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Abstract 

Many previous studies have shown that class classification can be greatly improved by kernel Fisher discriminant 

analysis (KDA) technique. However, KDA only captures global geometrical structure and disregards local 

geometrical structure of the data. In this paper, we propose a new feature extraction algorithm, called locality 

preserving KDA (LPKDA) algorithm. LPKDA first casts KDA as a least squares problem in the kernel space and 

then explicitly incorporates the local geometrical structure information into the least squares problem via 

regularization technique. The fact that LPKDA can make full use of two kinds of discriminant information, global 

and local, makes it a more powerful discriminator. Experimental results on four image databases show that LPKDA 

outperforms other kernel-based algorithms. 

Keywords: Kernel-based method, Fisher discriminant analysis, feature extraction, pattern classification. 

1. Introduction 

In the past two decades, appearance-based image 

recognition has attracted considerable interest in 

computer vision, machine learning, and pattern 

classification [1-5]. It is well known that the dimension 

of an image is usually very high. For example, an image 

with a resolution of 120×120 can be viewed as a 14400-

dimensional vector. High dimensionality of feature 

vector has become a critical problem in practical 

applications. The data in the high-dimensional space is 

usually redundant and may degrade the performance of 

classifiers when the number of training samples is much 

smaller than the dimensionality of the image data. A 

common way to resolve this problem is to use feature 

extraction techniques. Among the enormous published 

feature extraction approaches, kernel-based methods, 

e.g., kernel principal component analysis (KPCA) and 

kernel Fisher discriminant analysis (KDA), have been 

found to be very effective in many real-world 

applications. KPCA was originally developed by 

Scholkopf et al. in 1998 [6] and KDA was introduced 

by Mika et al. in 1999 [7]. Subsequent research saw the 

development of a series of KDA algorithms (e.g., 
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Baudat and Anouar [8], Mika et al. [9], [10], Lu et al. 

[11], Billings and Lee [12], Cawley and Talbot [13], 

Yang et al. [14], Kim et al. [15], Cortes et al. [16], and 

Lin et al. [17]). However, all these kernel-based 

methods [6-17] only capture global geometrical 

structure and disregard local geometrical structure of the 

data. If the data lies on a submanifold which reflects the 

inherent structure of the data space, it is difficult for 

these kernel-based methods to find the hidden manifold. 

     The theory of differential geometry shows that the 

manifold’s intrinsic geometry can be fully determined 

by the local metric and the infinitesimal neighborhoods 

information. In view of this, some new feature 

extraction techniques, such as locally linear embedding 

(LLE) [18], Isomap [19], Laplacian eigenmap [20], 

graph embedding [21], and locality preserving 

projection (LPP) [22], have been proposed to examine 

the submanifold structure of the data. All such methods 

attempt to embed the original data into a submanifold 

by preserving the local geometrical structure. Different 

from LLE, Isomap and Laplacian eigenmap, LPP is a 

linear algorithm which is quite simple and easy to 

realize, thus has received much attention in the research 

community [23-30]. He et al. [23] applied LPP on the 

face recognition and demonstrated the effectiveness of 

LPP in exploring the local geometrical structure of the 

data. In [24], a discriminant locality preserving 

projection (DLPP) algorithm was proposed to improve 

the classification performance of LPP. Yang et al. [25] 

developed an unsupervised discriminant projection 

(UDP) technique for dimensionality reduction. An 

orthogonal discriminant locality projection (ODLPP) 

method was proposed in [26] for face recognition. 

However, all these methods either suffer from the small 

sample size problem when dealing with high 

dimensional data or totally neglect the class label 

information. To use the class label information, Cai et al. 

[27] proposed linear discriminant projection (LDP) 

method; Yang et al. [28] developed multi-manifold 

discriminant analysis (MMDA) algorithm; Wong and 

Zhao [29] proposed supervised optimal locality 

preserving projection (SOLPP) and normalized 

Laplacian-based supervised optimal locality preserving 

projection (NL-SOLPP) methods; Masashi Sugiyama 

[47] proposed Local Fisher Discriminant Analysis 

(LFDA) method. To address the singularity problem, 

Yang et al. [30] proposed a null space discriminant 

locality preserving projection for face recognition. The 

main drawback of their approach is the expensive 

computational cost caused by the singular value 

decomposition and eigenvalue decomposition in null 

space. 

Recent work has shown that both Fisher linear 

discriminant analysis (LDA) and LPP can be 

reformulated in the regression framework based on 

spectral regression [28, 31, 32]. Motivated by the ideas 

in [7, 14, 23, 28, 31, 32], in this paper, we will develop 

a new feature extraction algorithm, called locality 

preserving KDA (LPKDA), to integrate both global and 

local geometrical structure information of the data. 

More specifically, we first cast KDA as a least squares 

problem in the kernel space and then use locality 

preserving projection as a regularization term to model 

local geometrical structure. The use of locality 

preserving projection as regularization term has been 

studied in [33, 34] in the context of regression and SVM. 

In [34], a tuning parameter was introduced to balance 

the tradeoff between global structure and local structure. 

The rest of the paper is organized as follows. In Section 

2, we give a brief review of LDA and KDA. Our 

LPKDA algorithm is introduced in Section 3. Extensive 

experiments for object recognition are conducted in 

Section 4 to verify the efficiency of our method. 

Conclusion and discussion are presented in Section 5. 

2. Outline of LDA and KDA 

In this section, we first give a brief review of LDA and 

KDA, and then introduce an efficient two-stage method, 

which is crucial to the proposed LPKDA algorithm, to 

solve the generalized eigenvalue decomposition (GED) 

problem obtained by KDA. 

In classification problems, given a set of n d-

dimensional samples x1, x2,……xn, belonging to C 

known classes, LDA seeks direction v on which the data 

points of different classes are far from each other while 

requiring data points of the same class to be close to 

each other [35], i.e., LDA maximizes the objective 

function J(v) (also known as the Fisher’s criterion ) as 

follows 
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where μ  is the total sample mean vector, 
k

μ is the 

centroid of k-th class, mk is the number of samples in k-

th class, and 
k

ix is the i-th sample in k-th class. The 

matrices BS and TS are often called the between-class 

scatter matrix and total scatter matrix, respectively. 

Maximizing the objective function (1) is equivalent 

to solving the generalized eigenvalue decomposition 

(GED) problem 

vS  vS TB                                                          (2) 

The solution of (2) can be obtained by applying an 

eigen-decomposition on the matrix BT SS
1

, given that 

TS  is nonsingular. Since the rank of BS is bounded by 

C-1, there are at most C-1 eigenvectors corresponding 

to non-zero eigenvalues [35]. 

The idea of KDA is to extend LDA to a nonlinear 

version by using the so-called kernel trick [36]. For a 

given nonlinear map )( , the d-dimensional input 

space can be mapped into the r-dimensional feature 

space, i.e., 
rd RR:                                                   

Here, the dimension of the feature space r can either 

be finite or infinite. Let k
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denote the centroid of the k-th class, the global centroid 

and the centered data sample in the feature space, 

respectively. For the new between-class scatter matrix 

in the feature space, following some simple algebraic 

steps, we see that 
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where W = diag(
1

W ,
2

W , …
C

W ), 
k

W is an 

kk mm  matrix with all elements equal to km/1 , and 

)( k
X  ])(,,......)([ 1

k

m

k

k
xx   is the centered data 

matrix of the k -th class in the feature space. The matrix 

W can be defined as the edge weight matrix of a graph 

G and its entry Wij is the weight of edge corresponding 

to the vertices i and j. 

Similarly, the new total scatter matrix in the feature 

space can be rewritten as 
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By replacing BS and TS in (1) with 



BS and


TS respectively, we obtain the corresponding 

objective function in the feature space as 

vSv
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However, direct calculation of v by solving the 

corresponding GED problem of (5) is difficult because 

the dimension of v is not known and furthermore it 

could be infinite. To resolve this problem, instead of 

mapping the data explicitly, an alternative way is using 

dot-products of the training samples to reformulate the 

objective function [7, 8]. 

Clearly, the optimal projection vector v is a linear 

combination of the centered training samples in the 

feature space, i.e., 

αXx  v )()(
1

 


i
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for some 
nT

n R],,[ 21   α . By substituting 

(6) into (5), following some simple algebraic steps, we 

see that 
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where )()( XXK 
T

 is a centered symmetric 

kernel matrix whose (i,j) element is 

)()(),( j

T

ijik xxxx  . The optimal α’s can be 

obtained by solving the following GED problem 

αKKαKWK                                               (8) 

In [31], [37], Cai et al. developed an efficient two-

stage approach to solve the generalized eigen-problem 

αXXαXWX
TT

 , which is based on the 

following theorem. 

Theorem 1. Let y  be the eigenvector of eigen-

problem 

yyW   
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with eigenvalue  . If yαX 
T

, then α  is the 

eigenvector of eigen-problem αXXαXWX
TT

  

with the same eigenvalue  . 

We could also solve the GED problem (8) 

efficiently by generalizing the idea presented in [31] [37] 

to KDA. To do so, we need the following theorem 

Theorem 2. Let y  be the eigenvector of eigen-

problem 

yyW                                                             (9) 

with eigenvalue  . If yαK  , then α  is the 

eigenvector of eigen-problem in (8) with the same 

eigenvalue  . 

Proof: Since yαK  and yyW  , the left side 

of (8) can be rewritten as 

αKKyKyKyWKαKWK    

Thus, α  is the eigenvector of eigen-problem in (8) 

with the same eigenvalue . 

□ 

Since the eigen-problem in (9) can be readily solved 

[31], [37], Theorem 2 shows that the KDA solution α  

can be obtained by solving the following linear 

equations 

yαK                                                              (10) 

where y is the eigenvector of W. 

If K  is nonsingular, there is a unique 

solution yKα
1

  for any given y . If K is singular, 

however, the linear system (10) may have no solution or 

have infinite many solutions (the linear equation system 

is underdetermined). For this case, a simple and 

effective way is to approximate α  by solving the 

following linear equations 

yαIK  ) (                                                   (11) 

where 0  and I is the identity matrix. However, (11) 

is only a global approximation to (10) and local 

information is totally neglected. In this paper, in order 

to incorporate the local geometrical structure 

information of data sets into KDA, we use the following 

regularized regression problem to approximate (10) 

   minarg
22

αyαKα
α




                (12) 

By casting KDA as a least squares problem in the 

kernel space, we could explicitly incorporate the local 

geometrical structure information into the least squares 

problem via regularization technique and the detail 

procedure is presented in the following section. 

3. Locality Preserving KDA 

KDA and its variations [23-30] only consider global 

geometrical structure and neglect local geometrical 

structure. In this section, we will develop a new KDA 

framework which can incorporate the local geometrical 

structure of data samples. 

3.1.  Local structure modeling 

In this paper, we use LPP to model the local geometrical 

structure. The complete derivation and theoretical 

justifications of LPP can be traced back to [22]. LPP 

seeks to preserve local structure and intrinsic geometry 

of the data. The objective function of LPP is as follows 
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ijji Syy
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2)(min
2

1
                                (13) 

where iy is the one-dimensional projection of sample 

ix and the matrix S is a similarity matrix whose element 

ijS  representing the similarity between samples ix and 

jx . A possible way of defining S is as follows 
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where )( jki N xx  implies that ix is among the k 

nearest neighbors of jx or vice versa [20]. The 

objective function incurs a heavy penalty if neighboring 

points are mapped far apart in the one-dimensional 

output space. 

Since the projection of a centered sample 

)( ix  onto the vector v in the feature space is obtained 

by the inner product of v and the centered sample itself, 

we can similarly define an objective function of LPP in 

the feature space as follows 
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1
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To gain more insight into (14), we rewrite the square 

of the norm in the form of matrix trace as 
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Since the operation of trace is linear and ijS  is a 

scalar, Eq.(15) can be easily simplified as 
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where ),,(diag 11 nnDD D , 

),,1(
1

niSD
n

j ijii  
and L=D-S is called the 

Laplacian matrix. 

Substituting (7) into (16), we have the final form of 

the objective function of LPP in the kernel space 

 αKLKα

xvxv
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            (17) 

 

3.2.  Locality preserving KDA algorithm 

For the eigen-problem yyW  , given an 

eigenvector y  with eigenvalue  , our locality 

preserving KDA algorithm calculates an optimal 

projection vector v whose expansion coefficients, 
nT

n R],,[ 21   α , are obtained from the 

following optimization problem:  

   tr)1( minarg
22

ααKLKαyαKα
α

 


T                   

(18) 

where  (0,1)  is a tuning parameter that controls the 

tradeoff between global and local geometrical structures. 

Since W is a block-diagonal matrix with C blocks, 

and the rank of each block is 1，there are exactly C 

eigenvectors, Cyyy ,, 21 , for the eigen-

problem yyW  . As a result, there are C 

optimization problems like (18) needed to be solved. 

For simplicity, all these optimization problems can be 

written in a single matrix form as 

  }tr)1(      

 min{arg

2

2

F

T
AAKLKA

YAKA
A

 




         (19) 

where ],,[ 21 CαααA  , ],,[ 21 CyyyY  ,and 

F
    is the Frobenius norm of a matrix. 

By differentiating the right part of Eq.(19) with 

respect to A, setting the derivative equal to zero, after 

some manipulation, we get 

YKAAKLKAK   )1(
2

           (20) 

To solve (20), we need the following theorem 

Theorem 3. Matrix IKLKK  )1(
2

  is 

nonsingular. 

Proof: Let KLKKF )1(
2

 . By the 

definition of Laplacian matrix L, it is easy to verify that 

L is a symmetric positive semi-definite matrix [38]. 

With Schur decomposition, we get 
T

QQΛL                                                         (21) 

where ),,diag( 21 n Λ is a diagonal 

matrix. Let 
2/1

QΛP  , we have 
T

PPL  . Thus F 

can be rewritten as 

 TT
PKPKKKPPKKF )1()1(

22

                        

(22) 

From (22) it is clear that F is symmetric positive 

definite. By Cholesky decomposition, F can further be 

simplified as 
T

GGF                                                             (23) 

Let 
T

VUΣG   be the singular value 

decomposition of G, we have 
TTT

UIΣUIUUΣIGGIF )  (    22                     

(24) 
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Thus 

IΣUIΣU

IKLKK

  )  (

 )1(

22

2









T  

which is nonsingular because 0 . 

                                                                                 □ 

With Theorem 3, the optimal solution can be 

computed as 

  YKIKLKKA
12

 )1(


           (25) 

Algorithm:  LPKDA 

Summarizing the previous subsections, the LPKDA 

algorithm is as follows 

 Training:  

1. Generate a centered kernel matrix 

)()( XXK 
T

 from the training samples. 

2. Solve the eigen-problem (9) to get Y . 

3. Use (25) to compute A. 

4. Obtain a nonlinear feature matrix Z of the 

training data by KAZ
T . 

 Test: 

1. For a test sample x, generate a centered kernel 

vector k(x)  

  T

nkkk  ),(,,),(,),( 21 xxxxxx  , where 

)()(),( i

T

ik xxxx  . 

2. Obtain a nonlinear feature vector of the test 

sample by k(x)Az
T  

In LPKDA, the kernel function ),( k plays an 

important role. The essential property of the kernel 

function is that it should be decomposed into an inner 

product of a mapping )(  to itself, i.e., 

)()(),( j

T

ijik xxxx  . However, it is obviously 

that not all the functions meet this property. To be a 

proper kernel function, a function should meet the so-

called Mercer’s condition [36]. The two most popular 

kernels are the polynomial kernel 
d

j

T

iji ck )(),(  xxxx and the Gaussian RBF 

kernel )/exp(),(
2

jijik xxxx  in which c, 

d, and  are the kernel parameters. 

In the training of the proposed algorithm, the most 

time consuming part is Step 3 where the matrix inverse 

problem should be solved. Because the matrices 

K and L in (25) are 
nn

R , the computational 

complexity of Step 3 is normally O(n
3
). Nevertheless, it 

is unnecessary to compute the matrix inverse involved 

in (25) directly. The detailed efficient procedure is 

discussed as follows. 

Since ],,[ 21 CαααA   and 

],,[ 21 CyyyY  , let 

IKLKKH  )1(
2

  and  

],,[],,[ 2121 CC yXyXyXpppP   , (25) 

can be decomposed into the following C linear 

equations: 

Ciii ,2,1,  pHα                                     (26) 

There are many efficient iterative algorithms have 

been proposed to solve Eq. (26). In this paper, we use 

LSQR algorithm, an iterative algorithm designed to 

solve large scale sparse linear equations and lest squares 

problems [39]. In each iteration, LSQR needs to 

compute two matrix-vector products [40]. The 

computational complexity of LSQR for solving (26) is 

normally O(n
2
+n). If the sample number is large and 

parallel computation is applicable, using LSQR 

algorithm will be more efficient than performing matrix 

inverse directly. 

4. Experimental results 

In this section, two experiments are designed to evaluate 

the performance of the proposed algorithm. The first 

experiment is on face recognition and the second is on 

artificial object recognition. Face recognition is 

performed on three face databases (Yale, ORL, and PIE) 

and artificial object recognition is performed on 

COIL20 image database [41]. In all the experiments, we 

use Euclidean metric and nearest neighbor classifier for 

classification. In order to get a fair result, for all 

experiments, we adopt a two-stage scheme: 1) perform 

model selection, i.e., to determine the proper parameters 

for all the involved algorithms; and 2) reevaluate all the 

methods with the parameters got in the stage of model 

selection. Both the two stages are carried on the same 

data sets but under different partitions. The 

implementation environment is the personal computer 

with Intel(R) Core(TM) 2 Duo CPU P8700 @ 2.53GHz, 

4 GB memory. 

4.1.  Experiment on face recognition 

The Yale face database [42] contains 165 grayscale 

images of 15 individuals. There are 11 images per 

subject, one per different facial expressions or lighting 
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conditions. The images demonstrate variations in 

lighting conditions (left-light, center-light, right-light), 

facial expressions (normal, happy, sad, sleep, surprised, 

and wink), and with/without glasses. 

The ORL face database [43] has a total number of 

400 images of 40 people. There are ten different images 

per subject. For some subjects, the images were taken at 

different times, varying the lighting, facial expressions 

(open / closed eyes, smiling / not smiling) and facial 

details (glasses / no glasses). All the images were taken 

with a tolerance for some tilting and rotation. 

The CMU PIE database [44] contains 68 subjects 

with 41,368 face images as a whole. The face images 

were captured by 13 synchronized cameras and 21 

flashes, under varying pose, illumination and expression. 

We choose the five near frontal poses (C05, C07, C09, 

C27, C29) and use all the 11,544 images under different 

illuminations and expressions. 

 
Table 1. Random partition on three databases for the 

stage of model selection and performance 

evaluation. 

 

Database Classes 

( C ) 

Different numbers for 

training ( n per subject ) 

Model 

selection 

Performance 

evaluation 

Yale 40 5 2/3/5/6 

ORL 15 5 2/3/5/6 

PIE 68 60 30/60/90/120 

 

 

 
Fig.1.  Samples from three face databases with, (a) Yale, (b) ORL, (c) PIE. 

 

Table 2. Optimal parameters of each method. 

 

Method KPCA KDA  CKFD  LPP KLFDA LPKDA  

parameters [62, 8] [27, 6] [21, 5, 0.9 ] [179 ] [162, 7] [33, 7, 0.8] 

(Note that the parameter set is arranged as [subspace dimension, kernel width, coefficients].) 

 
In our experiments, all the images are manually 

aligned, cropped and resized to have a resolution of 

3232 pixels. Fig.1 shows some examples where 

three sample images of one subject are randomly chosen 

from each database. For each database, we randomly 

partition the images into a training set (n images per 

subject for training) and a test set (the remaining images 

are used for testing). The detailed description of 

partition for the stage of model selection and 

performance evaluation is listed in Table 1. The 

partition procedure is repeated 20 times and we obtain 

20 different training and testing sample sets. The first 10 

are used for the stage of model selection and the others 

for the stage of performance evaluation. 

In this paper, the Gaussian RBF kernel 

)/exp(),(
2
yxyx k is used. Six methods, 

namely, KPCA [45], KDA [45], complete kernel Fisher 

discriminant analysis (CKFD) [14], LPP [22], kernel 

local Fisher discriminant analysis (KLFDA), and the 

proposed LPKDA are tested and compared. 

In the stage of model selection, our goal is to 

determine proper kernel parameters (i.e., the width   

of the Gaussian RBF kernel), the dimension of the 

projection subspace for each method, the fusion 

coefficient that determines the weight ratio between 

regular and irregular discriminant information for 

CKFD [14], and the tuning parameter   that controls 

the tradeoff between global and local geometrical 

structure information in our proposed algorithm. Since it 

is very difficult to determine these parameters at the 

same time, a stepwise selection strategy is more feasible 

and thus is adopted here [11, 14]. Specifically, we fix 

the subspace dimension and the tuning parameter   or 

the fusion coefficient (only for LPKDA or CKFD) in 

advance and try to find the optimal kernel parameter for 

the Gaussian RBF kernel function. To get the proper 

kernel parameter, we use the global-to-local search 

strategy [46]. Then, based on the chosen kernel 

parameter, we can choose the optimal subspace 

dimension for each method. Finally, the tuning 

parameter   or the fusion coefficient is determined 

with respect to the other chosen parameters. After 

model selection, we determine all parameters for each 
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method. Table 2 lists the parameters of each method for 

PIE database. With these parameters, all methods are 

reevaluated using another 10 sets of training and testing 

samples. 

The error rates of random 10 different splits on three 

face databases with KPCA, KDA, CKFD, LPP, KLFDA 

and the proposed LPKDA are presented in Fig.2. The 

training size used in Fig.2 is 5, 5, and 30 per subject for 

Yale, ORL, and PIE, respectively. From Fig.2, we can 

see two obvious conclusions as follows:  
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Fig.2. Comparison of KPCA, KDA, CKFD, LPP, KLFDA, and LPKDA in error rates on three face databases. 

 

1) KPCA has the lowest performance among all the 

tested methods. This is because unlike other 

methods, KPCA yields projection directions which 

have minimal reconstruction error by describing as 

much variance of the data as possible, thus the 

yielded directions are meant for reconstruction, not 

for classification.  

2) the result of KLFDA is almost the same as that of 

LPP, and they are slightly better than KDA on Yale 

database, while KDA outperforms LPP and 

KLFDA on ORL and PIE database. This implies 

that the relative importance of local and global 

structures in object recognition depends on specific 

data sets. For example, the local structure may 

contain less effective discriminative information in 

ORL and PIE database than in Yale database. 

However, for all the three data sets, our proposed 

LPKDA algorithm outperforms LPP, KDA, 

KLFDA, and CKFD. This demonstrates that local 

and global structures are complementary to each 

other, and better results can be achieved by 

properly fusing both of the local and global 

geometrical structure information. 

We then provide detailed performance comparison 

of KPCA, KDA, CKFD, LPP, KLFDA, and LPKDA in 

Tables 3-5, where the mean error rates and standard 

deviations of the 10 different partitions on each data set 

with different training numbers are reported. It can be 

concluded that the proposed LPKDA achieves the best 

performance. From Table 3 we can observe that the 

error rate of LPKDA is the same as that of KDA and is 

relatively high compared with CKFD, KLFDA, and 

LPP, when the training data size is relative small (e.g., 

n=2). This implies that it is difficult for the proposed 

LPKDA algorithm to capture more local or global 

structure information when the training data size is 

small, thus fusing both local and global structure 

information does not help. For the results on PIE 

database listed in Table 5, it is interesting to note that 

KDA, CKFD, LPP, KLFDA, and LPKDA all achieve 

comparably low error rates when the training data size 

is large. Considering the large variance of images in PIE 

database, this may be due to the fact that in some cases 

when the training data size and the data variance is large, 

the useful local geometrical structure information for 

class classification is corrupted by the densely and 

randomly distributed sample points, causing LPP 

techniques to capture no more new information other 

than global structure information, hence integrating both 

local and global structure information makes little help 

in improving performance. 

4.2. Experiment on  artificial object recognition 

The COIL20 image database [41] contains 1440 images 

of 20 objects (72 images per subject). The images of 

each subject were taken every 5 degree apart as the 

object was rotated on a turntable. Each image is of 
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size 128128 . Fig.3 shows some examples from the database. 
 

 

 
Fig.3. Sample images from COIL20 database. 

 

 
Table 3. The average error rates (%) across 10 tests and their standard deviations (std) on Yale database. 

 

Training/Testing 

numbers 

KPCA KDA CKFD LPP KLFDA LPKDA 

2/9 63.7  

± 4.26 

55.6 

 ± 3.15 

50  

± 2.68 

44.5  

± 2.68 

47.4  

± 3.88 
55.6  

± 3.27 

3/8 50  

± 4.04 

37.5  

± 2.95 

33 

± 2.77 

35.3  

± 2.68 

36.1 

± 2.43 
31.9  

± 3.17 

5/6 39.24  

± 3.79 

24.84  

± 3.04 

21.83 ± 

2.58 

24.1  

± 2.13 

23.75  

± 2.76 

20.47  

± 2.87 

6/5 36.4  

± 3.25 

21.8  

± 2.60 

18.2  

± 2.33 

20  

± 2.37 

21.4  

± 2.54 

16.4 

 ± 2.67 

 

 

Table 4. The average error rates (%) across 10 tests and their standard deviations (std) on ORL database. 

 

Training/Testing 

numbers 

KPCA KDA CKFD LPP KLFDA LPKDA 

2/8 40  

± 3.05 

26.6  

± 2.32 

17.8  

± 2.75 

26.3  

± 3.05 

26.8  

± 2.75 
16.3  

± 2.13 

3/7 29  

± 2.88 

12.2  

± 2.14 

11.1  

± 2.15 

16.8  

± 2.84 

15.3  

± 2.04 
7.5  

± 2.14 

5/5 22.6  

± 2.35 

6.35  

± 1.76 

4.34  

± 1.37 

9.3  

± 1.99 

9.1  

± 1.81 

2.75  

± 1.18 

6/4 21.9  

± 2.38 

4.4  

± 1.78 

3.8  

± 1.93 

7.5  

± 2.04 

6.6  

± 2.29 

2.5  

± 1.69 

 

 

Table 5. The average error rates (%) across 10 tests and their standard deviations (std) on PIE database. 

 

Training/Testing 

numbers 

KPCA KDA CKFD LPP KLFDA LPKDA 

30/140 27.48  

± 0.98 

10.01 

± 1.01 

9.08  

± 0.97 

14.77  

± 0.78 

13.35  

± 1.65 

8.29  

± 1.12 

60/110 23.8  

± 0.88 

5.5  

± 1.05 

5.0  

± 0.93 

6.7  

± 0.69 

5.37  

± 1.09 

4.7  

± 1.03 

90/80 22.3  

± 0.88 

3.9  

± 0.83 

3.3  

± 0.82 

4.1  

± 0.55 

3.8  

± 0.77 

3.3  

± 0.96 

120/50 22  

± 0.69 

3.2  

± 0.91 

2.9  

± 0.78 

3.2  

± 0.54 

3.1  

± 1.21 

2.9  

± 1.01 

 

In our experiments, each image is resized to have a 

resolution of 6464 and 36 samples are randomly 

chosen from each class for training, while the remaining 

36 samples are used for testing. In this way, we run the 

system 20 times and obtain 10 different training and 
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testing sample sets for both the stages of model 

selection and performance evaluation. 

The error rates of the random 10 different splits on 

COIL20 database with KPCA, KDA, CKFD, LPP, 

KLFDA and the proposed LPKDA are presented in 

Fig.4. The mean error rates and standard deviations of 

the 10 different partitions are reported in Table 6. From 

Fig.4 and Table 6, it can be seen that 1) KPCA has the 

lowest performance among all the tested methods and 

our proposed LPKDA algorithm consistently 

outperforms KDA, CKFD, KLFDA, and LPP. 2) Both 

the local and global geometrical structure information 

are effective for class classification, and fusing both of 

them via LPKDA can further improve recognition 

accuracy. 

 
 

 

Table 6. The average error rates (%) across 10 tests and their standard deviations (std) on COIL20 database. 

 

Methods KPCA KDA CKFD LPP KLFDA LPKDA 

Error rates 25.63 

±2.22 

7.85 

 ±1.89 

5.91  

±1.63 

8.74 

±2.2 

8.6 

±2.35 

4.36 

±1.45 

 

 

 
 

Fig.4. Comparison of KPCA, KDA, CKFD, LPP, KLFDA , and LPKDA in error rates on COIL20 database. 

 

5. Conclusion, discussion and future work 

In this paper, we have proposed a new feature extraction 

algorithm, called locality preserving KDA, to integrate 

both global and local geometrical structure information 

for feature extraction and classification. The new 

algorithm first casts KDA as a least squares problem 

and then uses locality preserving projection as a 

regularization term to model the local geometrical 

structure. Extensive experimental results on Yale, ORL, 

PIE, and COIL20 image databases demonstrate the 

effectiveness of our approach. 

Considering the results listed in Table 5 which show 

that in some cases when the training data size and the 

data variance is large, the useful local geometrical 

structure information for class classification is corrupted 

by the densely and randomly distributed sample points, 

it is interesting to think about the possibility of the 

existence of “support” samples by which useful local 

geometrical structure information for class classification 

can be fully determined (hereinafter we call these 
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samples the local-structure-supported vectors, or simply 

LSS vectors ) and how to locate them. If LSS vectors 

exist, then by finding them in the training stage, two 

benefits can be expected: 1) LPP can be efficiently 

computed since only the LSS vectors are involved in the 

calculation and most of the “noisy” samples are 

neglected; 2) with the useful local structure information 

for classification, the system performance can further be 

improved. 

One of the tested methods, the CKFD algorithm, 

also achieves relatively good performance in our tests. 

Since CKFD makes full use of two kinds of 

discriminant information (regular and irregular, which 

extracted from the range space and null space of the 

within-class scatter matrix, respectively) while KDA 

only uses regular discriminant information, it is also 

worth to explore the possibility of improving system 

performance by combing CKFD and the proposed 

LPKDA. 
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