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Abstract

One of key issues for a-n(t) ary resolution automated reasoning based on lattice-valued logic with truth-
value in a lattice implication algebra is to investigate the o-n(¢) ary resolution of some generalized literals.
In this article, the determination of a-resolution of any 3-ary generalized literals which include the im-
plication operators not more than 2 in LP(X). It not only lay the foundation for practical implementation
of automated reasoning algorithm in LP(X), but also provides the strong support for a-n(t) ary resolution

automated reasoning approaches.
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1. Introduction

As is known to all, one significant function of artifi-
cial intelligence is to make computer simulate hu-
man being in dealing with uncertain information.
And logic establishes the foundation for it. How-
ever, certain information process is based on the
classic logic. Non-classical logics consist of these
logics handling a wide variety of uncertainties (such
as fuzziness, randomness, and so on ) and fuzzy
reasoning. Therefore, non-classical logic has been
proved to be a formal and useful technique for com-
puter science to deal with fuzzy and uncertain in-
formation. Many-valued logic, as the extension
and development of classical logic, has always been

a crucial direction in non-classical logic. Lattice-
valued logic, an important many-valued logic, has
two prominent roles: One is to extend the chain-
type truth-valued field of the current logics to some
relatively general lattices. The other is that the in-
completely comparable property of truth value char-
acterized by the general lattice can more effectively
reflect the uncertainty of human being’s thinking,
judging and decision. Hence, lattice-valued logic
has become a research field and strongly influenced
the development of algebraic logic, computer sci-
ence and artificial intelligent technology. In order
to investigate a many-valued logical system whose
propositional value is given in a lattice, in 1993, Xu
first established the lattice implication algebra by
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combining lattice and implication algebra, and ex-
plored many useful structures %13,

As the use of non-classical logics becomes in-
creasingly important in computer science, Al and
logic programming, the developing efficient auto-
mated theorem proving based on non-classical logic
is also an active area of research (e.g., for fuzzy logic
and many-valued logic, among others). The essen-
tial idea in many of those methods is to transform
the resolution algorithm into fuzzy logic and many-
valued logic to that of classical logic. To the best of
our knowledge, proof theory for lattice-valued logic
has so far not been extensively developed. There
has also been investigations of resolution-based au-
tomated reasoning in lattice-valued logic based on
LIA (e.g., among others, 1:23%3:6.78,12,13,14,15) "‘The
aim of dealing with incomparability leads to the
complexity of logical formula in LIA based lattice-
valued logic. Correspondingly, the resolution meth-
ods in LIA based lattice-valued logic have new fea-
tures such as (a) resolution is based on general-
ized literals, which contain constants and implica-
tion connectives; (b) resolution is proceeded at a
different truth-valued level & chosen from the truth-
valued fieldtLIA and the number of resolution gen-
eralized literals is fixed at 2 in each resolution in o-
resolution deduction. So, the o-resolution is also
called a-2 ary resolution; (c) it is not easy to judge
directly if two generalized literals are a-resolvent
or not, because the structure of generalized literal
is very complex. Due to these new features, it is
not feasible to apply directly the resolution-based
automated reasoning theory and methods in classi-
cal logic and in many chain-type many-valued logics
into that of lattice-valued logic with incomparability.
Hence, an «-2 ary resolution principle for a lattice-
valued propositional logic LP(X) has been proposed
in 213, which can be used to prove whether a lattice-
valued logical formula in LP(X) is false at a truth-
value level o (i.e., a-false) or not, and the theorems
of soundness and completeness for the ¢-2 ary res-
olution principle were also proved. In addition, the
work in '* extends the -2 ary resolution principle
for LP(X) to the corresponding lattice-valued first-
order logic LF(X).

With the development of research, it shows that

-2 ary resolution automated reasoning based on
lattice-valued logic aiming at processing uncertain
information with incomparability is scientific and
effective. But there are limitations in Q-2 ary res-
olution automated reasoning in two aspects: (1) a-
2 ary resolution can only process the resolution of
2-ary generalized literals; (2) the number of resolu-
tion generalized literals is fixed at 2 in each resolu-
tion in (-2 ary resolution deduction. These limita-
tions make the a-2 ary resolution automated reason-
ing theory and applications are limited, and also di-
rectly affect the efficiency of «-2 ary resolution au-
tomated reasoning. The complexity of lattice-valued
logic systems based on LIAs and the logical formu-
lae, will limit the efficiency of a-2 ary resolution
automated reasoning. Therefore, it is necessary to
study resolution automated reasoning theory, meth-
ods, algorithms and procedures which improve the
resolution automated reasoning efficiency under the
premise of keeping the depict ability in complex-
ity problems. To resolve these limitations, Xu '8
extended the number of resolution generalized lit-
eral from 2 to n, and proposed the general form of
a-resolution, and the soundness and completeness
are also built. In a-n(r) ary resolution, the number
n(t) of resolution generalized literals is not fixed at
some number, but it will be different in the each res-
olution, where n() means the number of resolution
generalized literals in the 7th resolution.

In order to study the o-n(t) ary resolution auto-
mated reasoning, it is very important to determine if
many generalized literals group are «-resolvent or
not, it also effect the reasoning process. So, we will
especially focus on how to determine if generalized
literals group are a-resolvent (i.e., o¢-resolution) or
not.

In this paper, we mainly discuss the ¢-solution
of 3-ary generalized literals which include not more
than 2 implication operators. It will be of great use
to provide foundation to study ¢-resolvent of many
generalized literals group . Thus, it will be further to
lay the foundation on researching a-n(z) ary resolu-
tion automated reasoning.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

944



Determination of 3-Ary o-Resolution in Lattice-valued Propositional Logic LP(X)

2. Preliminaries

Definition 1. '° Let (L,V,A,0,1) be a bounded lat-
tice with an order-reversing involution ’, the greatest
element / and the smallest element O, and

—:LXL—L

be a mapping. . = (L,V,A\,),—,0,]) is called a
lattice implication algebra if the following condi-
tions hold for any x,y,z € L:

I)x—@—z)=y—(x—2);

)x—x=1I

L)x—y=y —x;

(Iy) x > y=y—x=1implies x =y;

Is) (x—=y) =y=(—x) —x

1) (xVy) —mz=(x—=2)A(y—2);

(L) (xAy) = z=(x—2)V(y—2).

In this paper, we denote .Z as a lattice implica-
tion algebra (L,V,A\,”,—,0,1).

We list some basic properties of lattice implica-
tion algebras. It is useful to develop these topics in
other sections.

Theorem 1. '* Let £ be a lattice implication alge-
bra. Then for any x,y,z € L, the following conclu-
sions hold:

(1)ifl = x=1, thenx=1;

(2)l —-x=xandx— O =Xx;

(3)O—-x=Ilandx —1=1;

(4) (x—y) = (y—=2) = (x—2) =L

(5)(x—=y)V(y—x)=I;

(6)ifx<y thenx -z>2y—zandz —>x<z7—
y;

(7)x<yifandonly ifx - y=1;

(8)(z—x) = (z—=y)=(N7) o y=(x—2) —
(x—y);

9)x—(yVz)=(—z2) = (x—2)

(10) x — (y — 2) = (xVy) — z if and only if
x—>(y—>z):x—>z:y—>z;

(11)z<y—xifandonlyify < z — x.

Definition 2. !' Let X be a set of propositional
variables, T = LU {’,—} be a type with ar(')=1,
ar(—)=2 and ar(x)=0 for any @ € L. The proposi-
tional algebra of the lattice-valued propositional cal-
culus on the set X of propositional variables is the
free T algebra on X is denoted by LP(X).

Theorem 2. '* LP(X) is the minimal set Y which
satisfies:

(1)XULCY.

(2)ifp,gqeY, thenp',p—q€cY.

Definition 3. '* A valuation of LP(X) is a proposi-
tional algebra homomorphism v : LP(X) — L.

Definition 4. '4 Let p € LP(X), o € L, If there ex-
ists a valuation v of LP(X) such that v(p) > o, p
is satisfiable by a truth-value level «, in short, o-
satisfiable; If v(p) > o for every valuation v, p is
valid by the truth-value level o, in short, o-valid. If
a =1, then p is valid simply.

Definition 5. '! Let p € LP(X). If v(p) < « for any
valuation v of LP(X), p is always false by the truth-
valued level «, in short, a-false. If @ = O, then p is
valid.

Definition 6. '' A lattice-valued propositional log-
ical formula f is called an extremely simple form,
in short, ESF, if a lattice-valued propositional log-
ical formula f* obtained by deleting any constant
or literal or implication item appearing in f is not
equivalent to f.

Definition 7. '! A lattice-valued propositional logi-
cal formula f is called an indecomposable extremely
simple form, in short, IESF, if:

(1) f is an ESF containing connective — and ’.

(2) for any g € LP(X), if g € f in LP(X), then
g is an ESF containing connective — and ’ at most,
where

LP(X) = (LP(X),/ =,V,A,,—) is a lattice im-
plication algebra.

LP(X)/- = {plp € LP(X)}.p =
LP(X)|q = p}.

Definition 8. ' All the constants, literals and IESFs
are generalized literals.

{q €

Definition 9. ' Let « € L, and G, G, be two gen-
eralized clauses of the form:
Gr=g1V---VgiV---Vgn,
GZ:hl\/...\/hj\/...\/gn
Ifgl'/\hj < o, then
G=g1V--Vg1VguV-VgVhV-V
hj—1Vhj V---Vegy
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is an o-resolvent of G| and G», denoted by G =
Ry (G1,G2), and g; and h; form an o-resolution pair,
denoted by (gi,h;) — ct.

Let g be a generalized literal in LP(X):

Do (g) = {h|(g,h) — o, h is a generalized literal
in LP(X)}. Dqy(g) is the o-resolution field of g.

Definition 10. 18 Let C; = p;; V-V pi,, be gener-

alized clauses of LP(X), H; = {pi1,- - 7pim,-} the set
of all disjuncts occurring in G;,i=1,2,--- ,m,a € L.
For any i € {1,2,---,m}, if there exist generalized

literals x; € H; such that x; Axy A -+ Ax, < @, then
C (x1 = OC) \/Cz(Xz = Oc)\/~--\/Cm(xm = OC)

is called an «a-resolvent of C;,C3,---,Cp,, de-
noted by Rp(g—a) (Cl (Xl),C2(XQ),' . ,Cm(xm)), X1,
Xp,--+ , Xy are called an o-resolution group.

The «-resolution group xi,xp,---,X;, denoted
by (x1,Xx2, " ,Xm) — Q.

Definition 11. Let g be a generalized literal in
LP(X) and o € L. Denote

Dr(;l(g) = {(h17h27"' 7hM)’<g7h17h27”'

where hy,hy,---,h, are generalized literals in
LP(X). D}(g) is the (m+ 1)-ary a-resolution field
of g.

From the Definition 10 and Definition 11, we can
obtain the following result, easily.

:hm>_a}v

Theorem 3. Let g, hy,hy, -, hy, are generalized lit-
erals in LP(X).
(1) (hi,has- -+ hi) € D(g) <

(g7h17h27"'

(2) If g = o € L, then D}(g) is the set of any
generalized literals group in LP(X).

(3) If g is a constant and g % o, then
(hi,ha, -+ hw) € D§(g) if and only if hy Ny A+ A
h, < Q.

In this paper, we always assume that o satisfies
the condition:

(1) o is a dual numerator and

Qo' N0 — a)<aand Ve (BAB') < a.

We mainly discuss the o-solvent of 3-ary gener-
alized literals which include the number of implica-
tion operators not more than 2.

7hi—17hi+17"' ,hm) GDrg(hl)

3. Determination of 3-ary a-resolution in
LP(X)

In -3 ary resolution, it is very important to
judge the a-solvent of 3-ary generalized literals. As
the complexity of generalized literals, so it is diffi-
cult to discuss the ¢-solvent of any three generalized
literals. In this section, we mainly discuss the o-
solvent of 3-ary generalized literals which include
not more than 2 implication operators. The deter-
mination of ¢-solvent of 3-ary generalized literals
considering all the elements in the following sets in
LP(X).

wi = {f]|f is a generalized literal in LP(X), and
there exist p,q € £, p # q, such that f < p — g};

wy = {f|f is a generalized literal in LP(X), and
there exist p € £,a € L, such that f < p — a};

ws = {f|f is a generalized literal in LP(X), and
there exist p,q € £, p# q, such that f < (p — q)'};

wyq = {f]|f is a generalized literal in LP(X), and
there exist p € Z,a € L,a’ £ a, such that f < (p —
a)'}.

w = LUL”LJ;l w;, where L is the set of con-
stants and . is the set of all literals in LP(X). Let
h; € wyi =1,2,3, if h; < o for some i € {1,2,3},
then /1 A hy A hs < . Hence, the topic of this paper
will be discussed under the condition h; £ o for any
i=1,2,3.

3.1. The Structure of D>,(g) when hy =g € L

If g < &, obviously, 1 Ahy Ah3 < o for any general-
ized literals Ay, h3 in LP(X). So the following discus-
sions under the condition ¢ £ a, the different cases
are presented in table 1.

Table 1. Different Cases of Structure of D% (¢) when iy =g € L.

hy

L £ w w2 w3 wa
L Al
<% A2 Bl

hs w;y A3 B2 Cl

wy, A4 B3 C2 DI
w3y A5 B4 C3 D2 El
wg A6 B5S5 C4 D4 E2 Fl
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A. Assume 1, = g, € L.

Al.If hy € L, then hy Ahy A\ hy 5{\ a.

A2. If hz € &, then hy Ahy AN h3 ;{ o.

A3. If hy € wy, then by Ao A h3 ;{ .

A4. If hy € wy,then hy Ahy A hy ;{ .

AS5. If h3 € ws, then hy Ahy AN h3 7{ .

AG6. If hy € wy, then hy Ay A h3 7{ o.

B. Assume /i, = x, € Z.

Bl. If h3 = x3 € £ and x; zx’3, then hy Ahp A
h; < a.

B2. If h3 € wy and h3 < (X3 —>y3),

B21. If h3 = ((x3 — y3) — z3)" and x; = z3,
then iy Ahy Ahj gg/\XQ/\ZQ <a.

B22. Otherwise, hi Ay Ah3 £ a.

B3. When &3 € wy and 73 < (x3 — 03)

B31. If x, = x3 and o — a3 < «, then
hy ANhy ANhs < o Infact, if v(x;) < « for any valua-
tion v, we have we have h; Ahy Ay < o If v(xy) £
o, as v(x2) Av(x2)’ < a and « is a dual numera-
tor, it follows that v(x;)" < o, and so v(xy) > o
We have v(x;) — o3 < @’ — a3 < . Therefore
hiANhay ANhy < Q.

B32. If hs = ((X3 — OC3) —>y3)’, then iy Ay A
hy < g Axa Ays. And so, when x, = y3, we have
hiANhp ANhy < .

B4. If hy € w3, h3 < (x3 — y3)/, and x; = x’3 or
x; =y3,wehave hy Ahy Ahy < .

B5. If hs € wq and h3 < (X3 — OC3)/, then
hi ANhy ANy < g Axp Axs. Thus, when x; = x’3, it
follows that i; Ay Ahs < .

C. Assume /1, € wy and hp < xp — yo.

Cl.If hs € wy, and h3 < x3 — V3

C11. When h2 = X2 — Y2, h3 = ((X3 —>y3) —
063)/ and (Xé <o, i AN ANhy <o

C12. When hy = ((xp — y2) — o), hs =
((x3—y3) —o3) and o) < cxor o < o, by Ay A
h3 <.

C13. Otherwise, iy Aha A3 £ ot

C2. If hy € wy and h3 < x3 — a3, then hy Ay A
hy < hy A (XQ —>y2) A (X3 — 063).

C21. When hz =X2 — V2 and h3 = (()C3 —
y3) — 03), and xp — y2 = x3 — y3,0&' — 03 < @,
hiANhp ANhy < .

C22. Otherwise, iy Ahy A\ hj ;{ .

C4. If hs € wz and h3 < (X3 —>y3)/, Xy = x3 and
y2 =y3, then hy Ahp Ahs < Q.

C4.If hs € wy and h3 < (x3 — o3)’ and o < «,
then iy Ahp ANy < @.

C31. When hy = ((x; — y2) — z2)" and h3 =
(()C3 — (y3 — 063))/, then iy Ay ANhs < gAzp Axz or
hi ANy ANhs < g Aza ANys. If 2, = x3 or 25, = y3, then
hiANhy ANhy < Q.

C32. Otherwise, hj Ahy Ah3 £ a.

D. Assume /; € wy and 7y < xo — .
D1. If hs € wy and h3z < x3 — o3, then by Ay A
hy < A (X2 — 062) A (X3 — 063).

D11. Whenx, =x} and oy — (o' — o) < «,
hy ANhy ANhy < a. In fact, if v(x, — o) < o for
any valuation v in LP(X), we have h; Ahy Ay < .
If vixo = o) £ o, then v(x; — o) < o, that is
v(xy — o) > o, hence v(x;) < o — ap. Conse-
quently, v(xz — 03) = v(x3) — 03 = af — v(x3)’ <
o — (o — o) < &, s0 by Ahy Ahz < a.

D12. When h, = ((x — @) — z2), then
hi AN Ahs < gAZH A (x3 — a3). If 25 = x3 and
o' — oz < o, wehave hy Ao Az < @

D13. Otherwise, iy Ahy Ahs & .

D2. If h3 € ws and h3 < (x3 — y3), then hy A
hyNhy < gNA(xp — o) A (x3 — y3)’, and so

D21. If x3 = x, and o - <o AN
hs < o. In fact, it is similar to the proof of 3.1 (B31).

D22. Ify'3 =xyand o' — op < o, hy Aha A
hs < o. In fact, it is similar to the proof of 3.1 (B31).

D23. When h, = ((x — @) — z2), then
hi ANy Ahs < gANZH A (x3 — o). If 25 = x3 and
o' — o3 < o, we have hy Ay A < @

D24. Otherwise, iy Ahy A3 £ o.

D3. If hy € wy and h3 < (X3 — 063)/, then
hi ANy Nhs < g A (XQ — Otz) A (X3 — 063)/.

D31. When x, = x4 and o/ — op < @, =y A
hy Ahs < . In fact, it is similar to the proof of 3.1
(B31).

D32. When hy = ((x; — @) — z2)' , then
hi Ny ANhy < g N2y Axs. If 2y = x3, we have
hiNhy ANhy < Q.

D33. Otherwise, iy Ahy Ahs & .

E. Assume /i, € ws and 1, < (x; — y2)'.
El. If hs € wz and h3 < (X3 —>y3)’, then iy Ay A
hy <hi A (x2 — y2)' A (x3 — y3),

Ell. If x =x} orx; =y3 ory, = xp or y, =5,
then hy ANhp ANhs < o

E12. Otherwise, iy Ahy Ahs & .
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E2. If h3 € wy and h3 < (X3 — 063)/, then iy A
o Nhy <hi A (xz —>y2)’/\ <X3 — 063)/ <hiAxyAxs
orhi ANy ANhs < Iy /\ylz/\X3.
E21. If x» :xg or yo = x3, then hy Ahy Ah3 <
o
E22. Otherwise, by Ay ANh3 £ .
F. Assume /i, € wg and hy < (x; — o).
Fl. If h3 € wy and h3 < (x3 — a3)’, then Ay A
hy Nhy < Iy /\x2/\x/3 orhi ANy ANhy <hi Ao Ao,
FI1. If x =x} orx, = y3 or cp A o3 < @, then
hi ANy ANhy < .
F12. Otherwise, hi Ahy Ah3 £ a.

3.2. The Structure of Dé (¢g) when hy =x; € £

In this section, the different cases need to be dis-
cussed in the table 2.

Table 2. Different Cases of Structure of D%‘ (¢) when hy =x; €
Z.

hy €
A w1 wo w3 Wy
<z Al
w; A2 BI

hse wy A3 B2 Cl
w3 A4 B3 C2 DI
ws A5 B4 C3 D2 El

A. Assume h, =x, € Z.

In this case, if x; = x5, then iy Ahy Ahy < a for
any generalized literal s3. So, the following cases
will be discussed under the condition x| # x5:

Al. If hs € £ and h3 = x3, then hy Ahy AN h3 =
X1 Axp AX3.

All. If x, = x5 or x; = xj, then by Ahp A3 <
.

A12. Otherwise, by Ay Ah3 £ .

A2. If hs € wi and h3 < x3 — y3, then iy Ay A
h3 7{ .

A3. If hs € wy and hz < x3 — o3, then hy Ay A
hy <xp Axp A (x3 — 03).

A3l. If xy =x3 and &' — a3 < @, then
hi ANhy Ahy < a. In fact, it is similar to the proof
of 3.1 (B31).

A32. If xp = x3 and o — o3 < o, then
hi Ny ANhy < a. In fact, it is similar to the proof
of 3.1 (B31).

A33. If hy = ((X3 — 063) —>y3)’, then iy Ao A
hy < x1 Axa Ayj. And so, when x; = y3 or x| = y3,
we have iy Ao Ahs < o

A34. Otherwise, iy Ahy N3 £ .

A4. If hs € w3 and h3 < (X3 — y3)’, then h; A
o ANhy <x1 Axa A (X3 —>y3)’.

A41. If x; =x; orx; =x5 orx; =y3 orx; =ys,
then iy Al Ay < @.

A42. Otherwise, hy Ahy ANhs & o.

AS. If hs € wy and h3 < (X3 — 063)/ < x3, then
hANhy ANhy <xp Axp A (X3 — OC3)/ < x1 Axp AX3.

A51. If x; = x5 or xo = xj, then by Ay Ah3 <
.

AS52. When h3 = (X3 - (y3 - 23))/ or (X3 -
(03 — z3))', we have hy Ahp ANy <x1 Axp A2y IEIE
xy=2zz30rx;=2z3thenhi Ay ANhy < Q.

A53. Otherwise, iy Ahyp N3 £ .

B. Assume h; € wy and hy < xp — yo.

Bl1. If hs € wy and h3 < x3 — y3, then iy Ay A
hj ;‘é .

B2. If hy € wy and h3 < x3 — a3, then hy Ay A
hy <x1 A ()Cz —>y2) A (X3 — 063).

B21. If x; =x3 and o — o3 < o, then
hy ANhy Ahs < a. In fact, it is similar to the proof
of 3.1 (B31).

B22. When h3 = ()C3 — y3) — a3, if xp =
x3,y2 = y3 and o — o3 < o, then hy Ahy Ahs < .

B23. When h; = ((X3 — 063) — Z3)/, if x; =
z3,then hy Ahpy ANy < Q.

B24. Otherwise, iy Ahy Ahs £ at.

B3. If hs € ws and h3 < (x3 — y3)/, then Ay A
ho Nhy < xp A (xz —>y2) AN (X3 — yg)l.

B31. If x; =x3 and y, = y3, then iy Ahp Ahs <
.

B32. If x; = x3 or x» :y’3, then iy Ay Ay <
.

B33. When h3 = ((x3 — o) — z3)’, if x; =
z3,then hy Ay ANhy < .

B34. Otherwise, iy Ahy A3 £ ot

B4. If h3 € wy and h3 < (x3 — 03)’ < x3, then
hi ANhy ANhy < xq /\(X2 —>y2)/\(X3 — Ot3>/ <X A
(x2 = y2) Ax3.
B41. If x4 :Xé, then iy Ao ANy < o
B42. Otherwise, hy Ahy Ay £ ot
C. Assume /1, € wy and 7y < xp — 0.
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In this case, if x; = x, and o' — o < «, then
hi ANy A\ hy < o for any generalized literal /3. So,
the following cases will be discussed under the con-
dition x| # xp:

Cl. If h3 € wy and h3 < x3 — a3, then hy Ay A
hy < hp A (Xz — (Xz) VAN (X3 — 063).

Cll. If xy =x3 and &' — o3 < @, then
hi ANhy ANy < a. In fact, it is similar to the proof
of 3.1 (B31).

Cl12. If x =xf and 0 — (&’ — o) < @, then
hi Ahy AN hy < a. In fact, it is similar to the proof of
3.1 (D11).

C13. When hy = ((xp — o) — z2)/, then
hi ANhy ANhy < xp /\Z’z/\(X3 — 063)2

() If xy =z, then hi Ao Ahp < .

(2)Ifzp =x} and 0 — (0 — ) < &, then
hi Ahy ANhy < o In fact, it is similar to the proof of
3.1 (B31).

C14. Otherwise, iy ANha A3 £ ot

C2. If hs € w3 and h3 < (JC3 — y3)’, then 1y A
hy Nhy <x1 A ()Cz — 062) AN (X3 — y3)’.

C21. If x; :xg orx; =y3, then hy Ahp Ahy <
.

C22. Ifxy =xzorxp =y, and o' — o < «,
then iy Ao ANy < o

C23. When hy = ((x; — 0p) — z2)/, then
hi ANhy ANy < xq /\le/\()c3 —>y3)’:

() If xy =zp,then hy Ao Ay < .
)Ifzp=x30rz = y’3, then iy Ay ANy <

C24. Otherwise, hy Ahy Ahs £ ot
C3. If h3 € wg and h3 < (X3 — OC3)/ < x3, then
hi ANhy ANhsy < x1 /\(XQ — 062) /\(063 —>X3)/ <X A
()Cz — 062) N X3.

C31. If x; :x’3, then iy Ahp ANy < .

C32. If x, =x3 and &' — o < «, then
hi ANy ANhy < a. In fact, it is similar to the proof
of 3.1 (B31).

C33. When hy = ((x, — o) — 22)/, then
hi Ny Ny < xp A2y Axs:

() If xy =zp,then hi Ao Ahp < .
2)If zp =x3,then hi Ao Ahy < .
C33. Otherwise, h; Ay A3 £ .
D. Assume /1; € wy and 1, < (x; — y2)'.
DI. If h3 € ws and h3 < (x3 — y3)/, then Ay A
hy Nhy <x1 A ()CQ — yz)/ AN ()C3 — y3)’:

D11. If x; =x} or x, = x; orx; =x} or x; =y
Orx3 =y orx; =y3orxy=ys, hi Ay ANh3 < .
D12. Otherwise, iy Ahy Ahs & o.
D3. If hy € wy and h3 < (X3 — Ol3>/, then
hM ANy <x1 A (X2 —>y2)’/\ (X3 — OC3)I.
D31. If x; =x} or x; = x5 or y, = x3 or x| =x,
or x; =y, then by Aho Ahy < .
D32. Otherwise, iy Ahy A3 £ .
E. Assume /1, € wy and 1, < (x; — o).
El. If hs € wg and h3 < (x3 — 03)’, then Ay A
hy Ay < x1 Axp Axz. When x :x’2 or X :x’3 or
x1 = x4, we have hy Ahp Ahs < a.

3.3. The Structure of D>,(g) when g = h; € w)

In this section, the different cases need to be dis-
cussed in the table 3.

Table 3. Different Cases of Structure of D% (g) when g = hy €
wi.

hy €
w1 wo w3 Wy
w1 Al
hse wy A2
w3 A3 B2 ClI
wg A4 B3 C2 DI

A. Assume iy € wi and hy < xp — y;.

If hy = (x1 = y1) = 21, ho = (2 = y2) —
22)) or by = ((x1 = y1) = 21), o = ((x2 — y2) —
72)) and x| = x2,y1 = ¥2,21 = 22, then hy Ahp A3 <
. Therefore, the following discussions will be
made under the condition that these cases do not oc-
cur.

Al.If hy € wy, then hy Ay A hs ;{ a.

All. It hy = (x1 —y1) — 21, b = ((p —
y2) = 22))" b3 = ((x3 — y3) — 23) or hy = ((x1 —
yi) = za1), = (2 = y2) = ), hs= (3 —
y3) — z3 and x; = X3,y = ¥3,21 = 23, OF X =
X3,Y2 =¥3,220 =23, then hy Aho Ahy < .

A12. Otherwise, iy Ahy A3 £ .

A2. If hs € wy and h3 < x3 — o3, then hy Ay A
hy < (x1 = Y1) A (x2 = y2) A(x3 — o).

A21. When h3 = (X3 — y3) — 03, if X1 =
X3,y] = Y3 Or Xp = X3,y = y3 and o — o3 < o, then
hANhy ANhy < .
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A22. When hy = ((x; — y1) — z1)" or hp =
((X2 — yz) — Zg)/, then 7y Ahy A hs < le A ()CQ —
yz) VAN ()C3 — 063) or hi Ahp ANhy < Z/] /\le/\ (X3 — Ot3>2

(. If 2y =x3 and o/ — 03 < @, then
hi Ahp Ahy < o In fact, it is similar to the proof
of 3.1 (B31).

(2). If Z,=x3 and o/ — 03 < «, then
hi Ahy Ahy < o In fact, it is similar to the proof
of 3.1 (B31).

(3). When hi3 = ((x3 — o3) — z3)/, if 71 =
Zyorzy =2zjorz; =25, then hy Ao A3 < at.

A23. Otherwise, hy Ay N3 £ .

A3. If h3 € ws and h3 < (x3 — y3)’, then Ay A
ha ANhsy < (x1 — )71) A ()CZ — yz) A (X3 —>y3)'.

A31. Ifx; =x3and y; =y3, then iy Ay A3 <
.

A32. Ifx; =x3 and y; =y3, then hy Ay A3 <
.

A33. When by = ((x) = y1) = 21) , hp =
(2 —=y2) —22) 3= ((x3 = 03) = z3)', if 21 = 24
orz; =z; orz; =z, then by Aha Ay < at.

A34. Otherwise, hy Ahy A3 £ .

A4. When h3 € wq and h3 < (X3 — OC3)/ < X3,

Adl. If hy = ((x1 = »n) — 1) < z] and
z1 =x3,then hy Ahpy ANhs < .

A42. If hy = ((x2 — y2) — 22) < 2, and
o =x3,then hy Ay ANhy < Q.

A43. Otherwise, b Ay ANhs £ .

B. Assume /1, € wy and 7y < xp — 0.
Bl1. If h3 € wy and h3 < x3 — a3, then hy Ahy A
hs < (X] —>y1)/\ (XQ — OCQ)/\ (X3 — 063).

Bll. If x =x; and o — (&’ — o) < @, then
hi Ahy AN hy < a. In fact, it is similar to the proof of
3.1 (DI11).

B12. When h, = (Xz — y2) — 0 or hy =
(x3 = y3) = 03 ,if x| = x2,y1 =y orx; =x3,y1 =
yzand @’ — a3 < a, then hy Ahy Ahsy < o

B13. When iy = ((x; —y1) — z21)', i Ao A
hsy < le VAN (xz — 062) A (X3 — 063).

(D) Ifz; =x5 and o/ — &} < o, then hy A
hy ANhy < o In fact, it is similar to the proof of 3.1
(B31).

(2)If z; = x4 and o/ — &} < ¢, then =y A
hy ANhy < o In fact, it is similar to the proof of 3.1
(B31).

(3) When hy = ((xa — B2) — 22)", i Ao A
hs S YN A (x3 — o3).

(D If z = x5 and & — o3 < «, then hy A
hhANhy < a.

D If zp = le, then iy Ao Ay < o,

B14. Otherwise, iy Ahy A3 £ ot

B2. If h3 € w; and h3 < (X3 — y3)’, then /1y A
hy ANhs < (x1 —>y1) A (XQ — OCQ) A (X3 —>y3)’.

B21. If x; =x3 and x; = y3, then iy Ahp Ay <
.

B22. If x; =x3 orx; =y, and &’ — o < «,
then iy Ahp Ay < .

B23. When iy = ((x; — y1) — 1) or hy =
((XQ — 062) — Zz)/, hiANho ANhy < le A (x2 — 062) AX3
or hy ANhy Ahj <le /\(XQ — Olz) /\y’3 or hi Ahy ANy <
7y NZh Axs.

(1). Ifz=x5and o — o < &, then
h ANy ANhy < .

(2). If z; = x3 or z; =y} or zp = x3, then
h ANy ANhy < .

B24. Otherwise, hy Ahy A3 £ at.

B3. If h3 € wgq and h3 < (X3 — OC3)/ < x3, then
hANhy ANhy < (x1 —>y1) /\(X2 — 062) /\()C3 — 063), <
(x1 = y1) A (2 — 02) Axs.

B31. If x, =x3 and o/ — o < o, then
hiNhy ANhy < Q.

B32. When hy = ((x; —y1) — z1) or hp =
((XQ — Otz) —>Z2)/, hiANhy ANhs < le A (X2 — 062) AX3
or hy Ay Nhy < Z/] /\2/2/\)63.

(1). If z; =x5 and o — i < ¢, then
hANhpANhy < .

(2). If z1 =x3 or zp = x3, then iy Ahy Ahz <
.

B33. Otherwise, iy Aha A3 £ ot

C. Assume /1, € w3 and 7, < (X2 — yz)l.

Cl. If 3 € w3 and h3 < (X3 —>y3)’, then h; A
hy Nhy < (x1 = Y1) A(x2 = 2) A (x3 — y3)":

Cll.If xy =xpandy; =y, i Ay Ay < a.

Cl2. If xy =x3andy; = y3, i Ay Ay < .

Cl13. If xp =y3 or y) =x3 Or xp =x} Or yo =y,
h ANy ANhy < .

Cl14. When h; = ((x; — y1) — z1)/, then
hi ANy AR <N (0 = y2) A(xzs = y3),if 21 =x
or zj =x3 or 71 = Y, or z; = y5, we have hy A hy A
h; < a.

C15. Otherwise, hj Ahy Ahs & c.
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C3. If hs € wq and h3 < ()C3 — OC3)/, then h; A
hy Nhy < (X] —>y1) A (Xz —>y2)’/\ (X3 — 063)/.

C31. If x; = x} orx; =x} ory, =x3 or x; =xj
or x; =yz, then hy Ay Ahy < .

C32. If x; = x; orxy =x} or y, =x3 or x; =x}
or x; =yy, then hy Ahp Ahy < .

C33. When h) = ((xl — yl) — Zl)/’ then
hiANho ANhs < le Az =) ANxs—on),ifz1 =x
or zj =x3 or z; = y5, we have iy Ahy A3 < a.

C34. Otherwise, iy ANha A3 £ ot

D. Assume /; € wy and 7y < (x — o).
D1. If h3 € wy and h3 < (X3 — OC3)/, then
hiANhy ANhy < (x1 —>y])/\(XQ — 062),/\ (X3 — OC3)/.

DI11. If x, :x’3, then iy Ao Ay < o

DI12. When h; = ((x; — y1) — z1)’, we have
hi ANhy A hs §Z/1 Axp Ax3. If 71 = xp or z; = x3 or
b %) :x’3 ,then iy Aha ANy < @

D13. Otherwise, iy Ahy A3 £ .

3.4. The Structure of D2,(g) when g = hy € w,

In this section, the different cases need to be dis-
cussed in the table 4.

Table 4. Different Cases of Structure of DZ(g) when g = hy €
wa.

hy €
wyp w3 Wy
wo Al
hse ws A2 BI
ws A3 B2 Cl

A. Assume /1, € wy and 7y < x0 — Q.
Al. If hs € wy and hs < x3 — o3, then hy Ay A
hy < ()C] — OC]) A ()CQ — 062) A ()C3 — 063).

All. Ifx; =x)and &} — (&’ — o) < o, then
hi Ahy A hs < a. In fact, it is similar to the proof of
3.1 (D11).

Al12. Ifx; =x5 and o — (& — o) < @, then
hi AN ANhy < .

Al13.Ifx; =x5 and o} — (o — o) < @, then
hANhhANhy < Q.

Al4. When hy = ((x; — o) — z;1)’, then
hi ANhy ANhsy < le A(xa — o) A(x3 — 03).

(D) If z; =x5 and o/ — o < ¢, then 7y A
hh Nhy < .

(2)If z; = x4 and &’ — a3 < @, then hy A

hhy Nhy < Q.

A15. When hz = ((XQ — (Xz) — Zz)l or h3 =
((x3 — 03) — z3)', the discussions is analogous to
the Al4.

Al16. When hl = ((xl — Oll) — Z])/, h2 =
((x2 = 0p) — 22) and hs = ((x3 — o3) — z3)’, then
hi Ny ANhs <N AZy. Tz =25 orzp =25 or
0 = Z,3, then iy Ao Ay < @.

A17. Otherwise, iy Ahy A3 £ .

A2. If hs € w3 and h3 < (X3 — y3)’, then h; A
hy AN hsy < ()C] — OC]) A (XQ — 062)/\ ()C3 — y3)' <
(x1 — OC])/\()CQ — 062)/\yg or hy Nho ANhy < (x1 —
OC]) A (XQ — 062) AX3.

A21. If xy =x3orx; =Yy and &' — oy < o,
then hy ANhp ANy < .
A22. If xp =x30rxp =yy and &’ — 0 < @,
then hy ANy Ahs < o
A23. When hy = ((x; — o) — z1)" or hy =
((X2 — (Xz) — Zz)/, hiNho ANhy < le A\ (x2 — (Xz) AX3
or hy Ahy Ahj <le /\()CQ — Otz) /\y’3 or hy ANhy ANy <
7y Nzh Axs.
(1). If z; = x, or x3 =x, or y3 = x5 and
o — op <o, then hy Ahy Ahs < .
(2). If zp = x| or x3 =x; or y3 = x| and
o — a; < o, then Ay ANy Nhy < .
(3). If z1 = x3 or z1 =y} or zp = x3, then
hANhp ANhy < .
A24. Otherwise, by Ahy N3 £ .

A3. If hs € wy and h3 < (X3 — 063)/ < x3, then
hy ANy Ay < (x1 — o) A (g — o) A (x3 — a3)' <
(X1 — (Xl) VAN (XZ — (Xz) A X3.

A31. If xp =x3 and o — o < «, then
hi ANhy Ahs < a. In fact, it is similar to the proof
of 3.1 (B31).

A32. If xy =x3 and &' — a; < o, then

hi ANhy Ahs < a. In fact, it is similar to the proof
of 3.1 (B31).
A33. When h1 = ((x1 — (Xl) — Zl)l or h2 =

((Xz — 062) —>Zz)/, hiANhy ANy < le A (XQ — (Xz) AX3
orhi ANhy ANhs < Z,l /\2/2/\)63.

(D). If zy lez orxz=x,and o' — o < ¢,
then iy Ay Ay < .

(2).Ifzz=xjorxz=x;and &' — oy < a,
then iy Al Ay < @.
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(3). If zj = x3 or z; = z5 or zp = x3, then
hiANhp ANhy < @

A34. Otherwise, hy Ahy N3 £ .

B. Assume /; € ws and hy < (x — 7).
Bl. If i3 € w3 and hs < (x3 — y3)/, then Ay A
hy Nhy < (x1 — o) A (x —>y2)’/\ (x3 —>y3)’:

B1l. Ifx; =xy orx; =y, orx; = x3 orx; =y},
and o — oy < o, then hy Ao Ahy < «.

B12. If x; = y3 oryp =x3 orx, = x5 or y, =y,
hiNho ANhy < @.

B13. When h; = ((x; — o4) — z1), then
hi Nhp Nhs <A (0 — y2) A (a3 — y3) . If 21 = X
orzy =y orz; = x5 orzy =y, then hy Ahp Ahz < .

B14. Otherwise, hj Ay Ah3 £ a.

B2. If h3 € wy and h3 < (X3 — OC3)I, then /1 A
hy Nhy < (X1 — OCl) A (XQ —>y2)’/\ (X3 — 063)/.

B21. If x; =x; or x; =y, or x; = x3, and
o — oy <o, then hy Ay Ahs < o

B22. If x :x’3 or yo = x3, then hy Ahp Ahs <
.

B23. When h; = ((x; — o) — z1)/, then
hi AN ANhs <ZEA (0 = y2) A(x3s — 0g) . If 21 =X
or zj =y, or z; = x5, then iy Ahy A3 < .

B23. Otherwise, iy Ahy Ahs £ ot

C. Assume 1, € wy and 7y < ()C2 — Otz)/.
Cl. If h3 € wy and h3 < (X3 — OC3)I, then 1y A
hy Nhy < (Xl — (Xl) A (XQ — OCQ)//\ (X3 — Ot3)l.

Cll1. If xp ng, then hy Ay ANhs < .

Cl2. If x; =x3 or x; =xo, and &' — oy <
o, then hy Ay ANhy < Q.

C13. When h; = ((x; — ay) — z1), we have
hi ANhy ANy < Z’l Axp Ax3. If 1 =xp or z; = x3 or
X2 ng ,then iy Ay N < Q.

C14. Otherwise, hy Ahy A3 £ a.

3.5. The Structure of D2,(g) when g = h; € ws

In this section, the different cases need to be dis-
cussed in the table 5.

Table 5. Different Cases of Structure of D% (g) when g = hy €
w3.

hy €
w3 wy

hse ws Al
wy A2 Bl

A. Assume /; € wy and hy < (x; — y2)'.
Al. If hs € w3 and h3 < ()C3 — y3)’, then h; A
hy ANhs < (x1 —>y1)’/\ (XQ —>y2)’/\ (X3 —>y3)’:
All. If x; =, or x; =y, or x; =x} or
X| = Y3 OF X2 = y3 OF y2 = X3 OF X3 = Xj OF y2 = Y4,
h ANy ANhy < .
A12. Otherwise, hy Ahy Ahs & .
A2, If hy € wg and h3 < (X3 — 063)/, then
hy ANhy ANhs < ()C] —>y1)’/\ (X2 —>y2)’/\ (X3 — OC3)/.
A21. If x; =x, or x| =y, Orx; = x5 or y; =x3
Or y; =y, Or y| = X3 Or X = X3 Of y, = x3, then
hiNhy Nhy < .
A22. Otherwise, iy Ahy A3 £ .
B. Assume /1, € wq and h) < (XQ — (Xz)l.
B1. If i3 € wy and h3 < (x3 — a3)/, then Ay A
hy Nhs < (x) —>y1)’/\ (xp — (Xz)//\ (x3 — 063)/.
Bll. Ifx; =x, orx; =xj orx; =xj ory; =x,
or y; = x3, then hy Aho Ahy < .
B12. When h = (x; — (y1 — z1)) or
hi = (x1 — (a1 — z1)), then hy Ay Ah3 < 2} A
(x2 = )" A (x3 — o). If z; = x or z; = x3, then
hiANhy ANhy < Q.
B13. Otherwise, hj Ahy A3 £ at.

3.6. The Structure of D% (g) when g = h; € wy

A. Assume h; € wy and hy < (xp — o).
Al. If hy € wg and h3 < (X3 — 063)/, then
hiANhy Nhsy < ()CQ — (XQ)//\ ()CQ — (XQ)//\ ()C3 — 063)/.
All. If x; = x} or x; = xj or x, = xj, then
hANhpANhy <.
A12. Otherwise, iy Ahy A3 £ .

4. Conclusions

In this paper, we have mainly discussed the deter-
mination of ¢-3 ary resolution generalized literals
which include not more than 2 implication opera-
tors not more than 2 in lattice-valued logical system
LP(X) with truth-value in a lattice implication alge-
bra. The structure of D?(g) is investigated, where g
is a generalized literal. It not only lay the foundation
for practical implementation of automated reasoning
algorithm in LP(X), but also provide the strong sup-
port for a-n(t) ary resolution automated reasoning
approaches.
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Further research will be focused on the algebraic
structure of resolution field, which is generated by
some o-resolution generalized literals. And it will
be used for construction automated reasoning algo-
rithm and designing practical automated reasoning
program.
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