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Abstract 

In this paper we present a novel approach to produce benthic habitat maps from sea floor images in Derwent 

estuary. We have developed a step–by–step segmentation method to separate sea–grass, sand, and rock from the sea 

floor image. The sea–grass was separated first using color filtering. The remaining image was classified into rock 

and sand based on color, texture, and edge features. The features were fed into an ensemble classifier to produce 

better classification results. The base classifiers in the ensemble were made complementary by changing the weight 

(i.e. cost of misclassification) of the classes. The habitat maps were produced for three regions in Derwent estuary. 

Experimental results demonstrate that the proposed method can indentify different objects and produce habitat 

maps from the sea–floor images with very high accuracy. 
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1. Introduction 

The term benthic refers to anything sitting under a body 

of water. The organisms (e.g. animals and plants) that 

live on the bottom are called the benthos. The habitat 

map presents how the different organisms are 

distributed on the seabed. Habitat maps are normally 

produced on near shore and estuary areas. This is 

primarily due to the fact that these areas are very 

important to preserve and manage. These areas are also 

shallow and it’s relatively easier to obtain data on the 

sea floor to produce the map. Benthic habitat maps are 

commonly used by policy makers, estuary managers, 

and researchers to make informed decisions to protect 

the nation’s fragile shallow-water coastal areas. 

 

Habitat maps are normally produced based on video 

data collected by divers. Domain experts then observe 

the images and produce habitat maps based on their 

observation. The process is time consuming and thus 

frequent production of habitat maps is rarely observed. 

For example, in the Derwent estuary (the region of 

interest in this research) habitat maps were last 

produced in 2008 [1]. Automation of the habitat map 

production involves two steps – (i) the data collection 

process and (ii) habitat map production process. 

Image/spectrometer data on the seafloor habitats can be 

collected by an Autonomous Underwater Vehicle 

(AUV). AUV is normally equipped with cameras that 

can be used to capture images of the sea floor. The 

habitat map production process can be automated by 

using image processing algorithms or by signal 

processing algorithms (for spectrometer readings). 

Altogether the automation will reduce human effort and 

can increase the frequency of habitat map production. 
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A number of works are observed in the literature [2]–

[14] that automates the habitat map production process 

from aerial imagery, underwater photos, acoustic 

surveys, and data gathered from sediment samples. 

Depending on the area under consideration the 

segmentation algorithm, feature extraction process and 

the classification process varies. The area under 

consideration in this research is Derwent estuary. To the 

best of our knowledge no previous attempts were taken 

in this region for the automation of habitat map 

production process. In this paper we present a novel 

image processing and classification based approach. A 

step–by–step segmentation approach is developed to 

separate the sea floor objects in the image. A number of 

features including color, texture, and object edge 

structure are computed from the image regions. A set of 

classifiers are then trained on these feature sets and 

combined in ensemble architecture [15][16][17]. The 

proportion of objects in each image obtained by the 

proposed method populates a habitat map. The objects 

of interest in the particular area of Derwent estuary were 

sea–grass, sand and rock. The proposed method detects 

them with high accuracy as evidenced from the 

experimental results. 

2. Related Works 

Construction of benthic habitat maps are automated by 

processing images obtained by spectral imaging, 

remotely sensed data, or by AUVs. Image classification 

methods in use today include supervised classification 

and unsupervised classification. The technique 

presented in this paper is an ensemble supervised 

classification system.  With supervised classification 

systems, examples of end-members (i.e., sand, sea-

grass) are identified by human experts. These samples 

are used to develop a characterization of each end-

member class. The characteristics of the end-member 

classes are then used as inputs to the classification 

system(s). 

 

A number of approaches are observed in the literature to 

produce habitat from remotely sensed data. In [1] 

habitat map was produced for an area off the northwest 

coast of Roatan Island, Honduras, using high-resolution 

multispectral IKONOS data. Atmospheric and water 

column corrections were applied to the imagery to make 

the method robust. Habitat maps were produced for 

seagrass, coral, and sand-dominated areas. In [3] spatial 

and temporal dynamics of submerged aquatic vegetation 

cover were studied in the seagrass-dominated area of 

Chwaka Bay, Zanzibar (Tanzania) by using satellite 

remote sensing. The study presented in [4] present 

reviews the theoretical background and possible 

applications of remote sensing techniques to the study 

of aquatic vegetation. The research work in [5] assessed 

the accuracy of commonly available airborne hyper-

spectral and satellite multi-spectral image data sets for 

mapping seagrass species in the Eastern Banks in 

Moreton Bay, Australia. 

 

An autonomous benthic habitat mapping algorithm is 

presented in [6] that enables real-time on-board 

classification of images gathered by an AUV, with the 

ability to classify aquatic vegetation at a resolution 

approaching the species level. The paper in [7] 

describes a novel technique to train, process, and 

classify images collected onboard an AUV used in 

relatively shallow waters with poor visibility and non-

uniform lighting. The approach utilizes Förstner feature 

detectors and Laws texture energy masks for image 

characterization, and a bag of words approach for 

feature recognition. The research in [8] uses Local 

Binary Patterns (LBP) as a method for texture-based 

identification of Crown-Of-Thorns Starfish from images 

taken on the Great Barrier Reef. A texture recognition 

based method for segmenting kelp is presented in [9]. 

The images were collected in highly dynamic shallow 

water environments of Marmion Reef, near Perth, 

Western Australia. 

 

A novel shape recognition algorithm was developed in 

[10] to autonomously classify the Northern Pacific Sea 

Star from benthic images captured in the Derwent 

estuary, Tasmania. Unsupervised methods to classify 

objects on sea floor images using Gaussian Mixture 

models and Dirichlet process mixture models were 

presented in [11] and [12]. The use of color as 

segmentation criteria in RGB images has been evaluated 

and found to produce reasonable results [13]. Previous 

benthic terrain classification techniques have relied on 

analysis and interpretation of multibeam bathymetry, 

combined with some kind of visually survey data (e.g., 

transect videos) to make qualitative and quantitative 

inferences [14]. 
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Fig. 1. Habitat map production framework through identification of grass, rock and sand from seabed images 

using ensemble of color, texture, and edge features. 

 

The existing research reveals that the image processing 

techniques and features vary depending on the area 

under consideration. In this particular research we 

analyze images obtained from Derwent Estuary in 

Tasmania by an AUV called Starbug [6]. In this 

research we combine a set of color, texture and edge 

features in an ensemble classification framework to 

identify the presence of different objects on the sea floor 

and produce the habitat map. 

3. Proposed Method 

The particular region of interest on the seabed contains 

three different types of objects: sea–grass, rock, and 

sand. The sea–grass has clear distinctive feature in 

terms of color (light green). Although sand has 

signature texture feature, rocks are comparatively 

problematic. This is due to the fact that rocks exist in 

different colors and in some scenarios the texture is very 

similar to sand. The rocks however have significant 

edges whereas sand does not. Considering these facts 

we propose the following framework (Fig. 1) to 

differentiate between grass, rock, and sand from a 

seabed image and produce habitat maps. The different 

steps of the proposed framework are presented next. 

3.1. Grass Separation 

The grass object is relatively easy to separate as it has a 

unique light green color. We have utilized the HSV 

color space to extract the grass region. We used the 

Habitat map 

Seabed Image 

Grass Separation 

Grass Non Grass Segment 

Feature Extraction 

Color Feature Texture Feature Edge Feature 

Ensemble Classifier 

Sand Rock 

Habitat map production 
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following color range on H(Hue) and S(Saturation) 

channel to filter the grass region: 

 0.15<H<0.30 and S>0.10  (1) 

The range was set by trial–and–error on the training 

images. Fig. 2 represents the outcome of the filtering 

process on some images. If applied on rock images the 

outcome of the filtering process is empty as the images 

do not contain any grass. The other two images contain 

grass and the filtering process can extract them. The 

non–grass region of the image is utilized by the 

following steps to differentiate between sand and rock. 

3.2. Rock and Sand Classification 

The non–grass region extracted from the previous step 

contains rock and sand. The rocks are observed to have 

different colors. Sand has a unique texture. But in some 

occasions the surface texture of rocks are very similar to 

sands. There exist strong edges in rocks. We thus have 

obtained three different features from the non–grass 

region of the image: color, texture, and edge feature. We 

developed an ensemble classifier generation method 

using a complementary training method on these 

features. The feature extraction and ensemble classifier 

generation methods are presented next. 

3.2.1 Color Feature 

Given a sub–image, we have utilized the H channel of 

the HSV image to compute the color histogram. The 

reason for not using the S and V channel is to make the 

feature lighting condition invariant. We have used 11 

bins to compute the histograms in the experiments. The 

extracted color features from the representative rock and 

sand images are presented in Fig. 3. It can be observed 

that the probability of certain bins peak in rocks. The 

probability of the bins is lower in sand images with no 

bias towards specific color bin. 

3.2.2 Texture Feature  

We have computed co–occurrence matrix on the H 

channel of the HSV image to compute the texture 

feature. We have quantized H values into 11 bins. The 

co–occurrence statistics compute the occurrence 

frequency of a pair of H bins (i,j) over the non–grass 

image. Given eleven H bins it computes a matrix of 

dimension 11×11=121. The co–occurrence matrix 

obtained from the representative sand and rock images 

in a vector form are presented in Fig. 4. Note that co–

occurrence based texture feature in sand is significantly 

different from rock images. 

 

   

   

   
(a) Original Image (b) Sea–grass Region (c) Non–grass Region 

Fig. 2. Grass region extraction outcomes from seabed images. 
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(a) Sand (b) Rock 

Fig. 3. Color feature extraction– H histogram 
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(a) Sand (b) Rock 

Fig. 4. Texture Feature: Co–occurrence of H values 

 

3.2.3 Edge Feature 

Fig. 5 shows the edge structures while edges are 

computed from the representative rock and sand images. 

There is significant difference between the edge 

structure of sand and rock images. The rock images 

show the presence of strong and long edges. The edges 

obtained from sand images are not strong and spans 

small areas. We computed the frequency domain 

response of the edge images using Discrete Cosine 

Transform (DCT). The outcome of the DCT in 50 

quantized bins is presented in Fig. 5. Note that the 

frequency response peaks at different positions for sand 

and rock images. 

3.2.4 Ensemble Generation 

We have generated an ensemble of classifiers utilizing 

the above three features. An ensemble performs better 

than its base counterparts if their training process is 

complementary in nature [15][16]. We obtain diversity 

among the base classifiers by manipulating the cost 

function associated with each class (i.e. rock and sand). 

Table 1 highlights the class weighting strategy for the 

different features. The different class weightings for 

different features ensure complementary training 

process among the base classifiers that improves the 

diversity in the ensemble classifier. Experimental results 

demonstrate the effectiveness of this training strategy. 

4. Experimental Results and Discussion 

We have deployed Starbug under the Derwent estuary to 

capture images in three different regions. We have 

obtained videos with a total of 36 images from region 

one, 70 images from region two, 134 images from 

regions three. The regions contain mostly rock, sand and 

sea grass. The images in the first half of the video in 

each region were used for training and the images in the 

second half were used for testing. We have used libsvm 

implementation of SVM [18] to train on the features. 

Parameters can be supplied to assign the costs of 

misclassification in libsvm that is required for 

generating the ensemble classifier in the proposed 

method. All the experiments were conducted in 

MATLAB. 

 

Table 2 presents the best test set accuracies obtained by 

the individual classifiers and the true positive rate of 

both the sand and the rock class. The maximum 

accuracy is 92.54%. This leaves space for improvement 

by using an ensemble classifier. Table 3 shows the 

parameters used for training the base classifiers in the 

ensemble to separate rock and sand. SVM was trained 

on the color feature with equal weights (0.5 to sand and 
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0.5 to rock) to both classes. Higher weight was given to 

rock (5) than sand (0.5) while training SVM on texture 

feature. SVM was trained on edge features with higher 

weight given to sand (5) and lower weight given to rock 

(0.5). 
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(a) Sand (b) Rock 

Fig. 5. Edge Feature– top row: edge structure and bottom row: DCT of edge image. 

 

 

Table 1: Class weighting (i.e. cost of misclassification) strategy for different features to obtain 

diversity among the base classifiers in the ensemble. 

Feature Class Weighting Strategy 

Color Equal weight for both class 

Texture Higher weight for Rock 

Edge Higher weight for Sand 

 

 

Table 2. Maximum test set accuracies obtained by the individual classifiers 

 Color Feature Texture Feature Edge Feature 

Sand 93.75 93.75 65.42 

Rock 91.43 91.43 91.42 

Total Accuracy 92.54 92.54 79.10 

 

 

Table 3. Parameter Setting for the SVM classifier: g and weight (cost of misclassification) 

 Color Feature Texture Feature Edge Feature 

g 10 12 0.3 

WeightSand 0.5 0.5 5 

WeightRock 0.5 5 0.5 
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The ensemble classifier accuracies are presented in 

Table 4. In the proposed ensemble classifier, the class 

predicted by majority of the base classifiers is 

considered as the verdict of the ensemble classifier. The 

performance of the ensemble classifier is (97.01–

92.54)=4.47% better than the best performing individual 

classifier. Also note that the base classifier 

corresponding to texture feature in the ensemble obtains 

very low accuracy (50%) on the sand class. However, as 

the base classifiers are trained in a complementary 

fashion the remaining two base classifiers covers it up 

and results in overall ensemble accuracy of 97.01%. 

Fig. 6 presents some of the outcomes of the test images. 

The percentage of area coverage by sea–grass, rock, and 

sand were obtained from the segmented images in each 

of the three regions. As the Starbug did not provide any 

trajectory information we are unable to show the habitat 

maps on a spatial graph. Fig. 7, Fig. 8, and Fig. 9 shows 

the percentage of sea–grass, rock, and sand in the three 

regions. Region one and two is mostly rocky with small 

presence of sea–grass. Region three is however rich in 

terms of sea grass. The area is also sandy with scattered 

presence of rocks. 

 

The solution to the habitat mapping problem depends on 

the area of study and kind of habitats expected. A more 

robust approach is unsupervised learning. But in some 

occasions the marine scientists look for habitats of 

specific kind that meets some characteristics. This 

approach is suitable for that. Most of the works that 

approach this problem are from remote satellite images 

[2]–[5]. Only one study was undertaken so far on the 

same set of images in [6]. The paper mentioned two 

alternative approaches namely spectrum response based 

and image processing based to solve the problem. No 

accuracies were mentioned in the paper and we thus 

can’t provide a straight-forward comparison of the 

approaches in terms of accuracies. 

 

 

Table 4. Maximum test set accuracies obtained by the ensemble and corresponding 

base individual classifiers. 

 Color Feature Texture Feature Edge Feature Ensemble 

Sand 93.75 50 78.13 93.75 

Rock 91.43 100 88.57 100 

Total accuracy 92.54 76.12 83.58 97.01 
 

  

 

 

  

 

 

   

 

   

 

Image Sea–grass Sand Rock 

Fig. 6. Separation of test image into sea–grass, sand and rock 
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Sea–grass 

Fig. 7. Habitat map of Region one 
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Sea–grass 

Fig. 8. Habitat map of Region two 
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Sea–grass 

Fig. 9. Habitat map of Region three 

 

5. Conclusions 

In this paper we have presented a novel approach to 

produce benthic habitat maps from sea floor images 

obtained from Derwent estuary. We have utilized a 

step–by–step approach to separate grass, sand, and rock 

from the image. The grass was separated using color 

filtering. Rock and sand were classified using an 

ensemble of color, texture, and edge features. The base 

classifiers in the ensemble were made complementary 

by changing the cost function. The rock and sand were 

separated with 97.01% accuracy. The habitat maps were 

produced for three regions with first two being rocky 

and the third being sandy and rich in sea–grass. 

 

In future we intend to investigate the inclusion of an 

extended feature set to classify a broader range of 

objects (e.g. corals) on the sea floor. Another thing that 

needs attention is the lighting condition. The images we 

worked with in this research were taken in good and 

uniform lighting condition. The visibility normally 

degrades under water and the color cues obtained from 

the images does not reflect the true color. Lighting 

condition normalization and color correction are two 

more areas that need to be investigated in the future. 

The author would like to acknowledge Andrew Davie 

from ISSL, CSIRO for providing the data and active 

feedback on the paper. 
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