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Abstract 

Hydraulic turbine runner has a complex structure, and traditional location methods can't meet its requirement. This 
paper describes a source location of cracks in turbine blades by combining kernel independent component analysis 
(KICA) with wavelet neural network (WNN). The research shows that the location accuracy of WNN combined 
with KICA feature extraction is the best comparing with the results of WNN and back propagation neural network 
(BPNN). The method decreases the dimension of input parameters and improves the accuracy of location as well. 

Keywords: Crack localization; acoustic emission (AE); kernel independent component analysis (KICA); scaled 
conjugate gradient algorithm; wavelet neural network (WNN) 
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1. Introduction 

Almost all of hydraulic turbine blades crack after 
putting into operation. Cracks are seriously dangerous 

for operating stability and safety of power station. At 
present, vibration diagnosis is still a widely used 
method for detecting blade cracks.1 The method is an 
indirect measurement that has a lot of misdiagnosis. It is 
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of great significance to develop a direct nondestructive 
testing (NDT) method for this kind of operating 
condition and to find the crack locations. 

Acoustic emission (AE) phenomenon is coupled 
with initiation and propagation of material cracks.2 AE 
technique by detecting the phenomenon has become a 
passive dynamic NDT method, which has been widely 
used to monitor running state of all kinds of equipment. 
3,4 One of its fundamental purposes is to locate crack 
sources. Location accuracy reflects the conformity 
between detecting results and really active defects and 
directly reveals effectiveness of detection method. 

In order to monitor the state of the turbine runner 
and to locate crack sources using AE technique, it needs 
multi-channel acquisition because of its large scale and 
complex structure. Thus, the received information is 
very huge and mutually dependent. In light of this, it is 
necessary to remove the redundancy and reduce the 
dimensionality of the received parameters, which can 
improve the accuracy rate of source location.  

Independent component analysis (ICA) is a signal 
decomposition technique based on higher-order statistic 
information, rather than the second-order information of 
sample covariance as used in principal component 
analysis (PCA).5 It can transform a multivariate random 
signal into a signal with mutually independent 
components. ICA is suitable for dealing with linear 
problems because it is a linear transform of observed 
data.6 However, it is possible that strongly 
comprehensive feature parameters can’t be obtained and 
that useful information can be lost as well, when feature 
parameters are extracted from essentially nonlinear AE 
parameters by ICA. As a result, KICA with nonlinear 
performance is applied gradually. 7,8 

AE source location methods9,10, such as time of 
arrival (TOA) location, energy location (EL) and modal 
analysis location (MAL), are to find spatial locations of 
crack sources according to the information on sensor 
location or time of sources occurred. These methods are 
unsuitable for the runner with complex structure. With 
the development of computer and artificial intelligence 
technology, artificial neural network (ANN) is used 
widely.11-13 Recently, intelligent location methods, such 
as ANN, have been developed for the situation of 
material anisotropy and complex structures. Kirikera et 
al.14 used a passive structural neural system (SNS) for 
damage localization. The simulation and the 
experiments show that the SNS was able to localize 

simulated damages. Kosel et al. 15 studied an intelligent 
AE source locator which comprises a sensor antenna 
and a general regression neural network. The result 
shows that the intelligent locator can successfully 
replace the conventional AE locator. The information of 
ANN is distributed in connection weights, which makes 
ANN have high fault tolerance and robustness. It 
realizes source location by nonlinearly mapping feature 
parameters of input signals into recognition space. 
However, the general BPNN has local minima points, 
which makes the location accuracy is difficult to 
improve.  Thus, the support vector machine (SVM) was 
used. Wang et al.16 used SVM to locate crack of turbine 
runners. The result shows that the recognition rate in the 
crack region is good with small samples. But SVM has 
defects for the choice of kernel function and handling of 
multiple patterns. 

WNN is a combination of ANN and wavelet 
technique. The transfer function of the hidden layer 
nodes in WNN is a wavelet basis instead of 
conventional nonlinear transfer function. Thus, the 
WNN has present resolution in time and frequency 
domains and also has good ability of function 
approximation and pattern recognition. Furthermore, 
WNN is easy to deal with multiple problems and can 
easily accommodate a variety of prior knowledge, 
which make WNN be more in line with the requirement 
of practical problems. 

This paper examines crack localization on a real 
turbine runner from a 302.5MW turbine unit. Two 
blades are studied, and three AE channels are used. 
KICA is used to extract feature parameters of crack 
signals for decreasing the dimension and the 
redundancy of original AE parameters (thirty-nine 
parameters for each signal). WNN is used to locate 
cracks in runner blades according to the feature 
parameters aimed at the fact that cracks happen on some 
special regions in runner. Furthermore, the scaled 
conjugate gradient algorithm (SCGA) is used in 
learning iterations of WNN. The results are compared 
with those based on ICA feature extraction and original 
AE parameters.  

Compared with the Ref.[16], the different methods 
and different number of samples were used to solve the 
damage localization in turbine blades. The motivation of 
this research is to verify the validity of crack location 
based on KICA and WNN and to find out which is more 
suitable for the large-size complex structure with a large 
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input dimensions and output patterns the large number 
of samples were used in this study. 

2. KICA Feature Extraction 

The idea of KICA is to map the original input vector xi 
(k dimensions) into a high-dimensional implicit vector 
feature space ( )iΦ x  through a function Φ  and then to 
make components as independent of each other as 
possible in ( )iΦ x .  

The KICA algorithm for feature extraction has two 
steps. The first one is to reserve some principal 
components (PCs) with certain percentage variation of 
eigenvalues in the feature space and then to pre-whiten 
the reserved vector so that the whitened variable has a 
correlation matrix of unity one. The element of the 
kernel matrix ( , )ij i jK k= x x  according to radial basis 

function kernel 
2

2

|| ||
( , ) exp( )i j

i j
x x

K x x
σ

−
= − , where 

, 1,...,i j l= , l is the number of sample and σ is the 
width parameter of the function. The whitened input 

vector in feature space is 1
1

( ( , ))
l

j k
i i ji

i
k =

=
= ∑x α x x , where 

1 , 1,...,j
j

j
j k

γ
= =α t  (T=[t1,…,tl] and 1[ ,..., ]lγ γ=e  

are the eigenvectors and the eigenvalues of the centered 
kernel matrix K, respectively). 

However, in order to keep
1

( ) 0
l

i
i=

Φ =∑ x  during the 

whitened process, the kernel matrix K must be revised 
as follows, 

 ' ' ' '
2

1 1 1 ( )
l l l

= − − +K K JJ K KJJ J KJ JJ  (1) 

where J is the vector whose elements are the ones with 
length l and 'J is the transpose of J. 

The second step is to extract independent 
components (ICs) by employing ICA for the whitened 
reserved vector. 

ICA is an optimization calculation under some 
independent criterion. At present, many algorithms have 
been developed for performing ICA.17-19 A very simple 
and highly efficient fixed-point-FastICA algorithm20 is 
used in the research. 

3. WNN Theory and Algorithm 

The transfer function of hidden layer nodes in the feed-
forward network is replaced by continuous wavelet 

function because the wavelet bases have the ability to 
approximate any function in L2(R). The minimization 
theory of error function is used, and the waveform and 
scale of wavelet bases and network weights are adjusted 
by SCGA21 in the research. 

As for a three-layer WNN (see Fig.1), given the 
number of input units is M, and the pth input 
is { }pp

kX x= , k=1,2,…,M. The number of output units 

is L and the output value is { }pp
iY y= , i=1,2,…,L. The 

corresponding target output is { }pp
iD d= , p=1, 2,…,l 

(where l is the number of all samples). The connection 
between the kth input unit and the jth hidden unit is 
called weight wjk and that between the jth hidden unit 
and the ith output unit is called wij. The number of 
hidden units is N (j=1,2,…,N). Then the model of WNN 
is, 

 ,
1 1

( (( ) / ))
N M

p p
ij a b jk j ji k

j k
y f w w x b a

= =
= Ψ −∑ ∑  (2) 

where
2 / 2

, ( ) cos(1.75 ) jnet
a b j jnet net e−Ψ = ,

1( )
1 i

i netf net
e−

=
+

, aj is the wavelet scale factor, and 

bj is the wavelet location factor. The error function is 
taken as, 

 2

1 1
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l L
p p
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Fig. 1.  A schematic of WNN 

The SCGA has the advantages of fast descending 
speed and relatively small memory space. It can obtain 
good performance in large structural network. The 
SCGA is mainly to search for a direction kp and a step 
size kα in 1k k k kα+ = +v v p . The search direction is, 
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where kβ  is derived from Hestenes-Stiefel formula, i.e. 
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For WNN, v represents four kinds of variables, aj, bj, wij 
and wjk, and '( )E v  is the partial derivative of the error 
function, which is described as, 
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is added to the denominator of kα  in order to keep kA  
as a positive definite matrix, and kA is estimated by 
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The network learning procedures are presented 
below, 

Step 1: Initiate the network. Set maximum iterative 
step max_epoch and expected error err_goal. Set scalars 
epoch=0, σ (>0), kλ (>0), kλ (=0) and success=true. 
Initiate aj, bj, wij and wjk. Then calculate error function E 
and '

1 1 1=- =E ( )r p v . 
Step 2: If success=true, then calculate second order 

information: 
| |k

k

σσ =
p

 and T
k k k kδ = p A p . 

Step 3: Calculate 2( )k k k k kδ δ λ λ= + − p . 
Step 4: If 0kδ ≤ , then make the Hessian matrix 

positive definite: 22( )k
k k

k

δ
λ λ= −

p
, 

2
k k k kδ δ λ= − + p and k kλ λ= . 

Step 5: Calculate step size
T
k k

k
k

α
δ

−
=

r p . 

Step 6: Calculate the comparison parameter: 
( ) ( )

( ) ( )
k k

k
k k

E E
E E

α
α

− +
Δ =

−
v v p

v p
. If 0kΔ ≥ , then a successful 

reduction in error can be made: 1k k k kα+ = +v v p , 

11 ( )
kk E

+
+ ′= v=vr v , 1

T
k k

k T
k k

β +Δ
=

Δ

r r

r p
, 

1 1k k k kβ+ += − +p r p and set 0kλ =  and success=true. 
Step 7: If 0.75kΔ ≥ , then reduce the scale 

parameter 0.5k kλ λ= . If 0.25kΔ < , then increase the 
scale parameter 4k kλ λ= . 

Step 8: Calculate error E and epoch=epoch+1. If 
_E err goal≤ or _epoch max epoch= , then terminate 

iterative and return v as the desired minimum else return 
to step 2. 

4. Crack Location in Turbine Blades 

The source location system of turbine runner consists of 
data acquisition and preprocessing, feature extraction 
and crack location. It can be summarized as follows:(i) 
Acquisition of AE parameters. Crack signals from 
blades are obtained by AE sensors. AE parameters are 
picked up and saved by SAMOS system. (ii) AE feature 
extraction. KICA is used to get rid of redundant 
information among AE parameters and only some 
eigenvalues of the centered kernel matrix are reserved to 
reduce the dimensionality. (iii) Recognition of crack 
position. Classification and regression based on WNN 
are used to locate crack position. 
(i) Acquisition of AE parameter 

A series of experiments were carried out on an 
HLA286a-LJ-800 Francis’s turbine runner. The 
schematic of the Francis turbine unit is shown in Fig. 2. 
Its maximum diameter is 8.6 m, and its height is 5.19 m. 
The number of runner blades is 13, and the runner 
material is stainless steel. 

 

Fig. 2.  A schematic of turbine runner 

The AE parameters and waveforms were recorded 
via Physical Acoustics Corporation (PAC) SAMOS 
system. The PAC R6-a AE sensors (35-100 kHz) and 
model 2/4/6 pre-amplifiers (10 kHz- 2MHz) were used. 
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Signal conditioning was performed by the pre-
amplifiers. The conditioned signal (with a gain of 40 dB) 
was fed to the main data-acquisition board of SAMOS 
system in which AE waveforms and parameters were 
stored. 

Two blades were tested, and three sensors were 
mounted on the top of the crown. The surfaces of the 
crown mounted onto the sensors were polished and 
cleaned. The interfaces between the sensors and the 
crown were filled with Vaseline in order to guarantee 
the performance of signal transmission. 

The test undertaken here involved pressing pencil 
lead, 0.5 mm 2H, obliquely against the blade surface 
until fracture, which is generated simply and repeatedly 
and has been widely used in researches instead of real 
signals.22-24 

Taking account of the cracks of turbine blades were 
concentrated25, three regions of each blade were chosen 
to locate: the trailing edge of a blade close to the crown, 
the position in the middle of blade and the trailing edge 
of a blade close to the band (see Z1-Z3 in Fig. 2). One 
hundred and two event records were acquired at each 
region in the two blades. That is, six hundred and twelve 
samples were used in this study. The total thirty-nine 
AE features (thirteen parameters per channel, three 
channels) are calculated including time domain and 
frequency domain in each sample. The thirteen 
parameters are rise time, count, energy, duration, 
amplitude, average frequency, counts to peak, 
reverberation frequency, initiation frequency, signal 
strength, absolute energy, frequency centroid and peak 
frequency, which are extracted by SAMOS system and 
represent the main information of signal. The test-rig 
used on site is shown in Fig. 3. 

 
Fig. 3 AE acquisition system employed on-site 

(ii) Feature extraction 

In order to adequately excavate the effective 
information in the original AE features and to decrease 
the effects of different dimension data, all the 
parameters were normalized by Eq.(6) 

 
2 1/ 2

1

1( ( ) )

i
i n

i
i

x x
P

x x
n =

−
=

−∑
 (6) 

where 
1

1 n

i
i

x x
n =

= ∑  and n is the number of sample.  

For KICA, the normalized parameters were used to 
form the sample kernel matrix K according to Eq.(1). 
The eigenvalues of the matrix K are in descending order, 
and the corresponding contribution is also in descending 
order. The distribution of the first twenty eigenvalues of 
the matrix is shown in Fig. 4. It is found that the result 
of feature extraction is better when the radial basis 
function parameter 2σ is equal to 2100 by trial and error. 
At this point, the percentage of the first five eigenvalues 
and nine eigenvalues of centering kernel matrix is 
78.17% and 89.87%, respectively. 

0 4 8 12 16 20

0.000

0.005

0.010

0.015

Ei
ge

nv
al

ue

Principal component  
Fig. 4 The first twenty eigenvalues of kernel matrix 

At the same time, for ICA feature extraction, the 
element of the covariance matrix composed by the 
normalized parameters is cov( , )

i ji, jc x x= .The 

percentage of the first five eigenvalues and nine 
eigenvalues of the covariance matrix is 79.85% and 
91.32%, respectively. Representation of the first twenty 
eigenvalues of the covariance matrix is shown in Fig. 5.  
(iii) Results and discussions of crack localization 
The number of input units of network was determined 
along with the number of chosen input parameters. The 
original five parameters are the rise time, count, energy, 
duration and amplitude from sensor 1. For ICA, the five 
and nine parameters are the vectors corresponding to the 
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first five and nine eigenvalues in the covariance matrix, 
respectively. And for KICA, the five and nine 
parameters are also the vectors corresponding to the first 
five and nine eigenvalues in the kernel matrix, 
respectively. 

0 4 8 12 16 20
0

4

8

12

16

Ei
ge

nv
al

ue

Principal component  
Fig. 5 The first twenty eigenvalues of covariance matrix 

The location includes the recognition of crack 
region and the prediction of distance from crack source 
to welding seam. There are six output units for the two 
testing blades (see table 1). The first unit represents the 
status of blade 1. The second unit represents the status 
of blade 2. The third, fourth, fifth unit represent the 
status of blade regions Z1, Z2, Z3, respectively. And the 
last one represents the distance from crack source to 

welding seam normalized by min

max min

i
i

y yY
y y

−
=

−
.The 

output value of the first five units is 1 or 0 (1 represents 
“with crack”, 0 represents “without crack”) and that of 
unit 6 is any value between 0 and 1. In order to 
recognize the result conveniently, the outputs of blade 
and crack region were dealt with competing mode, 
respectively, that was, only maximum value was set to 1 
and the else is set to 0. 

The number of hidden units was chosen in [3, 17] 
according to the empirical formula =n L M a+ +  
(where L is the number of output units, M is the number 
of input units and a is a constant in [0, 10]), and the 
value with the best result was taken (see table 3). For 
the six hundred and twelve samples, nineteen samples 
from each crack region were used as testing samples, 
the remainders were training samples. The target 
outputs of the testing samples are shown in table 2. The 
iterative steps were set to 2000, and the expected error 
was 0.001. At the same time, the results were compared 
with those obtained by BPNN. The transfer functions of 
both the hidden layer nodes and the output layer nodes 

in BPNN were 1( )
1 netf net

e−=
+

. The other setups 

were the same with WNN. 

Table 1.  Output unit 

No. Content Value
1 Blade 1 0 or 1
2 Blade 2 0 or 1
3 Region close to crown 0 or 1
4 Region in the middle of blade 0 or 1
5 Region close to band 0 or 1
6 Normalization distance [0,1]

Table 2. Target values of testing samples 

No. Target value 
1 (1 0 1 0 0  0.025) 
2 (1 0 1 0 0      0   )  
3 (1 0 0 1 0  0.639) 
4 (1 0 0 1 0  0.630) 
5 (1 0 0 0 1  0.994) 
6 (1 0 0 0 1      1   ) 
7 (0 1 0 0 1  0.994) 
8 (0 1 0 0 1      1  )  
9 (0 1 0 1 0  0.633) 
… … 

106 (0 1 0 1 0  0.620) 
107 (0 1 1 0 0  0.013) 
108 (0 1 1 0 0  0.025) 

Tables 3 and 4 display the results and the errors of 
WNN and BPNN with different input parameters, 
respectively. It shows that the result of region 
recognition using nine feature parameters extracted by 
KICA is the best in the two types of networks. Its 
accuracy rate is 100%. The worst one is to input five 
original AE parameters for BPNN, 79.82%. The 
recognition rates of WNN are better than the 
corresponding results of BPNN. The recognition errors 
mainly exist in the blade regions (i.e. output units 3~5), 
which is because the transmission speed of AE signal in 
stainless steel is slow so that the difference of AE 
parameters from different blade regions is small. In 
addition, the results based on KICA feature parameters 
are better than those based on ICA due to good quality 
of data input after nonlinear feature extraction. 

For the prediction distances from AE sources to 
welding seam, the mean square error (MSE) of WNN is 
less than that of BPNN. The minimum MSE is also 
obtained by nine KICA feature parameters, followed by 
five KICA feature parameters. The worst one is from 
the five original parameters. Likewise, the prediction 
distance of WNN with nine KICA feature parameters is 
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the best. The maximum error is 34 cm, which is 57.3 
percent of the real distance. And the minimum error is 
almost 0 cm. The average error of the all samples is 
2.0%. For BPNN inputting nine KICA feature 
parameters, the maximum distance error is -94 cm, 58.7 
percent of the real distance. The minimum error is also 
almost 0 cm. The average error of the testing samples is 
5.1 percent. Likewise, the worst prediction result is 
from five original parameters. Its maximum error is 57 
cm (35.6 percent), and the average error rate is 7.5 
percent for WNN. The maximum error is 86 cm (145.4 
percent), and the average error rate is 19.1 percent for 
BPNN.   

Although the result of using all original parameters 
is also good, the dimension of input data will be very 
huge when the whole runner is located by multi-channel, 
which will affect the location result and propagation of 
data. In addition, the number of the hidden layer 
neurons required in the cases of BPNN is less than that 
required in the cases of WNN, which shows that the 
structure of BPNN is simpler than that of the WNN. 
Furthermore, the result of each testing sample from 
WNN is not always better than that from BPNN because 
of the effect of initial values of networks, but the 
average error of the testing samples of WNN is less than 
that of BPNN.  

Table 3.  Testing results. 

No. of input parameters Prediction distance Recognition 
rate(%) MSE 

No. of  
hidden 
units 

five (0.038  -0.002  0.298 … 0.623  0.019  0.049) 92.98 3.29 11 Original 
parameter thirty- 

nine (0.013  -0.042  0.634 … 0.602  -0.017  0.014) 100.0 1.18 7 

five (0.046  -0.009  0.943 … 0.623  0.018  0.014) 96.49 2.08 14 ICA 
nine (0.032  -0.012  0.417 … 0.632  0.024  0.027) 98.25 2.05 11 
five (0.025  -0.013  0.642 … 0.627  0.025  0.050) 99.12 1.04 10 

WNN 

KICA 
nine (0.032  -0.010  0.591 … 0.622  0.017  0.027) 100.0 0.58 13 
five (-0.014  -0.163  0.452 … 0.524  -0.025 0.039) 79.82 4.47 10 Original 

parameter thirty- 
nine (0.028  -0.002  0.671 … 0.614  0.008  0.027) 95.61 3.08 4 

five (0.031  -0.015  0.279 … 0.632  0.024  0.029) 97.37 3.31 10 ICA 
nine (0.031  -0.029  1.122 … 0.609  0.016  0.025) 100 2.94 10 
five (0.046  -0.008  0.306 … 0.608  0.017  0.007) 98.25 2.80 7 

BPNN 

KICA 
nine (0.028  -0.001  0.935 … 0.613  0.024  0.028) 100.0 2.69 7 

Table 4. Errors of testing results 

No. of input parameters Error of prediction distance Error of 
Recognition rate(%) 

WNN (-0.013,0.002,0.341,…,-0.003,-0.006,-0.024) 7.02 five 
BPNN (0.039, 0.163,0.005,…, 0.096, 0.038, -0.014) 20.18 
WNN (0.012,0.042,-0.304,…,0.018,0.030, 0.011) 0 Original 

thirty-
nine BPNN (-0.003,0.002, 0.222,…,0.006,0.005,-0.002) 4.39 

WNN (-0.021,0.009,-0.003,…,-0.003,-0.005,0.011) 3.51 
five BPNN (-0.006,0.015,0.048,…,-0.012 -0.011 -0.004) 2.63 

WNN (-0.007,0.012,0.189,…,-0.012,-0.011,-0.002) 1.75 
ICA 

nine
BPNN (-0.006,0.029,-0.032,…,0.011, -0.003, 0) 0 

WNN (  0 , 0.013, 0.360,…,-0.007,-0.012,-0.025) 0.88 five 
BPNN (-0.021, 0.008,-0.483,…,0.012,-0.004,0.018) 1.75 
WNN (-0.007,0.010, 0.333,…,-0.002,-0.004,-0.002) 0 

KICA 
nine

BPNN (-0.003,0.001,-0.296, …,0.007,-0.011, -0.003) 0 
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5. Conclusions 

The result of nine KICA feature parameters for WNN is 
the best. It not only recognizes all the crack regions 
accurately, but acquires the minimum error range of 
prediction distance. The worst one is from five original 
parameters. As a result, in real-world applications, it can 
decrease the dimension of input parameters by KICA 
feature extraction, which reduces the burden on data 
transmission and storage and improves the accuracy of 
location as well. Furthermore, the location method 
overcomes particular problems associated with source 
location in complex structures using some current 
location techniques (TOA, EL and MAL). It does not 
require information about sensor location or time of 
occurrence of source. In light of these, it is a good 
method for source location in complex large-size 
structures to combine KICA with WNN. However, the 
number of training samples increases exponentially 

when the number of input parameters (units) is large, 
which makes the convergence speed of WNN greatly 
decrease.  The next stage of this work will focus on the 
study of improving the convergence speed so that it will 
be suitable for a real-world application. 
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