = x′3 and α ′

3 → (α ′→ α2) 6 α ,
h1 ∧ h2 ∧ h3 6 α . In fact, if v(x2 → α2) 6 α for
any valuation v in LP(X), we have h1∧h2∧h3 6 α .
If v(x2 → α2) 
 α , then v(x2 → α2)′ 6 α , that is
v(x2 → α2) > α ′, hence v(x2) 6 α ′ → α2. Conse-
quently, v(x3 → α3) = v(x3)→ α3 = α ′

3 → v(x3)′ 6
α ′

3 → (α ′→ α2) 6 α , so h1∧h2∧h3 6 α .
D12. When h2 = ((x2 → α2) → z2)′, then

h1 ∧ h2 ∧ h3 6 g∧ z′2 ∧ (x3 → α3). If z′2 = x3 and
α ′→ α3 6 α , we have h1∧h2∧h3 6 α .

D13. Otherwise, h1∧h2∧h3 
 α .
D2. If h3 ∈ w3 and h3 6 (x3 → y3)′, then h1 ∧

h2∧h3 6 g∧ (x2 → α2)∧ (x3 → y3)′, and so
D21. If x3 = x2 and α ′ → α2 6 α , h1 ∧ h2 ∧

h3 6 α . In fact, it is similar to the proof of 3.1 (B31).
D22. If y′3 = x2 and α ′ → α2 6 α , h1 ∧ h2 ∧

h3 6 α . In fact, it is similar to the proof of 3.1 (B31).
D23. When h2 = ((x2 → α2) → z2)′, then

h1 ∧ h2 ∧ h3 6 g∧ z′2 ∧ (x3 → α3). If z′2 = x3 and
α ′→ α3 6 α , we have h1∧h2∧h3 6 α .

D24. Otherwise, h1∧h2∧h3 
 α .
D3. If h3 ∈ w4 and h3 6 (x3 → α3)′, then

h1∧h2∧h3 6 g∧ (x2 → α2)∧ (x3 → α3)′.
D31. When x2 = x′3 and α ′ → α2 6 α , h1 ∧

h2∧h3 6 α . In fact, it is similar to the proof of 3.1
(B31).

D32. When h2 = ((x2 → α2) → z2)′ , then
h1 ∧ h2 ∧ h3 6 g ∧ z′2 ∧ x3. If z′2 = x3, we have
h1∧h2∧h3 6 α .

D33. Otherwise, h1∧h2∧h3 
 α .
E. Assume h2 ∈ w3 and h2 6 (x2 → y2)′.
E1. If h3 ∈w3 and h3 6 (x3 → y3)′, then h1∧h2∧

h3 6 h1∧ (x2 → y2)′∧ (x3 → y3)′,
E11. If x2 = x′3 or x2 = y3 or y2 = x2 or y2 = y′3,

then h1∧h2∧h3 6 α .
E12. Otherwise, h1∧h2∧h3 
 α .
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E2. If h3 ∈ w4 and h3 6 (x3 → α3)′, then h1 ∧
h2∧h3 6 h1∧ (x2 → y2)′∧ (x3 → α3)′ 6 h1∧x2∧x3
or h1∧h2∧h3 6 h1∧ y′2∧ x3.

E21. If x2 = x′3 or y2 = x3, then h1∧h2∧h3 6
α

E22. Otherwise, h1∧h2∧h3 
 α .
F. Assume h2 ∈ w4 and h2 6 (x2 → α2)′.
F1. If h3 ∈ w4 and h3 6 (x3 → α3)′, then h1 ∧

h2∧h3 6 h1∧ x2∧ x′3 or h1∧h2∧h3 6 h1∧α2∧α3,
F11. If x2 = x′3 or x2 = y3 or α2∧α3 6 α , then

h1∧h2∧h3 6 α .
F12. Otherwise, h1∧h2∧h3 
 α .

3.2. The Structure of D2
α(g) when h1 = x1 ∈L

In this section, the different cases need to be dis-
cussed in the table 2.

Table 2. Different Cases of Structure of D2
α (g) when h1 = x1 ∈

L .
h2 ∈

L w1 w2 w3 w4
L A1
w1 A2 B1

h3 ∈ w2 A3 B2 C1
w3 A4 B3 C2 D1
w4 A5 B4 C3 D2 E1

A. Assume h2 = x2 ∈L .
In this case, if x1 = x′2, then h1∧h2∧h2 6 α for

any generalized literal h3. So, the following cases
will be discussed under the condition x1 6= x′2:

A1. If h3 ∈L and h3 = x3, then h1 ∧ h2 ∧ h3 =
x1∧ x2∧ x3.

A11. If x2 = x′3 or x1 = x′3, then h1∧h2∧h3 6
α .

A12. Otherwise, h1∧h2∧h3 
 α .
A2. If h3 ∈ w1 and h3 6 x3 → y3, then h1∧h2∧

h3 
 α .
A3. If h3 ∈ w2 and h3 6 x3 → α3, then h1∧h2∧

h3 6 x1∧ x2∧ (x3 → α3).
A31. If x1 = x3 and α ′ → α3 6 α , then

h1 ∧ h2 ∧ h3 6 α . In fact, it is similar to the proof
of 3.1 (B31).

A32. If x2 = x3 and α ′ → α3 6 α , then
h1 ∧ h2 ∧ h3 6 α . In fact, it is similar to the proof
of 3.1 (B31).

A33. If h3 = ((x3 → α3)→ y3)′, then h1∧h2∧
h3 6 x1∧ x2∧ y′3. And so, when x2 = y3 or x1 = y3,
we have h1∧h2∧h3 6 α .

A34. Otherwise, h1∧h2∧h3 
 α .
A4. If h3 ∈ w3 and h3 6 (x3 → y3)′, then h1 ∧

h2∧h3 6 x1∧ x2∧ (x3 → y3)′.
A41. If x1 = x′3 or x2 = x′3 or x1 = y3 or x2 = y3,

then h1∧h2∧h3 6 α .
A42. Otherwise, h1∧h2∧h3 
 α .

A5. If h3 ∈ w4 and h3 6 (x3 → α3)′ 6 x3, then
h1∧h2∧h3 6 x1∧ x2∧ (x3 → α3)′ 6 x1∧ x2∧ x3.

A51. If x1 = x′3 or x2 = x′3, then h1∧h2∧h3 6
α .

A52. When h3 = (x3 → (y3 → z3))′ or (x3 →
(α3 → z3))′, we have h1∧h2∧h3 6 x1∧x2∧ z′3. If If
x1 = z3 or x2 = z3, then h1∧h2∧h3 6 α .

A53. Otherwise, h1∧h2∧h3 
 α .
B. Assume h2 ∈ w1 and h2 6 x2 → y2.
B1. If h3 ∈ w1 and h3 6 x3 → y3, then h1∧h2∧

h3 
 α .
B2. If h3 ∈ w2 and h3 6 x3 → α3, then h1∧h2∧

h3 6 x1∧ (x2 → y2)∧ (x3 → α3).
B21. If x1 = x3 and α ′ → α3 6 α , then

h1 ∧ h2 ∧ h3 6 α . In fact, it is similar to the proof
of 3.1 (B31).

B22. When h3 = (x3 → y3) → α3, if x2 =
x3,y2 = y3 and α ′→ α3 6 α , then h1∧h2∧h3 6 α .

B23. When h3 = ((x3 → α3) → z3)′, if x1 =
z3,then h1∧h2∧h3 6 α .

B24. Otherwise, h1∧h2∧h3 
 α .
B3. If h3 ∈ w3 and h3 6 (x3 → y3)′, then h1 ∧

h2∧h3 6 x1∧ (x2 → y2)∧ (x3 → y3)′.
B31. If x2 = x3 and y2 = y3, then h1∧h2∧h3 6

α .
B32. If x1 = x3 or x2 = y′3, then h1∧h2∧h3 6

α .
B33. When h3 = ((x3 → α3) → z3)′, if x1 =

z3,then h1∧h2∧h3 6 α .
B34. Otherwise, h1∧h2∧h3 
 α .

B4. If h3 ∈ w4 and h3 6 (x3 → α3)′ 6 x3, then
h1 ∧ h2 ∧ h3 6 x1 ∧ (x2 → y2)∧ (x3 → α3)′ 6 x1 ∧
(x2 → y2)∧ x3.

B41. If x1 = x′3, then h1∧h2∧h3 6 α .
B42. Otherwise, h1∧h2∧h3 
 α .

C. Assume h2 ∈ w2 and h2 6 x2 → α2.
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In this case, if x1 = x2 and α ′ → α2 6 α , then
h1 ∧ h2 ∧ h2 6 α for any generalized literal h3. So,
the following cases will be discussed under the con-
dition x1 6= x2:

C1. If h3 ∈ w2 and h3 6 x3 → α3, then h1∧h2∧
h3 6 h1∧ (x2 → α2)∧ (x3 → α3).

C11. If x1 = x3 and α ′ → α3 6 α , then
h1 ∧ h2 ∧ h2 6 α . In fact, it is similar to the proof
of 3.1 (B31).

C12. If x2 = x′3 and α ′
3 → (α ′→α2) 6 α , then

h1∧h2∧h2 6 α . In fact, it is similar to the proof of
3.1 (D11).

C13. When h2 = ((x2 → α2) → z2)′, then
h1∧h2∧h2 6 x1∧ z′2∧ (x3 → α3):

(1) If x1 = z2, then h1∧h2∧h2 6 α .
(2) If z2 = x′3 and α ′

3 → (α ′→α2) 6 α , then
h1∧h2∧h2 6 α . In fact, it is similar to the proof of
3.1 (B31).

C14. Otherwise, h1∧h2∧h3 
 α .
C2. If h3 ∈ w3 and h3 6 (x3 → y3)′, then h1 ∧

h2∧h3 6 x1∧ (x2 → α2)∧ (x3 → y3)′.
C21. If x1 = x′3 or x1 = y3, then h1∧h2∧h2 6

α .
C22. If x2 = x3 or x2 = y′3 and α ′→ α2 6 α ,

then h1∧h2∧h2 6 α .
C23. When h2 = ((x2 → α2) → z2)′, then

h1∧h2∧h2 6 x1∧ z′2∧ (x3 → y3)′:
(1) If x1 = z2, then h1∧h2∧h2 6 α .
(2) If z2 = x3 or z2 = y′3, then h1∧h2∧h2 6

α .
C24. Otherwise, h1∧h2∧h3 
 α .

C3. If h3 ∈ w4 and h3 6 (x3 → α3)′ 6 x3, then
h1 ∧ h2 ∧ h3 6 x1 ∧ (x2 → α2)∧ (α3 → x3)′ 6 x1 ∧
(x2 → α2)∧ x3.

C31. If x1 = x′3, then h1∧h2∧h3 6 α .
C32. If x2 = x3 and α ′ → α2 6 α , then

h1 ∧ h2 ∧ h3 6 α . In fact, it is similar to the proof
of 3.1 (B31).

C33. When h2 = ((x2 → α2) → z2)′, then
h1∧h2∧h2 6 x1∧ z′2∧ x3:

(1) If x1 = z2, then h1∧h2∧h2 6 α .
(2) If z2 = x3, then h1∧h2∧h2 6 α .

C33. Otherwise, h1∧h2∧h3 
 α .
D. Assume h2 ∈ w3 and h2 6 (x2 → y2)′.
D1. If h3 ∈ w3 and h3 6 (x3 → y3)′, then h1 ∧

h2∧h3 6 x1∧ (x2 → y2)′∧ (x3 → y3)′:

D11. If x1 = x′2 or x2 = x′3 or x1 = x′3 or x1 = y2
or x3 = y2 or x1 = y3 or x2 = y3, h1∧h2∧h3 6 α .

D12. Otherwise, h1∧h2∧h3 
 α .
D3. If h3 ∈ w4 and h3 6 (x3 → α3)′, then

h1∧h2∧h3 6 x1∧ (x2 → y2)′∧ (x3 → α3)′.
D31. If x1 = x′3 or x2 = x′3 or y2 = x3 or x1 = x′2

or x1 = y2, then h1∧h2∧h3 6 α .
D32. Otherwise, h1∧h2∧h3 
 α .

E. Assume h2 ∈ w4 and h2 6 (x2 → α2)′.
E1. If h3 ∈ w4 and h3 6 (x3 → α3)′, then h1 ∧

h2 ∧ h3 6 x1 ∧ x2 ∧ x3. When x1 = x′2 or x2 = x′3 or
x1 = x′3, we have h1∧h2∧h3 6 α .

3.3. The Structure of D2
α(g) when g = h1 ∈ w1

In this section, the different cases need to be dis-
cussed in the table 3.

Table 3. Different Cases of Structure of D2
α (g) when g = h1 ∈

w1.
h2 ∈

w1 w2 w3 w4
w1 A1

h3 ∈ w2 A2
w3 A3 B2 C1
w4 A4 B3 C2 D1

A. Assume h2 ∈ w1 and h2 6 x2 → y2.
If h1 = (x1 → y1) → z1, h2 = ((x2 → y2) →

z2))′ or h1 = ((x1 → y1)→ z1)′, h2 = ((x2 → y2)→
z2)) and x1 = x2,y1 = y2,z1 = z2, then h1∧h2∧h3 6
α . Therefore, the following discussions will be
made under the condition that these cases do not oc-
cur.

A1. If h3 ∈ w1, then h1∧h2∧h3 
 α .
A11. If h1 = (x1 → y1) → z1, h2 = ((x2 →

y2)→ z2))′, h3 = ((x3 → y3)→ z3)′ or h1 = ((x1 →
y1) → z1)′, h2 = ((x2 → y2) → z2))′, h3 = (x3 →
y3) → z3 and x1 = x3,y1 = y3,z1 = z3, or x2 =
x3,y2 = y3,z2 = z3, then h1∧h2∧h3 6 α .

A12. Otherwise, h1∧h2∧h3 � α .
A2. If h3 ∈ w2 and h3 6 x3 → α3, then h1∧h2∧

h3 6 (x1 → y1)∧ (x2 → y2)∧ (x3 → α3).
A21. When h3 = (x3 → y3) → α3, if x1 =

x3,y1 = y3 or x2 = x3,y2 = y3 and α ′→α3 6 α , then
h1∧h2∧h3 6 α .
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A22. When h1 = ((x1 → y1) → z1)′ or h2 =
((x2 → y2) → z2)′, then h1 ∧ h2 ∧ h3 6 z′1 ∧ (x2 →
y2)∧(x3 → α3) or h1∧h2∧h3 6 z′1∧z′2∧(x3 → α3):

(1). If z′1 = x3 and α ′ → α3 6 α , then
h1 ∧ h2 ∧ h3 6 α . In fact, it is similar to the proof
of 3.1 (B31).

(2). If z′2 = x3 and α ′ → α3 6 α , then
h1 ∧ h2 ∧ h3 6 α . In fact, it is similar to the proof
of 3.1 (B31).

(3). When h3 = ((x3 → α3)→ z3)′, if z1 =
z′3 or z2 = z′3 or z1 = z′2, then h1∧h2∧h3 6 α .

A23. Otherwise, h1∧h2∧h3 
 α .
A3. If h3 ∈ w3 and h3 6 (x3 → y3)′, then h1 ∧

h2∧h3 6 (x1 → y1)∧ (x2 → y2)∧ (x3 → y3)′.
A31. If x1 = x3 and y1 = y3, then h1∧h2∧h3 6

α .
A32. If x2 = x3 and y2 = y3, then h1∧h2∧h3 6

α .
A33. When h1 = ((x1 → y1) → z1)′ , h2 =

((x2 → y2)→ z2)′, h3 = ((x3 →α3)→ z3)′, if z1 = z′3
or z2 = z′3 or z1 = z′2, then h1∧h2∧h3 6 α .

A34. Otherwise, h1∧h2∧h3 
 α .
A4. When h3 ∈ w4 and h3 6 (x3 → α3)′ 6 x3,

A41. If h1 = ((x1 → y1) → z1)′ 6 z′1 and
z1 = x3, then h1∧h2∧h3 6 α .

A42. If h2 = ((x2 → y2) → z2)′ 6 z′2 and
z2 = x3, then h1∧h2∧h3 6 α .

A43. Otherwise, h1∧h2∧h3 
 α .
B. Assume h2 ∈ w2 and h2 6 x2 → α2.
B1. If h3 ∈ w2 and h3 6 x3 → α3, then h1∧h2∧

h3 6 (x1 → y1)∧ (x2 → α2)∧ (x3 → α3).
B11. If x2 = x′3 and α ′

3 → (α ′→α2) 6 α , then
h1∧h2∧h2 6 α . In fact, it is similar to the proof of
3.1 (D11).

B12. When h2 = (x2 → y2) → α2 or h3 =
(x3 → y3)→ α3 , if x1 = x2,y1 = y2 or x1 = x3,y1 =
y3 and α ′→ α3 6 α , then h1∧h2∧h3 6 α .

B13. When h1 = ((x1 → y1)→ z1)′, h1∧h2∧
h3 6 z′1∧ (x2 → α2)∧ (x3 → α3).

(1) If z1 = x′2 and α ′ → α ′
2 6 α , then h1 ∧

h2∧h2 6 α . In fact, it is similar to the proof of 3.1
(B31).

(2) If z1 = x′3 and α ′ → α ′
3 6 α , then h1 ∧

h2∧h2 6 α . In fact, it is similar to the proof of 3.1
(B31).

(3) When h2 = ((x2 → β2)→ z2)′, h1∧h2∧
h3 6 z′1∧ z′2∧ (x3 → α3).

(I) If z2 = x′3 and α ′ → α3 6 α , then h1 ∧
h2∧h2 6 α .

(II) If z2 = z′1, then h1∧h2∧h2 6 α .
B14. Otherwise, h1∧h2∧h3 
 α .

B2. If h3 ∈ w3 and h3 6 (x3 → y3)′, then h1 ∧
h2∧h3 6 (x1 → y1)∧ (x2 → α2)∧ (x3 → y3)′.

B21. If x1 = x3 and x1 = y3, then h1∧h2∧h2 6
α .

B22. If x2 = x3 or x2 = y′3 and α ′→ α2 6 α ,
then h1∧h2∧h3 6 α .

B23. When h1 = ((x1 → y1) → z1)′ or h2 =
((x2 →α2)→ z2)′, h1∧h2∧h3 6 z′1∧(x2 →α2)∧x3
or h1∧h2∧h3 6 z′1∧(x2 →α2)∧y′3 or h1∧h2∧h3 6
z′1∧ z′2∧ x3.

(1). If z1 = x′2 and α ′ → α2 6 α , then
h1∧h2∧h3 6 α .

(2). If z1 = x3 or z1 = y′3 or z2 = x3, then
h1∧h2∧h3 6 α .

B24. Otherwise, h1∧h2∧h3 
 α .
B3. If h3 ∈ w4 and h3 6 (x3 → α3)′ 6 x3, then

h1∧h2∧h3 6 (x1 → y1)∧(x2 → α2)∧(x3 → α3)′ 6
(x1 → y1)∧ (x2 → α2)∧ x3.

B31. If x2 = x3 and α ′ → α2 6 α , then
h1∧h2∧h3 6 α .

B32. When h1 = ((x1 → y1) → z1)′ or h2 =
((x2 →α2)→ z2)′, h1∧h2∧h3 6 z′1∧(x2 →α2)∧x3
or h1∧h2∧h3 6 z′1∧ z′2∧ x3.

(1). If z1 = x′2 and α ′ → α2 6 α , then
h1∧h2∧h3 6 α .

(2). If z1 = x3 or z2 = x3, then h1∧h2∧h3 6
α .

B33. Otherwise, h1∧h2∧h3 
 α .
C. Assume h2 ∈ w3 and h2 6 (x2 → y2)′.
C1. If h3 ∈ w3 and h3 6 (x3 → y3)′, then h1 ∧

h2∧h3 6 (x1 → y1)∧ (x2 → y2)′∧ (x3 → y3)′:
C11. If x1 = x2 and y1 = y2, h1∧h2∧h3 6 α .
C12. If x1 = x3 and y1 = y3, h1∧h2∧h3 6 α .
C13. If x2 = y3 or y2 = x3 or x2 = x′3 or y2 = y′3,

h1∧h2∧h3 6 α .
C14. When h1 = ((x1 → y1) → z1)′, then

h1∧h2∧h3 6 z′1∧ (x2 → y2)′∧ (x3 → y3)′, if z1 = x2
or z1 = x3 or z1 = y′2 or z1 = y′3, we have h1 ∧ h2 ∧
h3 6 α .

C15. Otherwise, h1∧h2∧h3 
 α .
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C3. If h3 ∈ w4 and h3 6 (x3 → α3)′, then h1 ∧
h2∧h3 6 (x1 → y1)∧ (x2 → y2)′∧ (x3 → α3)′.

C31. If x1 = x′3 or x2 = x′3 or y2 = x3 or x1 = x′2
or x1 = y2, then h1∧h2∧h3 6 α .

C32. If x1 = x′3 or x2 = x′3 or y2 = x3 or x1 = x′2
or x1 = y2, then h1∧h2∧h3 6 α .

C33. When h1 = ((x1 → y1) → z1)′, then
h1∧h2∧h3 6 z′1∧(x2 → y2)′∧(x3 → α3)′, if z1 = x2
or z1 = x3 or z1 = y′2, we have h1∧h2∧h3 6 α .

C34. Otherwise, h1∧h2∧h3 
 α .
D. Assume h2 ∈ w4 and h2 6 (x2 → α2)′.
D1. If h3 ∈ w4 and h3 6 (x3 → α3)′, then

h1∧h2∧h3 6 (x1 → y1)∧ (x2 → α2)′∧ (x3 → α3)′.
D11. If x2 = x′3, then h1∧h2∧h3 6 α .
D12. When h1 = ((x1 → y1)→ z1)′, we have

h1 ∧ h2 ∧ h3 6 z′1 ∧ x2 ∧ x3. If z1 = x2 or z1 = x3 or
x2 = x′3 , then h1∧h2∧h2 6 α .

D13. Otherwise, h1∧h2∧h3 
 α .

3.4. The Structure of D2
α(g) when g = h2 ∈ w2

In this section, the different cases need to be dis-
cussed in the table 4.

Table 4. Different Cases of Structure of D2
α (g) when g = h2 ∈

w2.
h2 ∈

w2 w3 w4
w2 A1

h3 ∈ w3 A2 B1
w4 A3 B2 C1

A. Assume h2 ∈ w2 and h2 6 x2 → α2.
A1. If h3 ∈ w2 and h3 6 x3 → α3, then h1∧h2∧

h3 6 (x1 → α1)∧ (x2 → α2)∧ (x3 → α3).
A11. If x1 = x′2 and α ′

2 → (α ′→α1) 6 α , then
h1∧h2∧h3 6 α . In fact, it is similar to the proof of
3.1 (D11).

A12. If x1 = x′3 and α ′
3 → (α ′→α1) 6 α , then

h1∧h2∧h3 6 α .
A13. If x2 = x′3 and α ′

3 → (α ′→α2) 6 α , then
h1∧h2∧h3 6 α .

A14. When h1 = ((x1 → α1) → z1)′, then
h1∧h2∧h3 6 z′1∧ (x2 → α2)∧ (x3 → α3).

(1) If z1 = x′2 and α ′ → α2 6 α , then h1 ∧
h2∧h3 6 α .

(2) If z1 = x′3 and α ′ → α3 6 α , then h1 ∧
h2∧h3 6 α .

A15. When h2 = ((x2 → α2) → z2)′ or h3 =
((x3 → α3) → z3)′, the discussions is analogous to
the A14.

A16. When h1 = ((x1 → α1) → z1)′, h2 =
((x2 → α2)→ z2)′ and h3 = ((x3 → α3)→ z3)′, then
h1 ∧ h2 ∧ h3 6 z′1 ∧ z′2 ∧ z′3. If z1 = z′2 or z1 = z′3 or
z2 = z′3, then h1∧h2∧h3 6 α .

A17. Otherwise, h1∧h2∧h3 
 α .
A2. If h3 ∈ w3 and h3 6 (x3 → y3)′, then h1 ∧

h2 ∧ h3 6 (x1 → α1) ∧ (x2 → α2) ∧ (x3 → y3)′ 6
(x1 → α1)∧ (x2 → α2)∧ y′3 or h1∧h2∧h3 6 (x1 →
α1)∧ (x2 → α2)∧ x3.

A21. If x1 = x3 or x1 = y′3 and α ′→ α1 6 α ,
then h1∧h2∧h2 6 α .

A22. If x2 = x3 or x2 = y′3 and α ′→ α2 6 α ,
then h1∧h2∧h3 6 α .

A23. When h1 = ((x1 → α1) → z1)′ or h2 =
((x2 →α2)→ z2)′, h1∧h2∧h3 6 z′1∧(x2 →α2)∧x3
or h1∧h2∧h3 6 z′1∧(x2 →α2)∧y′3 or h1∧h2∧h3 6
z′1∧ z′2∧ x3.

(1). If z1 = x′2 or x3 = x2 or y3 = x′2 and
α ′→ α2 6 α , then h1∧h2∧h3 6 α .

(2). If z2 = x′1 or x3 = x1 or y3 = x′1 and
α ′→ α1 6 α , then h1∧h2∧h3 6 α .

(3). If z1 = x3 or z1 = y′3 or z2 = x3, then
h1∧h2∧h3 6 α .

A24. Otherwise, h1∧h2∧h3 
 α .
A3. If h3 ∈ w4 and h3 6 (x3 → α3)′ 6 x3, then

h1∧h2∧h3 6 (x1 → α1)∧(x2 → α2)∧(x3 → α3)′ 6
(x1 → α1)∧ (x2 → α2)∧ x3.

A31. If x2 = x3 and α ′ → α2 6 α , then
h1 ∧ h2 ∧ h3 6 α . In fact, it is similar to the proof
of 3.1 (B31).

A32. If x1 = x3 and α ′ → α1 6 α , then
h1 ∧ h2 ∧ h3 6 α . In fact, it is similar to the proof
of 3.1 (B31).

A33. When h1 = ((x1 → α1) → z1)′ or h2 =
((x2 →α2)→ z2)′, h1∧h2∧h3 6 z′1∧(x2 →α2)∧x3
or h1∧h2∧h3 6 z′1∧ z′2∧ x3.

(1). If z1 = x′2 or x3 = x2 and α ′→ α2 6 α ,
then h1∧h2∧h3 6 α .

(2). If z2 = x′1 or x3 = x1 and α ′→ α1 6 α ,
then h1∧h2∧h3 6 α .
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(3). If z1 = x3 or z1 = z′3 or z2 = x3, then
h1∧h2∧h3 6 α .

A34. Otherwise, h1∧h2∧h3 
 α .
B. Assume h2 ∈ w3 and h2 6 (x2 → y2)′.
B1. If h3 ∈ w3 and h3 6 (x3 → y3)′, then h1 ∧

h2∧h3 6 (x1 → α1)∧ (x2 → y2)′∧ (x3 → y3)′:
B11. If x1 = x2 or x1 = y′2 or x1 = x3 or x1 = y′3,

and α ′→ α1 6 α , then h1∧h2∧h3 6 α .
B12. If x2 = y3 or y2 = x3 or x2 = x′3 or y2 = y′3,

h1∧h2∧h3 6 α .
B13. When h1 = ((x1 → α1) → z1)′, then

h1∧h2∧h3 6 z′1∧(x2 → y2)′∧(x3 → y3)′. If z1 = x′2
or z1 = y′2 or z1 = x′3 or z1 = y′3, then h1∧h2∧h3 6 α .

B14. Otherwise, h1∧h2∧h3 
 α .
B2. If h3 ∈ w4 and h3 6 (x3 → α3)′, then h1 ∧

h2∧h3 6 (x1 → α1)∧ (x2 → y2)′∧ (x3 → α3)′.
B21. If x1 = x2 or x1 = y′2 or x1 = x3, and

α ′→ α1 6 α , then h1∧h2∧h3 6 α .
B22. If x2 = x′3 or y2 = x3, then h1∧h2∧h3 6

α .
B23. When h1 = ((x1 → α1) → z1)′, then

h1∧h2∧h3 6 z′1∧(x2 → y2)′∧(x3 →α3)′. If z1 = x′2
or z1 = y′2 or z1 = x′3, then h1∧h2∧h3 6 α .

B23. Otherwise, h1∧h2∧h3 
 α .
C. Assume h2 ∈ w4 and h2 6 (x2 → α2)′.
C1. If h3 ∈ w4 and h3 6 (x3 → α3)′, then h1 ∧

h2∧h3 6 (x1 → α1)∧ (x2 → α2)′∧ (x3 → α3)′.
C11. If x2 = x′3, then h1∧h2∧h3 6 α .

C12. If x1 = x3 or x1 = x2, and α ′→ α1 6
α , then h1∧h2∧h3 6 α .

C13. When h1 = ((x1 → α1)→ z1)′, we have
h1 ∧ h2 ∧ h3 6 z′1 ∧ x2 ∧ x3. If z1 = x2 or z1 = x3 or
x2 = x′3 , then h1∧h2∧h2 6 α .

C14. Otherwise, h1∧h2∧h3 
 α .

3.5. The Structure of D2
α(g) when g = h1 ∈ w3

In this section, the different cases need to be dis-
cussed in the table 5.

Table 5. Different Cases of Structure of D2
α (g) when g = h2 ∈

w3.
h2 ∈
w3 w4

h3 ∈ w3 A1
w4 A2 B1

A. Assume h2 ∈ w3 and h2 6 (x2 → y2)′.
A1. If h3 ∈ w3 and h3 6 (x3 → y3)′, then h1 ∧

h2∧h3 6 (x1 → y1)′∧ (x2 → y2)′∧ (x3 → y3)′:
A11. If x1 = x′2 or x1 = y2 or x1 = x′3 or

x1 = y3 or x2 = y3 or y2 = x3 or x2 = x′3 or y2 = y′3,
h1∧h2∧h3 6 α .

A12. Otherwise, h1∧h2∧h3 
 α .
A2. If h3 ∈ w4 and h3 6 (x3 → α3)′, then

h1∧h2∧h3 6 (x1 → y1)′∧ (x2 → y2)′∧ (x3 → α3)′.
A21. If x1 = x′2 or x1 = y2 or x1 = x′3 or y1 = x2

or y1 = y′2 or y1 = x3 or x2 = x′3 or y2 = x3, then
h1∧h2∧h3 6 α .

A22. Otherwise, h1∧h2∧h3 
 α .
B. Assume h2 ∈ w4 and h2 6 (x2 → α2)′.
B1. If h3 ∈ w4 and h3 6 (x3 → α3)′, then h1 ∧

h2∧h3 6 (x1 → y1)′∧ (x2 → α2)′∧ (x3 → α3)′.
B11. If x1 = x′2 or x1 = x′3 or x2 = x′3 or y1 = x2

or y1 = x3, then h1∧h2∧h3 6 α .
B12. When h1 = (x1 → (y1 → z1))′ or

h1 = (x1 → (α1 → z1))′, then h1 ∧ h2 ∧ h3 6 z′1 ∧
(x2 → α2)′∧ (x3 → α3)′. If z1 = x2 or z1 = x3, then
h1∧h2∧h3 6 α .

B13. Otherwise, h1∧h2∧h3 
 α .

3.6. The Structure of D2
α(g) when g = h1 ∈ w4

A. Assume h2 ∈ w4 and h2 6 (x2 → α2)′.
A1. If h3 ∈ w4 and h3 6 (x3 → α3)′, then

h1∧h2∧h3 6 (x2 → α2)′∧ (x2 → α2)′∧ (x3 → α3)′.
A11. If x1 = x′2 or x1 = x′3 or x2 = x′3, then

h1∧h2∧h3 6 α .
A12. Otherwise, h1∧h2∧h3 
 α .

4. Conclusions

In this paper, we have mainly discussed the deter-
mination of α-3 ary resolution generalized literals
which include not more than 2 implication opera-
tors not more than 2 in lattice-valued logical system
LP(X) with truth-value in a lattice implication alge-
bra. The structure of D2

α(g) is investigated, where g
is a generalized literal. It not only lay the foundation
for practical implementation of automated reasoning
algorithm in LP(X), but also provide the strong sup-
port for α-n(t) ary resolution automated reasoning
approaches.
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Further research will be focused on the algebraic
structure of resolution field, which is generated by
some α-resolution generalized literals. And it will
be used for construction automated reasoning algo-
rithm and designing practical automated reasoning
program.
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