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Abstract

As a knowledge representation tool, ontologies have been widely applied in many fields such as knowl-
edge management and information integration, etc. Ontology measurement is an important challenge in
the field of knowledge management in order to manage the development of ontology based systems and
reduce the risk of project failure. This paper proposes a generic implementation framework for stable
semantic ontology measurement. Through this framework, an ontology will be measured according to
its semantic enriched representation model (SERM). The SERM model of an ontology can be used for
stably measuring the semantics of the ontology. Then ontology metrics are integrated into the framework
to measure candidate ontologies according to its SERM model. The related experiments are made to show
that the framework can effectively measure the semantics of ontologies.
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1. Introduction

Ontology engineering is a subfield of knowledge en-

gineering 1,2, and has spurred the development and

application of ontologies. As a knowledge repre-

sentation tool, ontologies provide the shared seman-

tic vocabulary that agrees on domains of interest.

They play an important role in the development of

semantic-driven knowledge systems 3,4,5,6,7,8. Cur-

rently, plenty of domain ontologies for their ontol-

ogy based systems have been developed in a manual

or (semi-)automatic manner. Ontology engineers of-

ten reuse ontologies by evaluating the existing on-

tologies 10,11.

Measuring ontologies effectively and correctly is

the precondition on which the meaningful and useful

ontology evaluation can be made. Some of the ex-

isting approaches such as the literature 12,13,14,15,16,

have been only successfully used to measure the less

expressive and explicitly expressed ontologie. How-

ever, the ontologies often built in real world have

more expressivity, which include many concepts re-

siding in complex concept constructors. If these ap-

proaches are used to measure more expressive on-

tologies, then they will possibly neglect much of the

implicit semantic information of ontologies. Mean-

while, ontology knowledge can be represented in a

very flexible way. That is, the same semantic knowl-

edge can possibly be represented in different lexical

structures. So the same semantic knowledge will
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possibly have variable measurement results. This

will cause unstable and meaningless ontology mea-

surement. We argue that a generic ontology mea-

surement methodology should be suitable for stably

measuring both less and more expressive ontologies.

In this paper, we propose a generic implemen-

tation framework for stably and automatically mea-

suring the semantics of ontologies. The framework

is designed and implemented in a modular manner.

An ontology transformation approach is adopted to

generate the semantic enriched representation model

(SERM) of an ontology. Furthermore, an automatic

approach is used to collect the measurement entities

based on SERM models. At last, based on the col-

lected measurement entities, ontology metrics can

be integrated into the framework for performing on-

tology measurement tasks.

This paper is organized as follows. Section 2 in-

troduces the related work. Section 3 is the prelim-

inaries about ontology representation and ontology

measurement. In Section 4, we give an overview

of our ontology measurement framework in a mod-

ular manner. Section 5 gives a semantic enriched

representation model (SERM) for ontologies, and

discusses the process of generating SERM models

including four steps. In Section 6, we discuss the

uniqueness of SERM model and stability of ontol-

ogy measurement.In Section 6, we summarize and

collect the measurement entities based on SERM

models by analyzing the types of measurement enti-

ties. Section 7 introduces how to integrate ontology

metrics based on SERM models. In Section 9, we

make the related experiments to show the effective-

ness of our framework. Sections 10 is the conclusion

and future work.

2. Related work

Most of existing ontology measurement frameworks
12,14,15,16 mainly consider ontology structure and

seldom measure ontological semantics. Ensan and

Du proposed four metrics NSLD, NMLD, NSED

and NMED, which concentrate on measuring the

semantics of ontologies for modular ontologies24.

Oh et al. 25 also proposed some ontology cohe-

sion and coupling metrics for modular ontologies.

Zhang et al. discussed some ontology complexity

metrics 26. The stability of measurement and the se-

mantic measurement of ontologies were discussed

in our previous work 17,22,23. We proposed four on-

tology cohesion metrics, where metrics NMIS and

AVAI are used to measure semantically inconsistent

ontology 17,22. In the literature 23, we first gave a for-

mal definition about stability of ontology measure-

ment. However, whether the existing ontology met-

rics can be integrated into a generic framework for

measuring the ontologies with different expressivity

remains to be deeply discussed, while this paper fo-

cuses on this issue.

A few representation models of ontologies were

proposed for graphical visualization of ontologies.

Rudolph et al. proposed an ordered binary deci-

sion diagram (OBDD) method 27. The generated

OBDD diagram is a generalization of binary deci-

sion trees. It is difficult for ontology engineers to

intuitively understand in practice. The emerging se-

mantic link model 28 is a description of semantic re-

lations among objective existences, and pursues se-

mantic richness rather than correctness.

To our knowledge, there is no generic implemen-

tation framework which works well for stably mea-

suring the semantics of both less and more expres-

sive ontologies.

3. Representation and Measurement for
Ontologies

Ontology knowledge can be represented in some

standard web ontology languages such as Web On-

tology Language (OWL) recommended by W3C18.

OWL includes the three inter-related parts: OWL

Lite, OWL DL and OWL Full. They have differ-

ent capabilities of semantic expressivity. From the

viewpoint of structural semantics of ontologies, on-

tology can be regarded as a set of intramodule rela-

tionships, which is denoted SIR.

Definition 1. (Intramodule Relationships, IR) An

intramodule-relationship (IR) refers to a binary rela-

tion between ontology elements, which is one of the

following forms as follows.

— Relations between classes, owl:subClassOf(A,B),

owl:equivalentClass(A,B) and owl:disjoint-
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With(A,B), respectively denote subsumption, equiv-

alence and disjointness between Classes A and B.

— Domain or range relation, owl:domain(R, A)

and owl:range(R, B), respectively represent the

domain and range of a binary relation R, i.e. Classes

A and B.

— Relation between properties, owl:subProperty-

Of(R,S), denotes the property subsumption between

Properties R and S.

— Relation between individuals, R(a, b), represents

the association between Individuals a and b by R.

— Membership relation, owl:type(a, A), denotes

that Individual a is an instance of Class A.

A class (a.k.a concept) is either atomic or

anonymous. A complex concept consists of

atomic concepts by some constructors such

as owl:equivalentClass, owl:unionOf and

owl:Restriction, etc. The ontologies with more

constructors will have more expressivity, and vice

versa. An ontology based on Definition 1 can be

regarded as a graph based model, where nodes are

concepts or individuals, and edges are IRs.

Measuring an ontology is a process of collect-

ing and calculating the related ontological entities

specified by ontology metrics. An ontology metric

is generally defined by a formula that shows how the

entities in the ontologies to be measured are calcu-

lated, and is an indicator of certain characteristics of

ontologies such as ontology cohesion, complexity,

coupling, and semantic coverage, etc. Entity types

that ontology metrics are concerned about gener-

ally include classes/concepts, properties, depth/path,

fanins, fanouts and partitions, etc.

4. Overview of Generic Framework

An overview of the implementation framework for

stable semantic ontology measurement is shown in

Figure 1. The framework includes four main com-

ponents, i.e., generating semantic enriched represen-

tation model, entity summarization, integrating on-

tology metrics, and performing stable semantic on-

tology measurement. The four main components are

sequential, i.e., a component is performed after the

previous one is accomplished. In the following, we

specifically discuss the framework.

Fig. 1. The overview of framework

An original ontology document can be imported

and loaded by some programmable ontology man-

agement platform such as KAON2 19. It can be built

as an original representation model (ORM), which

is a graph based model, where nodes are just the ex-

plicitly expressed concepts or individuals, and edges

are the IRs between nodes.

The component of generating semantic enriched

representation model is one of the core components

of our framework. It is mainly to build the seman-

tic enriched representation model (SERM) for an

ontology by semantic derivation. A SERM model

is also a graph based representation model, and is

achieved by the four sequential steps such as refining

the concepts, extracting IRs, Eliminating IR cycles

and avoiding double counting. The details of gener-

ating SERM models for ontologies will be discussed

in the section 5.

The component Entity Summarization is just to

summarize all kinds of entities associated with en-

tity types. It focuses on collecting the specific enti-

ties from the generated SERM models of ontologies
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rather than their ORM models, where ORM is the

original representation model which is used to rep-

resent the explicitly expressed knowledge in an on-

tology. For the future ontology measurement, once

a new type of entities is summarized, the entities of

the type will be collected into the corresponding sets

of entities.

The component of integrating ontology metrics

is to implement the specific ontology metrics based

on SERM models. The reason why we do like that is

to ensure the stability of measuring ontologies. Each

integrated ontology metric is just to specify how to

calculate the related ontology entities by a formula.

Generally, the component needs to unambiguously

implement each of the integrated ontology metrics.

As such, we can easily collect and calculate the re-

lated metric values when we perform the tasks of

ontology measurement.

At last, ontology engineers can perform the pro-

cess of ontology measurement according to the al-

gorithm that an ontology metric defines.

Note that, the framework proposed in this pa-

per is for ontology measurement rather than ontol-

ogy evaluation. As mentioned in the previous sec-

tion, ontology measurement is a process of collect-

ing and calculating the related ontological entities

specified by ontology metrics. However, generally

speaking, ontology evaluation is a process that asso-

ciates ontology metric values with certain ontology

quality characteristics, and then validates the asso-

ciations between them by many ontology cases. As

such, we can explore which metrics should be used

as indicators of certain quality characteristics such

as complexity, coupling and cohesion, etc. We ar-

gue that a uniform and effective ontology measure-

ment methodology is the precondition on which ef-

fective ontology evaluation can be made. So this

paper concentrates on proposing a uniform and ef-

fective framework for ontology measurement rather

than ontology evaluation which is beyond the scope

of this paper.

5. Semantic Enriched Representation Model

Generating semantic enriched representation model

(SERM) for an ontology is one of the core tasks of

our framework. A SERM model of an ontology is

built mainly by refining ontological concepts, ex-

tracting IRs of ontologies and Eliminating IR cycles.

Meanwhile, in considering some principles in statis-

tics, double counting in calculating ontological enti-

ties should be also avoided. A SERM model of an

ontology is generated based on its original represen-

tation model (ORM).

Definition 2. (SERM model) A SERM model

SERM=(N,R,L), is a triple, where N is a set of

nodes, R⊆N×N is the set of IRs, and L is a labeling

function which assigns each r∈R a relation name of

IRs.

5.1. Refining Concepts/Classes

In ORM, nodes are only the explicitly expressed

concepts. For less expressive ontologies, especially

for the ontologies whose concepts are all atomic,

ontology measurement based on ORM is no prob-

lem. However, if an ontology includes many com-

plex concepts, then its ORM needs to be extended

because ORM does not contain these complex con-

cepts. Considering that OWL is the standard on-

tology language, we here review all constructors

building complex concepts in OWL. According

to OWL syntax, OWL has the six forms of class

constructors: owl:Restriction, owl:unionOf,

owl:intersectionOf, owl:oneOf and

owl:complementOf, as well as owl:Class, where

owl:Class is used to define an atomic class, and the

others are for building anonymous classes. We need

to traverse all possible constructors in an ontology

when we want to refine all the classes in the ontol-

ogy. By XML parser, we can detect these anony-

mous classes, and assign each of them a unique

name. The naming of anonymous classes is im-

plemented by :1, :2, · · · , :n. As such, each

anonymous class will be explicitly expressed in an

ontology, and further added into its SERM model.

Note that some anonymous classes may be nest-

edly defined by other anonymous classes. For exam-

ple, Figure 2 is a description of the anonymous class

describing ”Thing with Ph.D degree and Professor

title”. The anonymous class is nestedly defined

by the two nested anonymous classes, i.e., Class
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1 and Class 2. Here, Class 1 represents the con-

cept ”Thing with Ph.D degree”, and Class 2 repre-

sents the concept ”Thing with Title Professor”. In

fact, we proposed an algorithm that can automati-

cally find out all concepts in a recursive manner 20.

Fig. 2. An example of nestedly defined concept

Detecting and recognizing anonymous classes

are crucial to ontology measurement because they

are indispensable parts of ontology representation.

If they are ignored in ontology measurement, then

we can not capture semantics of ontologies. Figure

3(a) is the ORM model in Figure 2, and Figure 3(b)

is the semantic model of the ontology in fully con-

sidering all possible concepts and individuals. An

ellipse is to represent a concept, and a dashed arrow

with a rectangle represents a binary relation, where

the rectangles are the label names of IRs.

Fig. 3. Two kinds of graph-based ontology representations

5.2. Extracting Intra-module Relationships (IRs)

In ontology measurement, IRs are crucial for an on-

tology to measure its faouts, fanins and depth, etc.

Once all classes including atomic and anonymous

classes are found out, IRs between them should be

also extracted. Especially, those implicit IRs derived

from the explicit knowledge should be excavated

into SERM. As such, the SERM of an ontology can

preserve the semantics of the original ontologies as

more as possible.

Extracting of implicit IRs means to excavate the

five types of IRs mentioned in Definition 1. How-

ever, in considering that some IRs are implicit in

an ontology, the first step is to construct a semantic

model of the ontology by the existing tools of on-

tology management and reasoning such as KAON2.

The semantic model constructed in these tools possi-

bly has special data formats. Such a semantic model

is not suitable for ontology measurement because

most of the existing ontology measures are based on

graphs associated with ontologies. Then, we need

to traverse the associated relations in the semantic

model, and extract them to IRs in the corresponding

SERM.

Fig. 4. Semantic enriched graph-based ontology represen-

tation

Taking Figure 3 as an example, we find that Con-

cept ”Thing with Ph.D degree and Professor Title”

is not only a subclass of the concept

”Thing with Ph.D degree”, but also a subclass of

the concept ”Thing with Title Professor”. These

implicit subClassOf IRs should be excavated and ex-

plicitly expressed in the ontology to construct the se-

mantic enriched ontology representation. Similarly,

the other types of IRs in the semantic model can also

extracted. What we need to do is to search all labels

defined in Definition 1, e.g., owl:subPropertyOf,

owl:domain, owl:range, owl:type, and so on.

For each of the detected IR labels, we first deter-

mine their two endpoints (classes or individuals),

then transform it into the corresponding IR in SERM

model. Figure 4 is the graph based representation

after mining of implicit IRs in Figure 3(b), where an

arrow is a subClassof IR.
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5.3. Eliminating IR Cycles

The IRs for class inheritance (a.k.a. subsumption)

are what ontology measurement is concerned about

because such IRs reflect the semantics of ontologies.

Moreover, they are always associated with some on-

tology measures such as path and depth, etc. A path

should not include any cycle. Otherwise, its depth

is variable, which is an important cause of imped-

ing the stability of ontology measurement. However,

cycles of the subClassOf IRs often exist in ontology

representation. So eliminating IR cycles for class

inheritance is considered as an important step in this

paper, and is necessary to ensure stability of ontol-

ogy measurement.

Strictly speaking, a cycle of subClassOf

IRs is of the form owl:subClassOf(A, A1),

owl:subClassOf(A1, A2), · · · , owl:subClassOf
(An, A), where A, A1, A2, · · · , An are concepts. The

specific treatment to cycles of subClassOf IRs is to

detect all cycles of IRs based on the traditional deep

first search (DFS) algorithm in Graph Theory. Then,

for each cyclic of IRs, we replace each Ai (1 � i � n)

with A. As a result, the cycles of subClassOf IRs are

compressed into one concept node A, and A has its

multiple equivalent names, i.e., Ai (1 � i � n).

In fact, the IRs for class equivalence

can also cause instable measurement. For-

mally speaking, Class A is equivalent to

Class B, i.e., owl:equivalentClass(A, B),

means that both owl:subClassOf(A, B) and

owl:owl:subClassOf(B, A) hold. So the treat-

ment to cycles of equivalentClass IRs is also similar

to that to cycles of subClassOf IRs.

5.4. Avoiding Double Counting

Double counting is a statistical error which should

be avoided in ontology measurement 21. Double

counting of ontological IRs is mainly caused by the

transitivity relationships. We can eliminate dou-

ble counting by deleting the transitivity derived IRs.

For examlples, owl:subClassOf(A, C) is indirectly

obtained by the two related IRs owl:subClassOf
(A, B) and owl:subClassOf(B, C). If the two

IRs are counted, then owl:subClassOf(A, C)

should no longer be counted because counting

owl:subClassOf(A, C) means the double counting

to the two IRs. This is necessary to make ontology

measurement satisfy the basic principle of measure-

ment.

6. Uniqueness of SERM Models

Semantic enriched representation models are pro-

posed for stable semantic measurement of ontolo-

gies. According to the process of generating SERM

models, we fully consider the semantics of all of

the possible elements consisting of ontologies, i.e.,

concepts, instances, properties/relationships and ax-

ioms. Concepts are nodes in SERM models. In-

stances (if any) also corresponds nodes in SERM

models. Ontological properties and axioms are re-

garded as different types of IRs in SERM models.

Each entity in a SERM model for an ontology is

strictly in accordance with the underlying semantics

of the ontology. Formally speaking, let O be an on-

tology, and SERMO be the SERM model of O ac-

cording to the principles of generating SERM mod-

els mentioned in Section 5. For any defined element

elem in O , O |= elem implies SERMO |= ρ(elem).
So we can obtain the Lemma 1.

Lemma 1. SERMO is a semantic-preserving repre-
sentation model of Ontology O .

We can further find that the process of generating

SERM models is monotonic. So we can obtain the

Lemma 2.

Lemma 2. The process for generating the SERM
model for Ontology O is terminable if and only if
there is no element in O for the SERM model.

The classes defined in an ontology are finite. The

relationships between these finite classes are obvi-

ously finite. So the process of generating SERM

models can always find out all defined elements in

an ontology and add them into its SERM model un-

til there is no elements for SERM models. So the

process for generating the SERM model for Ontol-

ogy O must be terminable.

On the other hand, it is impossible that the same

ontology O has multiple different SERM models.

Assume that Ontology O has two SERM models,

respectively denoted SERMO and SERM′
O. We fur-

ther assume that there exists an element α such that
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SERMO satisfies α , and SERM′
O does not satisfy α ,

i.e., SERMO |= α and SERM′
O �|= α . Then there ex-

ists the element α that is an element in O but is not

generated for SERM′
O . This means that the process

of generating SERM′
O has not been terminated ac-

cording to Lemma 2. Thus, SERM′
O is only an in-

termediate model rather than a SERM model. So we

can conclude the following theorem.

Theorem 3. The SERM model of an ontology is
unique.

The uniqueness of final semantic derived mod-

els guarantees that the measurement results be-

tween different ontologies should be comparable,

and hence such ontology measurements are stable.

We therefore can obtain the conclusion.

Theorem 4. Ontology measurement based on SERM
models is stable.

7. Entity Summarization

The measurement entities for ontologies are just

the elements consisting of ontologies. The differ-

ence between measurement entities and ontologi-

cal elements is that they possibly have different

granularities. Measurement entities are fine-grained

if they are the basic element of ontologies, e.g.,

concepts/classes, properties, axioms and instances.

Coarse-grained measurement entities are the intrin-

sic constructs of ontologies, which consist of differ-

ent kinds of basic ontological elements.

By the extensive analysis of most of the ex-

isting ontology metrics, we summarize the mea-

surement entities of the existing ontology metrics
12,13,14,15,16,17,24,25, most of which mainly include

concepts/classes, properties, class inheritance, ax-

ioms, instances, fanouts, fanins, paths and partitions.

In these types of measurement entities, classes,

properties, class inheritance, axioms and instances

belong to the fine-grained types of measurement en-

tities because they are the basic elements consisting

of ontologies. In contrast, fanouts, fanins, paths and

partitions are coarse-grained types of measurement

entities because they themselves consist of some

fine-grained types of measurement entities.

Let O be the measured ontology, and

SERMO=(N, R, L) be its final semantic derived

model. The sets of the different kinds of measure-

ment entities in SERMO are represented as follows.

The set of classes: SCO={v|v ∈N and v is a class

node}.

The set of leaf classes: SLCO={v|v ∈N and

�v′((v′,v) ∈R∧ L((v′,v))=owl:subClassOf}.

The set of properties: SPO={p|p ∈ R}.

The set of instances: SIO={v|v ∈ N and v is an

instance node}.

The set of class inheritance: SCIO={s|s∈ N×N∧
L(s)=owl:subClassOf}.

The set of ontological axioms: SAO={s|s ∈
SCO ×SCO}.

The set of fanouts w.r.t class C: SFOC={ f | f ∈
SCO and L(( f ,C))=owl:subClassOf}.

The set of fanouts w.r.t class C: SFIC={ f | f ∈
SCO and L((C, f ))=owl:subClassOf}.

8. Integrating Ontology Metrics into
Framework

Based on these sets of measurement entities, we

can integrate the ontology metrics related to ba-

sic types of measurement entities into our frame-

work. First, the entities that ontology metrics are

concerned about should correspond to the entities in

the SERM model of the measured ontology. Sec-

ond, the related formula and algorithm should be

also translated so that these ontology metrics could

work in SERM models. For example, we use the

metric Inheritance richness (ir) proposed by Tartir

et al. 14 for measure an ontology O . Metric ir is de-

fined as ir =
ΣCi∈C |Hc(C,Ci)|

|C | , where|Hc(C,Ci)| is the

number of subclasses (C) for a class (Ci) and the

divisor (|C |) is the total number of classes. If we

want to perform stable semantic ontology measure-

ment, then the stable semantic measurement w.r.t ir
for SERMO is easily obtained by the corresponding

equation: ir =
Σvi∈SCO

|SFOvi |
|SCO | .

By Section 7, we can directly summarize some

basic measurement entities for ontologies. These en-

tities types can be also directly expressed by SERM

models for ontologies. However, some coarse-

grained measurement entities such as paths and par-

titions, are not directly expressed. Additional pro-

cedures need to be used to obtain the coarse-grained
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entities for ontologies. For example, a partition of

an ontology, de facto, is a subontology of the ontol-

ogy. Because our ontology measurement is based on

SERM models of ontologies, a partition of an ontol-

ogy is a maximal sub-SERM model of the ontology.

Definition 3. (Sub-SERM model) Let S=(N, R, L)

and S’=(N’, R’ L’) be two SERM models. If S’ is a

sub-SERM model of S, denoted S’⊆S, if and only if

S’⊆S, R’⊆R and ∀r(r ∈ S’∧r ∈ S =⇒ L’(r)=L(r).

For the sake of simplification, if S=(N, R, L) is

a SERM model, then we use S.N and S.R to obtain

the sets N and R of S, respectively.

Definition 4. (Partition in SERM models) PT is a

partition of the SERM model S if and only if the fol-

lowings hold:

— PT⊆S,

— if ∀PT’⊆S such that PT.N∩PT’.N �= /0, then

PT’⊆PT.

It is not difficult to find that Definition 4 gives us

a procedure to obtain a partition of a SERM model.

In fact, we also can easily obtain the set of all parti-

tions of the SERM model.

Another coarse-grained measurement entity type

is path. A path of a SERM model is a sequence of

class inheritance from the root class to a leaf class.

From the definition of SERM models, we cannot

directly obtain the procedure of getting a path in

SERM models, so we need to deeply refine paths in

SERM models such that we can integrate some on-

tology metrics related to paths into our framework.

Depth of ontologies is an important character-

istic of ontology quality. However, It rests on the

measurement to paths of ontologies. In considering

that ontology metrics needs to be integrated into our

framework, the depth of an ontology is just the depth

of its SERM model. The depth of a SERM model

refers to the depth of the paths with the maximum

number of nodes. The depth of a path is the num-

ber of nodes in the path. However, it is possible for

an ontology or its SERM model to have multiple se-

quences of class inheritance from the root class to a

leaf class. That is, there are possibly multiple paths

from the root class to a leaf class.

Definition 5. (Path of SERM model) Let

SERMO=(N, R, L) be the SERM model of an on-

tology O , and RC∈N be the root class of O . The

ith path to leaf class C: Pi
C={v1,v2, · · · ,vm}, where

v1,v2, · · · ,vm ∈ SCO∧v1 =RC∧vm =C∧(vk,vk+1) ∈
R for all 1 � k � m−1 }.

Definition 6. (Depth of path) The depth of the path

P={v1,v2, · · · ,vm} is denoted |P|, which is the cardi-

nality of P.

Definition 7. (Depth of SERM model) Let S be a

SERM model, and SP be a set of all paths from the

root class to leaf classes. The depth of S is denoted

depth(S), where depth(S)=
|SP|
max
i=1

{pi}, where pi is the

ith path in SP. is the cardinality of SP.

Definitions 5, 6 and 7 provide us a feasible proce-

dure to obtain the paths and their depth. The related

algorithms are also easily developed so that we can

integrate ontology metrics related to paths and depth

into our framework.

9. Experiments and Analysis

Current ontology measurement is made based on

ORM models which cannot perform stable seman-

tic ontology measurement for more expressive on-

tologies, so our experiment analysis concentrates on

two aspects for validating the effectiveness of our

methodology. On one hand, for those ontologies

with less expressivity, especially for the ontologies

in which all classes are atomic, we need to discuss

whether the proposed framework works well for less

expressive ontologies. On the other hand, for more

expressive ontologies, we need to compare whether

SERM models can excavate more entities for sta-

ble semantic ontology measurement as opposed to

ORM models.

9.1. Measurement Effectiveness for Less
Expressive Ontologies

In an ontology in which all classes are atomic, there

is no anonymous class (i.e, complex concept). And

thus, there is nothing to do in the step of refining

classes because refining classes is just to explicitly

find and name anonymous classes in the ontology

to be measured. Furthermore, because there is no

complex concept in the ontology, we cannot extract
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any implicit IRs residing in complex concepts. So

its ORM and SERM models are same. As for the

step of eliminating IR cycles, there is a little differ-

ence between ORM and SERM. If there are the IR

cycles in an ontology, then cycles still exist in its

ORM model. In contrast, these cycles will not exist

in its SERM model. In the case, if the ontology met-

rics related to path and depth are applied for mea-

suring the ontology, then the ontology measurement

based on ORM model possibly does not work. How-

ever, the ontology measurement based on its SERM

model still work well. If no cycle exists in the ontol-

ogy, its ORM and SERM models are also same. The

step for avoiding double counting is similar.

By the analysis above, our SERM based frame-

work will work well for less expressive ontologies.

9.2. Comparison between ORM and SERM
Models for More Expressive Ontologies

An intuitive experiment is that we compare them by

using the same ontology metrics respectively based

on ORM models and SERM models. In order to do

that, we further need to consider the two issues. The

first is that how to select ontology metrics because

there are many ontology metrics proposed. The sec-

ond is that what are the data sets for testing ontolo-

gies.

9.2.1. Data Sets and Selection of Ontology Metrics

We randomly collected eight testing ontologies by

using the Swoogle search engine 9. The testing on-

tologies are as follows: Wine, Person, miniTam-

bis, swrc, Terrorism, publication, univ-bench and

GlycO.

As mentioned in Section 7, ontology metrics can

be classified according to their relevant types of

measurement entities. Measurement entities can be

classified into two categories, i.e., fine-grained and

coarse-grained measurement entities. In the fine-

grained measurement entities, classes are the most

important entities because the other measurement

entities rests on classes. So we select the ontology

metrics related to classes, number of classes (NOC),

as a representative in fine-grained measurement en-

tities. For coarse-grained measurement entities, all

of them deal with the set of IRs of class inheritance,

e.g., fanouts, fanins, and path/depth. We select the

ontology metric , average depth inheritance tree of

leaf nodes (ADIT-LN), as a representative in fine-

grained measurement entities. It is related to paths.

The definitions of the two metrics refer to the litera-

ture 12,13,14,15,16. Formally, based on entity summa-

rization of SERM models, the formulae of the two

metrics w.r.t an ontology O are as follows.

NOC(O) = |SCO | (1)

ADIT −LN(O) =
Σ

C∈SLCO

depth(C)

|SLCO | (2)

9.2.2. Experiments and Analysis

By using these testing data sets, their ORM and

SERM models are respectively built for each of the

testing ontologies. Then, we use the two ontol-

ogy metrics to respectively measure their NOC and

ADIT-LN values w.r.t the two models. The mea-

surement results of the two representation models of

each of the ontologies are shown in Table 1. Each

measurement value in Table 1 is of the form X
Y ,

where X is the ADIT-LN value, and Y is the num-

ber of classes/concepts.

Table 1. Comparison of ORM and SERM models

SERM Model ORM Model

Wine 3.44
272

1.27
76

Person 3.71
26

2.71
21

miniTambis 3.47
270

1.61
182

SWRC 3.34
105

2.56
105

Terrorism 3.23
28

2.5
21

Publication 3.82
24

2.82
13

Univbench 3.79
51

2.53
43

GlycO 8.06
496

8.35
370

Through the ontology measurement w.r.t ADIT-

LN, we find the following facts:

1) The ontology measurement based on SERM

Models can find more classes than ORM Model ac-
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cording to the NOC values in the table. That’s be-

cause some implicit classes or nested anonymous

classes can be found. As opposed to SERM mod-

els, the ontology measurement based on ORM mod-

els only find those classes that are explicitly defined

by some labels such as owl:Class. The implicit

relations between the newly found classes can be

excavated and form a more enriched semantic net-

work than ORM models. Obviously, SERM models

can represent more complete semantic information,

which will be helpful in stably measuring the seman-

tics of ontologies.

2) A key problem found in the table is that

the two groups of ADIT-LN values between SERM

models and ORM models are not linear. This means

that there is no obvious correlation between the two

groups of values. That is, if we want to predict the

quality of ontologies, the measurement results based

on ORM models and SERM models will reflect vari-

able predictions. A question is further identified, the

prediction of which model we can trust? Consider-

ing that classes are one of the key components of an

ontology, we believe that an ontology cannot be ac-

curately measured if the number of classes of the on-

tology is estimated too low just based on ORM mod-

els. What causes is that the effectiveness of evalua-

tion in the future could be influenced because of the

difference of measuring ontological entities. As op-

posed to ORM models, our SERM based framework

can find ontology measurement entities and their as-

sociate relations as more as possibly, and theoreti-

cally ensure the uniqueness of data model of ontol-

ogy measurement. There is no doubt that the predic-

tion based SERM models is more credible for pre-

dicting the semantic quality of ontologies.

What is noted that ontology measurement based

on SERM models requires ontology reasoning

through which implicit information can be exca-

vated and form a stable semantic model of ontolo-

gies to be measured. However, semantic reasoning

inevitably increases the processing time for ontol-

ogy measurement. Especially for those very large

volume of data sets (e.g., ontology knowledge more

than 100MB), reducing the processing time for on-

tology measurement is still challenging.

10. Conclusion

The main contributions of this paper are as follows.

1) We presented an implementation framework for

stable semantic measurement of ontologies, and de-

signed and implemented the framework in a modu-

lar manner. 2) We proposed SERM models for on-

tologies, and discussed how to generate the SERM

model for an ontology. The uniqueness of SERM

models and stability of ontology measurement are

theoretically analyzed. 3) We also made the re-

lated experiments to illustrate the effectiveness of

our framework and compare the difference between

the two kinds of models. Our framework for sta-

ble semantic ontology measurement is generic and

suitable to measure both less and more expressive

ontologies.

The future work includes the following aspects.

1) We will exploit the optimization algorithms of se-

mantic reasoning for reducing the processing time

of stable semantic ontology measurement. 2) An

important application for ontology measurement is

to select from ontology libraries the candidate on-

tologies that are most similar to request ontology by

measuring the dis/similarity between them. Another

work is to compare ontology similarity by stably

measuring the semantics of ontologies for selecting

ontologies and enhancing the design quality of do-

main ontologies.
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