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Abstract

Understand the behavior of Fuzzy Rule-based Systems (FRBSs) at inference level is a complex task
that allows the designer to produce simpler and powerful systems. The fuzzy inference-grams –known
as fingrams– establish a novel and mighty tool for understanding the structure and behavior of fuzzy
systems. Fingrams represent FRBSs as social networks made of nodes representing fuzzy rules and
edges representing the degree of interaction between pairs of rules at inference level (no edge means no
significant interaction). We can analyze fingrams obtaining helpful information such as detecting potential
conflicts between rules, unused rules and redundant ones. This paper introduces a new module for fingram
generation and analysis included in the free software tool GUAJE. This tool aims to design, analyze and
evaluate fuzzy systems with good interpretability-accuracy trade-off. In addition, GUAJE includes several
intuitive and interactive tutorials to uncover the possibilities it offers. One of them generates and enhances
a fuzzy system, analyzing each improvement through the use of fingrams, and lets the user reproduce the
illustrative case study described in this paper.
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1. Introduction

Fuzzy sets and systems have become a mature re-

search field with many theoretical and applied works

starting from Zadeh’s seminal work 36. Among

the huge number of research lines developed by the

fuzzy community, system modeling with fuzzy rule-

based systems (FRBSs) –called fuzzy modeling 23–

has been a fruitful research line for years.

During a long period –from 1965 to 1990– fuzzy

modeling was mainly supported by expert knowl-

edge. Researchers concentrated on building fuzzy

models made up of a few simple linguistic vari-

ables 38 and linguistic rules 37 usually referred as

Mamdani rules 27. Accordingly, those designed

fuzzy models were easy to interpret, and inter-

pretability emerged naturally as an important advan-

tage. However, researchers realized that considering

only expert knowledge was not enough when deal-

ing with complex real-world problems. Fortunately,

it is also possible to build fuzzy models automati-

cally –following a machine learning approach– from

experimental data 24.

Thus, in a second period –from 1990 to 2000–

researchers focused on automatically creating accu-

rate fuzzy systems from experimental data, although

disregarding interpretability. Of course, fuzzy sys-

tems are not interpretable per se, and automatically
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generated rules are rarely as readable as desired.

Interpretability has recovered a main role inside

the fuzzy community since 2000 5. Researchers re-

alized that accuracy and interpretability should be

cared together, although, both issues are somehow

contradictory. High accuracy usually implies low

interpretability and vice versa. In practice, fuzzy

modeling involves careful design where both in-

terpretability and accuracy must be taken into ac-

count along the design process. The quest for the

right interpretability-accuracy trade-off has become

a great challenge in the last decade 16. Nowadays,

many researchers are actively working on it but a lot

still remains to be done.

The notion of fuzzy inference-gram (fingram),

recently introduced 4, is a powerful tool supporting

the quest for interpretability-accuracy trade-off. In

short, the behavior of a fuzzy system is analyzed –

at inference level– by looking at those pairs of co-

fired (simultaneously fired) rules by a given input

vector. Then, a social network represents the rule

base interaction where each individual entity repre-

sents a rule, and edges connecting entities show the

relations among rules.

This paper explains how the free open source

software GUAJE has been recently enhanced with

a new module in charge of fingram generation and

analysis 10. In addition, GUAJE offers several opti-

mization and simplification tools –at both fuzzy par-

tition and fuzzy rule level– devoted to improve the

accuracy and interpretability of the entire fuzzy sys-

tem. The new module for fingrams eases the quest

for interpretability-accuracy trade-off along the en-

tire modeling process. Fingrams let us visually an-

alyze and uncover the behavior and consequences

of the applied optimization and simplification tech-

niques. As a result, the designer can dynamically

change the related parameters and/or improvement

strategies with the aim of achieving the best balance

between interpretability and accuracy.

The rest of the paper is organized as follows.

Section 2 gives a global overview on existing soft-

ware for fuzzy systems. Then, Section 3 introduces

fingrams and their uses in fuzzy modeling. Section 4

presents the open source tool GUAJE, devoted to

design and analyze FRBSs, which includes a new

module for handling fingrams. Afterwards, we use a

simple but highly illustrative use case in Section 5 to

show the potentials of fingrams. Finally, some con-

clusions and future works are sketched in Section 6.

2. Fuzzy systems software overview

Along this long trip (more than forty five years), the

fuzzy community has produced many publications

regarding both theoretical and practical issues, and

as a side effect, a lot of software tools have been de-

veloped too.

There exist some powerful and widely known

commercial tools like the Fuzzy Toolboxa and the

Adaptive Neuro-Fuzzy Inference System (ANFISb)

both provided by Matlab; the software fuzzyTECHc;

or the fuzzy package provided with Wolfram

Mathematicad.

Anyway, this contribution focuses on open

source tools that have recently reached a high level

of development. They offer the richness of quickly

incorporation of new developments made by the ac-

tive research community, playing an important role

in academy and industry. Moreover, most of this

software is freely downloadable for research and ed-

ucation purposes, and facilitates the design of ad-

vanced prototypes for many novel applications.

We would like to highlight the following open

source tools for fuzzy modeling –our principal in-

terest in this contribution– because of their good per-

formance and human-friendly interfaces:

• FisProe (Fuzzy Inference System Professional).

An open source tool for creating fuzzy inference

systems 21. It includes many algorithms for gener-

ating fuzzy partitions and rules directly from ex-

perimental data. FisPro aims at simulating physi-

ahttp://www.mathworks.es/products/fuzzylogic/index.html
bhttp://www.mathworks.es/help/toolbox/fuzzy/anfisedit.html
chttp://www.fuzzytech.com
dhttp://www.wolfram.com/products/applications/fuzzylogic
ehttp://www.inra.fr/internet/Departements/MIA/M/fispro/
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cal or biological systems, making emphasis in rea-

soning purposes. It eases the integration of expert

knowledge and knowledge extracted from data.

FisPro has been successfully applied to agricul-

ture and environmental modeling problems 22.

• Xfuzzyf. A development environment aimed at

producing fuzzy inference-based systems 11,12. It

integrates a set of tools covering all design stages

from description to synthesis. Xfuzzy has been

recently enhanced with an XML-based language

called XFSML 28 that makes easier the interoper-

ability among complementary tools.

• GUAJEg. A free software tool for generating un-

derstandable and accurate FRBSs in a java envi-

ronment 6. It allows combining expert knowledge

and knowledge automatically extracted from data.

GUAJE integrates several algorithms provided by

different open source software tools. Moreover,

the user can export models generated by GUAJE

to other program formats, like FisPro, Xfuzzy, or

the Matlab Fuzzy Toolbox.

As previously hinted, establish a standard lan-

guage is an increasing important requirement. Re-

garding fuzzy control, there is a standard language

called Fuzzy Control Language (FCL) published by

the International Electrotechnical Commission (IEC

61131-7). Notice that, FCL is implemented in the

open source library named jFuzzyLogic 17. A vari-

ant of FCL based on XML which is called Fuzzy

Markup Language (FML 1) has been recently pro-

posed and it is under standardization process.

Other important and more ambitious open

source tools are KNIMEh (Konstanz Information

Miner) 14, a modular environment which is espe-

cially endowed with data manipulation and visual-

ization methods but also with fuzzy rule learning

capabilities 13; FRIDAi (Free Intelligent Data Anal-

ysis Toolbox) 15 that provides methods for statisti-

cal analysis but also with visualization capabilities;

and KEELj (Knowledge Extraction based on Evolu-

tionary Learning) 2 that probably contains the most

complete collection of algorithms for genetic fuzzy

systems. In addition, KEEL offers a user-friendly

GUI for designing experiments and an educational

data mining tool.

3. Fingrams

The term fingram stands for fuzzy inference-gram.

It was coined in 4 by inspiration on the term sci-

entogram firstly introduced by Vargas-Quesada and

Moya-Anegón 29 in the search for a new tool aimed

at visualizing the structure of science 35.

We have recently proposed a methodology for vi-

sual representation and exploratory analysis of the

fuzzy inference process in FRBSs 30. With that aim,

fingrams represent FRBSs as social networks, giv-

ing very useful information about the FRBS behav-

ior. They are made of nodes representing fuzzy rules

and weighted edges that show graphically the inter-

action between rules at inference level.

Different aspects of teamwork between rules can

be considered, producing different fingrams. As a

first approach, we use co-firing between rules, i.e.,

rules fired at the same time by a given input vector.

Therefore, rules highly related are more frequently

fired together. Given a fuzzy system containing N

rules and an experimental dataset covering most pos-

sible situations, we automatically generate an N×N

weight matrix M describing the interactions between

the N rules in terms of frequency of co-firing.

M =




0 m12 . . . m1N

m21 0 . . . m2N

. . . . . . . . . . . .

mN1 mN2 . . . 0


 (1)

The co-firing measure (mi j) is defined by the next

equation:

mi j =

{
SFRi j√
FRi·FR j

, i 6= j

0 , i = j
(2)

fhttps://forja.rediris.es/projects/xfuzzy/
ghttp://www.softcomputing.es/guaje
hhttp://www.knime.org
ihttp://www.borgelt.net/frida.html
jhttp://sci2s.ugr.es/keel/
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SFRi j counts the number of samples firing simulta-

neously rules Ri and R j. FRi and FR j count respec-

tively the total number of samples firing rules Ri and

R j, disregarding if they are fired together or not.

Once matrix M is obtained, then it becomes

straightforward the generation of an initial network

(undirected graph) made up of N nodes connected

through edges whose weights are directly taken from

M. However, since rules usually cover the input

space with dense overlapping among them, the re-

sultant network is usually quite dense and difficult to

understand. Accordingly, we apply a scaling mech-

anism to simplify the representation what allows the

users to focus their attention in the most transcen-

dent relations. The Pathfinder algorithm 18 is chosen

due to its mathematical properties including the con-

servation of links and the representation of the most

salient relationships present in the data. Pathfinder

considers two main parameters:

• r ∈ [1,∞). It defines the Minkowski r-metric

considered to measure the distance between two

nodes not directly connected:

D =

{

∑
i

Dr
i

} 1
r

(3)

In case r takes value 1, then D results in the sum of

the link weights; r = 2 yields the usual Euclidean

metric; and when r → ∞ the path weight is the

same as the maximum weight associated with any

link along the path.

• Q ∈ [2,N −1]. It limits the number of links in the

paths for which the triangle inequality is ensured

in the scaled network. Hence, Pathfinder removes

every path that connect two nodes that violate the

triangle inequality, having an associated distance

greater than any other path between the same two

nodes composed of up to Q links.

After scaling the network, the resultant network

is visualized. Among the family of spring-embedder

algorithms, we select the so-called force-based algo-

rithms to automatically visualize the resultant net-

works. Kamada-Kawai 26, one of the most extended

methods, assigns coordinates to the nodes trying

to adjust, in an aesthetical pleasing way, the dis-

tances existing among them with respect to the ac-

tual interactions. The combination of rule co-firing,

Pathfinder, and Kamada-Kawai places the most im-

portant nodes (i.e., those sharing more sources with

the rest) toward the center. We call fingram to the

final graphical representation of the network.

Fingrams have already been used in classifica-

tion and regression problems 30. They adopt dif-

ferent characteristics in each case, showing specific

particularities of the problem represented. Fig. 1

shows an illustrative example related to the well-

known IRIS classification problemk. The dataset

contains 3 classes, each one referring to a type of iris

plant. Note that rules pointing out the same output

class are plotted with the same background color,

and rules related to the same class are linked with

green edges while red edges highlight potential in-

consistency problems. In addition, nodes are labeled

with informative values like coverage (cov) or good-

ness (G). In the figure, it is easy to appreciate how

rule R3 covers most data samples and it goes in con-

flict against rules R1 and R2.

The analysis of a fingram can report helpful in-

formation about the analysis and verification of the

related FRBS. We can systematically detect abnor-

mal behaviors through carefully looking at the vi-

sual representation of a FRBS. Some simple but very

useful examples of fingrams analysis are: identifica-

tion of rules that cover a small amount of problem

instances, perception of rules that exactly cover the

same problem instances, detection of a rule that cov-

ers problem instances alone, assessment of FRBS

comprehensibility, etc.

Regarding the comprehensibility analysis, we

assume a large number of co-fired rules means a

hardly comprehensible FRBS. Thus, the complex-

ity of understanding the fuzzy inference process in

terms of rules co-firing information can be evalu-

ated by the Co-firing Based Comprehensibility In-

dex (COFCI) 9:

kIRIS dataset is freely available at the KEEL machine-learning repository [http://sci2s.ugr.es/keel/].
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Class 1

Class 2

Class 3

R1: IF Sepal Length is Average AND Sepal Width is

High THEN Class is C1

R2: IF Sepal Length is High AND Sepal Width is Av-

erage THEN Class is C3

R3: IF Sepal Length is Average AND Sepal Width is

Average THEN Class is C2

R4: IF Sepal Length is Average AND Sepal Width is

THEN Class is C2

Figure 1: Intuitive example of fingram.

COFCI =

{
1−

√
CI

MaxT hr
, if CI 6 MaxT hr

0, otherwise

(4)

CI =
N

∑
i=1

N

∑
j=1

[(Pi +Pj) ·mi j] (5)

N is the number of rules, Pi and Pj count the number

of antecedent conditions in rules Ri and R j, respec-

tively. mi j is the measure of co-firing (Eq. 2) re-

garding rules Ri and R j. MaxT hr is a normalization

factor determined heuristically.

For getting a complete explanation about fin-

grams creation, interpretation and analysis, the inter-

ested reader is kindly referred to 30 where fingrams

are deeply described.

4. GUAJE

GUAJE stands for Generating Understandable and

Accurate fuzzy systems in a Java Environment 6.

Namely, GUAJE implements the fuzzy modeling

methodology named as Highly Interpretable Lin-

guistic Knowledge 7,8 that was conceived with

the aim of yielding fuzzy systems endowed with

good balance between interpretability and accuracy.

GUAJE has been carefully developed in order to be-

come user-friendly. In consequence, it makes the

design of interpretable FRBSs easy and intuitive.

Fig. 2 shows the Main and Expert Windows of

GUAJE. This free software actually consists of a

modular architecture which is made up of several

software modules in charge of the following tasks:

• Data pre-processing. It includes data visualiza-

tion and analysis, re-sampling, etc.

• Feature selection. It focuses on identifying the

most significant input variables.
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(a) Main window of GUAJE. (b) Expert window of GUAJE.

Figure 2: Screenshots of GUAJE.

• Partition design. It deals with the characteriza-

tion of each input variable as a linguistic variable

with a justifiable number of meaningful linguistic

terms. The attached membership functions can be

defined by an expert and/or they can be automat-

ically derived from data using machine learning

techniques.

• Rule base definition. The system behavior can

be described by a set of linguistic IF-THEN rules.

An expert can define the rules and/or GUAJE can

derive them from data.

• Knowledge base verification. This modeling

stage verifies the consistency of the knowledge

base previously defined. This analysis must be

done at both linguistic and inference levels.

• Knowledge base visualization. The module for

fingram generation and analysis shows graphi-

cally the system behavior in terms of rule co-firing

at inference level.

• Knowledge base improvement. It tries on get-

ting systems with better interpretability-accuracy

trade-off. Two main options are available: linguis-

tic simplification and partition tuning.

• Knowledge base validation. It checks if the de-

signed fuzzy system matches with the expert re-

quirements and expectations.

• Knowledge base evaluation. The quality assess-

ment module reports tables including several in-

dices for evaluating both interpretability and ac-

curacy.

In the rest of this section we will provide a deeper

analysis of those modules that are the most relevant

for the remainder of this contribution.

4.1. Partition design

This module allows defining the relevant linguis-

tic variables for the problem under consideration.

GUAJE permits selecting the number of linguistic

terms –from 2 to 9– for each input variable. They

must be fully meaningful. Therefore, it is possible

to choose among several pre-defined sets of vocab-

ulary tuples (low-high, small-large, and so on) but

also set new linguistic terms customized by the user.

The characterization of each linguistic term can

be made by two different approaches. On the one

hand, an expert can define them choosing prototype

values by hand. On the other hand, GUAJE can de-

rive partitions by using several induction methods.

In both cases, GUAJE imposes the use of strong

fuzzy partitions 33 with the objective of maximizing

interpretability.

4.2. Rule base definition

This module provides mechanisms to define the

rules which compound the FRBS. The user can cre-
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ate rules by two different, but not incompatible, ap-

proaches. Firstly, he/she can define the rules by ex-

pert knowledge. As an alternative, machine learning

techniques can derive rules from data, either to con-

stitute the rule base or to complement pre-existing

expert rules. GUAJE permits the use of Fuzzy Deci-

sion Trees, Wang and Mendel, Fast Prototyping, and

Prototype Rule algorithms 7.

In addition, the user can choose among typical

methods for rule conjunction (minimum, product, or

Łukasiewicz) and disjunction (maximum or sum).

4.3. Knowledge base visualization

This module shows graphically the interaction

among rules at inference level 10.

GUAJE first generates a co-firing matrix regard-

ing the pairs of rules simultaneously fired by each

problem instance. Then, Pathfinder scales the graph

related to such matrix. Afterwards, Kamada-Kawai

algorithm determines the placement of nodes. Then,

the graph is enhanced with information related to

rules (coverage, goodness, etc.). Finally, the resul-

tant fingram is displayed to the user who can analyze

it and interact with it, making zoom in and zoom out,

removing nodes, and so on.

4.4. Knowledge base improvement

This module aims to obtain a better balance between

interpretability and accuracy.

GUAJE provides two ways to improve the

interpretability-accuracy trade-off of a given FRBS.

On the one hand, rule base simplification permits

increasing readability of the FRBS by reducing its

complexity (in terms of number of rules, premises,

variables, linguistic terms, etc.) but without jeopar-

dizing accuracy beyond a pre-defined threshold. On

the other hand, fuzzy partitions can be tuned in or-

der to increase accuracy while keeping comprehen-

sibility (because of imposing several semantic con-

straints).

4.4.1. Rule Base Simplification

The goal is the generation of a more compact FRBS,

regarding both fuzzy partitions and rules, thus im-

proving interpretability while preserving accuracy.

GUAJE offers three alternatives:

Genetic rule selection: The initial FRBS is used

for building the first individual of the popu-

lation. A binary-coded chromosome with size

N (the number of initial rules) is generated.

Depending on whether a rule is selected or

not, values 1 or 0 are respectively assigned

to the corresponding gene. At the beginning

all rules are supposed to be selected. The rest

of the population is randomly generated. In

each generation, parents are selected by bi-

nary tournament. Then, uniform crossover

and flip-flop random mutation are applied.

The best individuals automatically pass to the

next generation by elitism. The stopping cri-

teria are the maximum number of generations,

or fitness under the predefined threshold. Fit-

ness function is defined as the weighted sum

of the accuracy and interpretability indices se-

lected by the user among all those ones pro-

vided by GUAJE.

Logical view reduction: First of all, the current

rule base is transformed into several truth ta-

bles without any change of semantics. This

is possible thanks to the propositional view of

fuzzy rule-based systems handled by GUAJE.

In a second step, the truth tables previously

generated are, in turn, minimized by applying

truth-preserving operators (but without taking

care of accuracy which may go down dramat-

ically depending on how the initial rules were

defined). Then, the new set of truth tables is

transformed into propositions in the third step,

so that constituting a new rule base, different

but derived from the original one.

Linguistic simplification: It includes rule-based

reduction and partition simplification, at lin-

guistic level. In short, it is an iterative process

which first acts on the rules and then on the

partitions at each iteration. This cycle is re-

peated until no more interpretability improve-

ment is feasible without penalizing accuracy

beyond a predefined threshold. Firstly, the
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procedure looks for redundant elements (lin-

guistic terms, premises, rules, etc.) that can be

removed without altering the system accuracy.

Then, it tries to merge elements always used

together. Finally, it removes elements appar-

ently needed but not contributing too much to

the final accuracy.

4.4.2. Partition Optimization

The goal is increasing accuracy without jeopardiz-

ing interpretability. The optimization task only af-

fects the fuzzy partitions that define the system vari-

ables. The partition tuning is constrained to main-

tain strong fuzzy partitions. Two strategies are con-

sidered 3:

Genetic tuning: An all-in-one optimization proce-

dure based on a global search strategy. It is

actually a genetic tuning process that looks for

adjusting all system parameters at the same

time. The procedure starts with a population

of randomly generated solutions represented

by real-coded chromosomes. Parents are se-

lected by binary tournament at each genera-

tion. Then, BLX −α crossover and random

mutation are applied. The best individuals are

preserved by elitism. The stopping criteria are

the maximum number of generations, or fit-

ness under the predefined threshold. Fitness

function is defined by the accuracy index se-

lected by the user among all those ones pro-

vided by GUAJE.

Solis-Wets: An element by element optimization

procedure based on the classical local search

strategy proposed by Solis and Wets 34: It is a

hill climbing method with memorization of the

previous successes 19. The goal is not to find

the global optimum, but to improve accuracy

by performing a few iterations. Two alterna-

tives are available: Variable by variable, and

label by label.

4.5. Knowledge base evaluation

This module provides a complete overview about the

quality (regarding both accuracy and interpretabil-

ity) of the designed FRBSs.

For accuracy assessment there are universal in-

dices commonly accepted, as the percentage of cov-

ered samples (Coverage) or the percentage of mis-

classified samples (MC), in classification problems:

MC =
1

d

d

∑
i=1

erri; erri =

{
1, if Ci 6= Ĉi

0, otherwise
(6)

d is the number of instances. Ci represents the class

of instance i. Ĉi is the inferred class.

On the contrary, there is not any well established

and widely recognized interpretability index. Even

more, there is a need to look for two kind of com-

plementary indices, objective and subjective ones 5.

In this paper, two objective indices, the number of

rules (NR) and the total rule length (T RL), and one

subjective index, the COFCI index (Eq. 4), will be

used to evaluate the interpretability of FRBSs. No-

tice that T RL counts the total number of linguistic

propositions into the whole rule base.

5. Illustrative case study. Generation and

analysis of fingrams with GUAJE.

GUAJE has been enhanced with a new software

module for fingram generation and analysis. It is

successfully integrated with the rest of modules of

the software architecture as it was sketched in the

previous section. This section details how to han-

dle (generate, manipulate and analyze) fingrams in

GUAJE through an example. For the sake of clar-

ity the case study focuses only on a highly illus-

trative classification problem even though fingrams

can also be applied to any classification or regres-

sion problem. We have selected a very well-known

benchmark classification problem, WINEl just for il-

lustrative purposes.

WINE dataset contains 178 instances coming

from the results of a chemical analysis of wines

lWINE dataset is freely available at the KEEL machine-learning repository [http://sci2s.ugr.es/keel/].
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Flavanoids

Very Low Low Average High

Very High

Figure 3: Linguistic terms and membership functions of variable Flavanoids.

grown in the same region in Italy from three dif-

ferent cultivars. Thus, the output of the FRBS will

be one categorical variable including the 3 classes

of wines. In addition, the quantities of 13 con-

stituents (Alcohol, Malic acid, Ash, Alcalinity of

ash, Magnesium, Total phenols, Flavanoids, Nonfla-

vanoids phenols, Proanthocyanins, Color intensity,

Hue, OD280/OD315 of diluted wines, and Proline)

are taken as inputs.

The dataset is split into two samples for training

and test, trying to avoid overfitting. The training set

comprises 75% (133 instances) of the available data

picked at random. The test set is compound by the

remaining 25% (45 samples).

Then, each input variable is characterized by a

strong fuzzy partition which contains five member-

ship functions (of triangular shape). They take val-

ues in the universe of discourse determined by the

minimum and maximum available data. Fuzzy par-

titions are automatically derived from training data

with the Hierarchical Fuzzy Partitioning (HFP) al-

gorithm 20. Fig. 3 shows, just for illustrative pur-

pose, the membership functions attached to each lin-

guistic term of variable Flavanoids. As it can be

appreciated, partitions generated by HFP are always

strong fuzzy partitions but not necessarily uniform.

Notice that, interpretable fuzzy partitions must rep-

resent prototypes that are meaningful for the expert

and context-dependant, but this fact does not imply

they have to be uniform.

Moreover, we must set a meaningful linguistic

term related to each membership function because

we deal with linguistic variables. This way, we de-

fine the basic vocabulary to be used later in the def-

inition of linguistic rules. We have considered the

following linguistic terms: Very Low / Low / Aver-

age / High / Very High.

Before defining fuzzy rules, it is time to choose

carefully the involved fuzzy operators, because they

directly alter the inference mechanism. We have se-

lected minimum, maximum and max crisp as t-norm,

t-conorm and defuzzification method respectively,

the usual inference scheme considered when dealing

with classification problems.

Looking for a set of general rules that exhibit a

good interpretability-accuracy trade-off, we have in-

duced rules using Fuzzy Decision Trees (FDT) al-

gorithm 25. FDT can be seen as a fuzzy version

of the popular decision tree induction algorithm de-

fined by Quinlan 31. The GUAJE implementation of

FDT is actually based on the generation of a neuro-

fuzzy decision tree which is easily translated into

quite general incomplete rules where only a subset

of input variables is considered. The result of run-

ning FDT (with maximum tree depth equal to 3; and

using the fuzzy partitions previously generated) is a

rule base made up of 32 rules. As expected, not all

inputs are considered in all the rules. In fact, each

rule uses only a subset of the input variables (3.4 in-

puts per rule in average). Picture on the left side in

Fig. 4 shows the Expert Window of GUAJE after

generating fuzzy partitions and rules. The top part

of the picture shows the variables (13 inputs and 1

output) while a table represents the generated rule

base at the bottom. Each row corresponds to one

rule while each column represents one variable.

Table 1 summarizes the quality evaluation along

the process. It reports the values computed for the

quality indices previously introduced in Section 4.5.

NR is the number of rules. T RL reports the to-

tal rule length. COFCI stands for co-firing based

comprehensibility index. MC means misclassified
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Table 1: FRBS quality along the design stages.

Quality Index Original FRBS
R5, R16, R31 FRBS after rule FRBS after

R32 removal base simplification partition optimization

NR 32 28 6 6

T RL 109 101 13 13

COFCI 0.065 0.075 0.787 0.787

MC Training 0.932 0.910 0.932 0.94

Coverage Training 100 98.496 100 100

MC Test 0.867 0.867 0.911 0.911

Coverage Test 97.778 97.778 100 100

Figure 4: Generation of fingrams.

cases. MC and Coverage are computed regarding

both training and test datasets. The column entitled

as Original FRBS corresponds to the current FRBS

(the one displayed in Fig. 4). The rest of columns

are related to the next design steps which will be dis-

cussed in the rest of this section.

Once the Original FRBS is generated, we can use

fingrams with the aim of uncovering the FRBS be-

havior at inference level through a graphical analy-

sis. First, we must set some parameters (see pictures

on the right side in Fig. 4):

• Goodness Threshold. Upper and lower thresh-

olds for estimating the goodness of coverage re-

garding each single rule. The goodness measure

informs about how well each rule classifies the

problem instances that it covers. A rule covers one

problem instance when the rule firing degree for

that instance is greater than a predefined thresh-

old (0.1 in this work).

• Pathfinder Threshold. This parameter is used for

pruning the initial graph (removing those edges

with weights smaller or equal than the threshold),

before running Pathfinder.

• Q. This is the specific parameter of Pathfinder
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(a) Quality view. (b) Legend view.

Figure 5: GUAJE fingrams window.

which limits the number of links in the paths re-

specting the triangle inequality. GUAJE suggests

assigning to Q the maximum number of rules

that can be simultaneously fired, which is esti-

mated in an inferential way regarding the available

dataset. In consequence, the network scaling will

take shorter time. Anyway, by default Q = N −1,

with the aim of assuring that all paths are properly

analyzed.

Second, we have to choose one layout algorithm

(bottom right side in Fig. 4) among those provided

by GUAJE (neato, fdp, circo, and so on). We have

chosen neato which is an implementation of the

Kamada-Kawai algorithm.

Then, the GUAJE window of Fig. 5(a) appears.

The body of the window is structured in the form of

a tabbed panel. The Quality tab gives an overview of

the quality of the designed FRBS. It provides a list

of quality indicesm regarding both accuracy (on the

left) and interpretability (on the right). Moreover,

the user can interpret fingrams according to the in-

formation presented in the Legend tab (Fig. 5(b)).

Once selected the proper options, the pictures in

Fig. 6 are displayed. Thanks to the use of SVG

format the user can interact with the graph through

zooming, moving, and/or exploring in depth some

zones of interest in the entire network. In addition,

when the user passes the mouse over a node or an

edge, a text pops up with the linguistic description of

the related rule or link. Moreover, the user can dis-

able rules by clicking on its corresponding node, i.e.,

a rule is temporally deactivated in the rule base, and

the fingram is generated again without taking care

of that rule. In consequence, fuzzy systems design

becomes an interactive process which is effectively

guided by decisions drawn from the expert analysis

of fingrams.

The GUAJE window for fingram analysis is il-

lustrated in Fig. 6. In addition to the visualization

panel, it contains other two tabs: the Legend tab with

a specific legend of the fingram presented; and the

Measures tab (Fig. 6(c)) which gives several rule

rankings based on some of the most popular mea-

sures in the context of social network analysis, such

as Page Rank or Centrality.

The complete fingram is usually quite dense and

difficult to analyze as it can be appreciated in Fig.

6(a). Thus, the network scaling stage becomes es-

sential to provide a good and efficient fingram anal-

ysis. Therefore, GUAJE uses Pathfindern to keep

only the most significant links, yielding as result

the scaled fingram depicted in Fig. 6(b). Looking

carefully at the scaled fingram, it is easy to detect

rules that cover regions with a few examples and are

therefore good candidates to be studied in detail. For

instance, rules R5, R16, R31 and R32 appear iso-

mSuch indices are thoroughly explained in the GUAJE user manual.
nGUAJE actually makes use of MST-PathFinder 32. It is a recently published variant of Pathfinder algorithm able to generate large

science maps in cubic time.
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(a) Complete fingram. (b) Scaled fingram with Pathfinder.

(c) Rule rankings.

Figure 6: Fingram analysis window.

lated and they cover very few examples. Hence, they

are good candidates to be removed. In fact, as shown

in Table 1, after removing such rules accuracy only

slightly decreases.

In the quest for even better interpretability-

accuracy trade-off we have opted for applying first

linguistic simplification (aimed at improving inter-

pretability while preserving accuracy) and then par-

tition tuning (with the goal of increasing accuracy

without jeopardizing interpretability).

The linguistic simplification process yields a

more compact FRBS. The number of variables is re-

duced from 13 to 4, the total number of member-

ship functions goes down from 65 to 11, the num-

ber of rules drops from 28 to 6, and the total rule

length pass from 101 to 13. This is because simpli-

fied rules are much more general than the original

ones. The result of simplification can be seen in a

new fingram which is depicted in Fig. 7. At first

sight it is clear the high level of simplification ob-

tained with a drastically reduction of the number of

rules (as a side effect the COFCI index improves).

Even more, the rules cover all the examples (regard-

ing both training and test sets) because they are more

general, and they also produce better accuracy (as it

is detailed in Table 1). The rule R3 covers all exam-

ples related to class C3. In addition, it significantly

overlaps with rule R4, thus yielding potential incon-

sistencies. Rule R4 turns up as the central rule in

the fingram. It covers most data samples going in

conflict against R3 but also against R2. Even though

rules R2 and R4 cover many examples they are not

enough to handle properly their related classes, C2

and C1 respectively. Therefore, they have to be com-
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R1: IF Alcohol is Very Low AND

Flavanoids is Very Low AND

Color Intensity is Very Low

THEN Class is C2

R2: IF Alcohol is Very Low AND

Flavanoids is Low THEN

Class is C2

R3: IF Flavanoids is Very Low

AND Color Intensity is Low

THEN Class is C3

R4: IF Alcohol is Low AND Fla-

vanoids is Low AND Proline

is (Low OR Average) THEN

Class is C1

R5: IF Alcohol is (Average OR

High) AND Flavanoids is

Low THEN Class is C1

R6: IF Flavanoids is Average

THEN Class is C1

Figure 7: Fingram of the simplified FRBS.

plemented with other rules, partly redundant with

them, like R1, R5 and R6.

With respect to the optimization stage, we have

selected the Solis-Wets algorithm able to tune the

membership functions yielding marginal changes in

the overall behavior of the system (look at quality

indices reported in Table 1). For this particular case

study, the tuning process only affects to the defini-

tion of the linguistic terms Very Low and Low of

variable Alcohol. Therefore, only rules R1, R2 and

R4 suffer slightly changes. In consequence, the re-

sultant fingram remains almost the same than after

simplification.

Finally, it is worthy to remark that GUAJE comes

with several intuitive and interactive tutorials. One

of them shows the benefits and potentials of fin-

grams for aiding the design of FRBSs. It details,

step by step, first how to build an interpretable fuzzy

rule-based classifier and then how to simplify and

optimize it, looking for the best balance between ac-

curacy and interpretability supported by fingrams.

The illustrative case study presented above can be

reproduced by the interested reader with the help of

GUAJE and just following the related tutorial.

6. Conclusions and future works

This paper has explained how the software mod-

ule for fingram generation and analysis is success-

fully integrated with the rest of modules provided by

GUAJE. The new module is a powerful tool for un-

derstanding the system behavior at inference level.

It becomes really useful in the design of fuzzy sys-

tems because the designer can check graphically,

at any design stage (rule learning, simplification,

optimization, etc.), the interaction between rules

but also how each design decision affects to the

interpretability-accuracy trade-off.
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Please, notice that GUAJE is freely available

(under GPL license) as open source software at:

http://www.softcomputing.es/guaje

The number of users of GUAJE is growing up

all around the world. The users’ feedback helps us

to continue enhancing this free software tool. Thus,

new releases will be available with improvements in

the visualization of fingrams. In short-term we want

to make even more dynamic and user-friendly the

interaction with the user. Thus, he/she should be

able to alter the graph layout through making drag

and drop of some nodes or collapse/expand parts of

interest in the entire graph. Regarding mid-term fu-

ture we plan to develop a new software module that

gives fully automatic support to the design of fuzzy

systems guided by fingrams.

The co-firing measure presented in this contribu-

tion is biased by the training data. Such fact may

be avoided by considering other measures of over-

lapping between rules, that will be part of our future

work.

Acknowledgments

This work has been funded by the “Spanish Ministry

of Economy and Competitiveness” under projects

TIN2011-29824-C02-01 and TIN2011-29824-C02-

02. It has also been partly supported by the Euro-

pean Centre for Soft Computing.

References

1. G. Acampora, V. Loia, and A. V. Vasilakos, “Au-
tonomous composition of fuzzy granules in ambi-
ent intelligence scenarios,” Human-Centric Informa-
tion Processing Through Granular Modelling, Stud-
ies in Computational Intelligence, Springer, 265–287
(2009).
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