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Abstract

This paper presents a new feature selection framework based on the L0-norm, in which data are summa-
rized by their moments of the class conditional densities. However, discontinuity of the L0-norm makes
it difficult to find the optimal solution. We apply a proper approximation of the L0-norm and a bound
on the misclassification probability involving the mean and covariance of the dataset, to derive a robust
difference of convex functions (DC) program formulation, while the DC optimization algorithm is used
to solve the problem effectively. Furthermore, a kernelized version of this problem is also presented in
this work. Experimental results on both real and synthetic datasets show that the proposed formulations
can select fewer features than the traditional Minimax Probability Machine and the L1-norm state.
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1. Introduction

Feature selection for classifiers is an important re-

search tool with many applications[1][2][3] in the ma-

chine learning field. Feature selection can be used

as a process to reduce the data dimensions for clas-

sifications, the objective of which is 2-fold: to select

a small feature subset while maintaining high clas-

sification accuracy. In this paper, we develop an ef-

ficient feature selection method to discriminate be-

tween two classes with the data summarized by its

moments.

Specifically, given the dataset D = {(xi,yi|xi ∈
Rn,yi =±1, i = 1, . . .m), finding a subset of features

for a linear classifier f (x) = sgn(wT x−b) is equiv-

alent to searching for a sparse weight vector w such

that most of the elements of w are zero. This implies

that when the ith component of w is zero, the ith
component of the observation vector x is irrelevant

in deciding the class of x. The L0-norm of vector

w, ‖w‖0 = card{i|wi �= 0}, is defined as the number

of nonzero elements in vector w. Thus, L0-norm of-

fers a significant advantage: it is an ideal approach

for enforcing sparsity without sacrificing classifica-
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tion performance. As a result, feature selection for

classification problems can be posed as

min ‖w‖0 (1)

s.t. some classi f ication f ramework. (2)

The L0-norm is discontinuous and nonconvex, re-

sulting in an NP-hard optimization in general.

Feature selection using the moments of class

conditional densities has been investigated su-

ing quadratic parabolic interpolation algorithm (S-

MPM)[2] and the approximation algorithm based on

the L1-norm (called the L1-MPM )[4]. The S-MPM

is implemented by incorporating L1-norm into the

objective function and the problem is posed as a

fractional program[2]. However, thus far, there have

been no reports on solving fractional programs ef-

fectively. The L1-MPM is formulated by minimiz-

ing the L1-norm in probability constraints, while the

problem is posed as a second-order cone program

(SOCP)[5], which can be efficiently solved by inte-

rior point codes. However, the L1-norm minimiza-

tion criterion is not ideal for feature selection since it

only involves minimizing the values of components

of weight vector w. In other words, minimizing the

L1-norm generates many components that are close

to zero, but not exactly equal to zero.

Ideally, the L0-norm is the most suitable form

for inducing the sparsest classifier since minimiz-

ing the L0-norm of the vector w is nothing other

than minimizing the number of representative fea-

tures in classifier f (x) = sgn(wT x+ b). Neverthe-

less, the minimization of the L0-norm is an NP-hard

problem[4]. Therefore, most of the effort in feature

selection problems has focused on efficient approx-

imation of the L0-norm; the L1-norm is only a con-

vex approximation of the L0-norm (see Fig.1). Thus

crucial questions for feature selection include how

to approximate the zero-norm effectively and which

computational method to use for solving the result-

ing optimization problem.

Our investigation in this paper is motivated by

the following observations:

• The Minimax Probability Machine (MPM)[6][7]

has several advantages over other methods in ma-

chine learning. It utilizes the mean and covari-

ance of each class of data to find a decision hy-

perplane, the main benefits of which are that the

MPM makes no assumption about the data distri-

bution and has an explicit lower bound on predic-

tion accuracy. Compared with the popular sup-

port vector machine (SVM) [8], the MPM has the

advantage of using information from the data and

can directly yield the probability output for each

class of data. However, the MPM formulation

does not explicitly combine feature selection and

generalization of the model, and thus, it is hard to

control the number of selected features.

• Minimizing the L0-norm is the best way of ob-

taining a sparse classifier. However, this involves

combinatorial optimization, which makes it diffi-

cult to find the optimal solution.

• Difference of convex function (DC) program-

ming and the DC optimization algorithm

(DCA)[9][10][11][12][13] have been proved to be more

robust and more efficient than related standard

methods in solving nonconvex and nonsmooth

problems.

In this work, we approximate the L0-norm in a non-

convex way such that the resulting feature selection

framework can be formulated as a DC program. The

main contributions of this work are as follows:

• By applying the moments of the each class
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dataset, we propose a new feature selection frame-

work based on the L0-norm.

• The proposed formulation can be reformulated

as a DC program and efficiently solved using the

DCA. In addition, we only require that a single

SOCP is solved in each iteration.

• We also show how to exploit Mercer kernels in

this setting to obtain a nonlinear version.

Throughout the paper we adopt the following no-

tations. The subdifferential of a convex function f is

denoted by ∂ f (x). A arbitrary dimension vector of

ones is denoted by e and | · | denotes absolute value.

The base of the natural logarithm will be denoted by

ε and ε−x will denote a vector x ∈ Rn with compo-

nents ε−xi .

The rest of this paper is organized as follows.

Section 2 gives a short summary of the MPM and

DC programming. In Section 3, we propose two new

feature selection formulations for classifiers based

on L0-norm . Experimental results for proposed

method are shown in Section 4. The concluding sec-

tion summarizes the main contributions and future

directions.

2. Background

2.1. Minimax Probability Machine

The MPM separates two classes of data using the

means and covariance of the dataset. The follow-

ing is a simplified explanation of MPM. A more

detailed description can be found in Ref.6. Let

X1 and X2 denote n dimensional random vectors in

a binary classification problem, with mean vectors

and covariance matrices given by X1 ∼ (μ1,Σ1) and

X2 ∼ (μ2,Σ2), respectively, where μ1,μ2 ∈ Rn and

Σ1,Σ2 ∈ Rn×n. Note that both the matrices Σ1 and Σ2

are positive semi-definite. The objective of MPM is

to formulate a hyperplane H(w,b) = {x|wT x = b}
which separates the two classes of samples with

maximal probability with respect to all distributions

that have these mean and covariance matrices. This

is expressed as

max θ (3)

s.t. P{X1 ∈ H1}� θ (4)

P{(X2 ∈ H2}� θ (5)

where θ represents the lower bounds of the classi-

fication probability for future data. Applying the

Chebychev Cantelli inequality [14], the problem is

expressed as a SOCP and is solved using the efficient

interior point algorithm . However, this paradigm

does not automatically control the balance between

prediction accuracy and the number of selected fea-

tures.

2.2. DC programming

DC programming and DCA, introduced by Pham

Dinh Tao in 1985, constitute the backbone of non-

convex continuous programming. Generally speak-

ing, a DC program takes the form

inf{ f (x) = g(x)−h(x),x ∈ Rn} (Pdc) (6)

where g and h are lower semicontinuous proper con-

vex functions on Rn. Such a function f is called a

DC function, and g and h are the DC components

of f . We use g∗(y) = sup{xT y − g(x),x ∈ Rn} to

denote the conjugate function of g. The Fenchel-

Rockafellar dual of (Pdc) is defined as

inf{h∗(y)−g∗(y),y ∈ Rn} (Ddc) (7)

A point x∗ that satisfies the following generalized

Kuhn-Tucker condition is called a critical point of

(Pdc)

∂h(x∗)∩∂g(x∗) �= /0 (8)

The necessary local optimality condition of (Pdc) is

∂h(x∗)⊂ ∂g(x∗) �= /0 (9)

DCA is an iterative algorithm based on local opti-

mality conditions and duality. The idea of DCA is

simple: at each iteration, one replaces the second

component h in the primal DC problem (Pdc) by its
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affine minorization, h(xk)+ (x− xk)T yk, to generate

the convex program

min{g(x)− (x− xk)T yk,x ∈ Rn,yk ∈ ∂h(xk)} (10)

whose the solution set is ∂g∗(yk). Likewise, the

second DC component g∗ of the dual DC pro-

gram (Ddc) is replaced by its affine minorization,

g∗(yk)+ (y− yk)T xk+1, to obtain a convex program

whose the solution set is ∂h(xk).

In practice, a simplified form of the DCA is used.

Two sequences {xk} and {yk} satisfying yk ∈ ∂h(xk)
are constructed, and xk+1 is a solution to the convex

program (10). The simplified DCA scheme is de-

scribed as follows.

Initialization: Choose an initial point x0 ∈ Rn

and Let k = 0

Repeat
Calculate yk ∈ ∂h(xk)
Solve convex program (10) to obtain xk+1

Let k:=k+1

Until some stopping criterion is satisfied.

DCA is a descent algorithm without linesearch.

The following properties are used in the next sec-

tions :(for simplicity, we omit the dual part of these

properties).

• If the optimal value of problem (Pdc) is finite and

the infinite sequence {xk} is bounded, then every

limit point x∗ of the sequence {xk} is a critical

point of (Pdc).

• DCA converges linearly for general DC programs.

• If the second DC component h in (Pdc) is differen-

tiable , then the subdifferential of the h at point xk

is reduced to a singleton, ∂h(xk) = {	h(xk)}. In

this case, xk+1 is a solution to the following con-

vex program:

min{g(x)− (h(xk)+∇h(xk)T (x− xk)),x ∈ Rn} (11)

DCA is an efficient and robust algorithm for solving

nonconvex problems, especially in the large-scale

setting, and has been successfully applied to many

nonconvex optimizations.

3. DC programming formulations for feature
selection

Assume that the data for each class can be summa-

rized by their moments, the mean and covariance.

The problem of feature selection, given the mo-

ments, is approached in a worst case setting. Bhat-

tacharyya proposed a SOCP framework for feature

selection[4] based on the L1-norm (referred to as the

L1-MPM):

min
w,b

‖w‖1 (12)

s.t. P{X1 ∈ H1}� δ (13)

P{(X2 ∈ H2}� δ (14)

X1 ∼ (μ1,Σ1),X2 ∼ (μ2,Σ2) (15)

where δ ∈ (0,1) is defined by the user. This opti-

mization problem can be posed as a SOCP by us-

ing a multivariate generalization of the Chebychev-

Cantelli inequality[14]. As mentioned before, feature

selection via the L1-norm is not a good idea since

sparsity is an explicit goal of feature selection, while

the usefulness of the minimizing of the L0-norm is

to yield a sparse classifier. Thus, in this work, we

propose a feature selection framework based on the

L0-norm in which the data are summarized by their

moments.

3.1. Linear version

In linear case, the aim of our work is to produce a

linear classifier f (x) = sgn(wT x+b) with a low mis-

classification probability using a small set of useful

features. This amounts to finding a sparse vector w.

3.1.1. Problem Definition

Replacing ‖w‖1 with ‖w‖0 in Eq.(12-15) yields

an interesting formulation, called the L0-MPM for

short:

min
w,b

‖w‖0 (16)

s.t. P{X1 ∈ H1}� δ (17)

P{(X2 ∈ H2}� δ (18)

X1 ∼ (μ1,Σ1),X2 ∼ (μ2,Σ2) (19)
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where parameter δ ∈ (0,1) is the lower bound on

the classification accuracy in the worst-case setting.

This optimization leads to a sparse classifier with a

lower bound δ when data are summarized by their

moments.

Specifically, minimizing L0-norm in the objec-

tive function implements feature selection of the

classifier while the two constraints state that the

probability of a random vector taking values in a

given half space is lower-bounded by δ . In other

words, the probability of a random vector X1 (or

class X2) taking values in the half space H1(w,b) =
{x|wT x > b} (or H2(w,b) = {x|wT x < b}) should be

at least greater than the user defined parameter δ .

The higher the value of parameter δ is , the more

stringent is the requirement that all points belong to

the correct half space.

The following should be noted:

• MPM mainly focused on maximizing the proba-

bility of predicting future data. Compared with

the MPM, the main benefits of this L0-MPM are

that it yields a sparse classifier and thus can effec-

tively control the dimensionality of the input data.

• Similar to the MPM, the L0-MPM makes no spe-

cific distribution assumptions about the data dis-

tribution. Thus it is convenient to use in practical

applications.

• Similar to the L1-norm MPM, this formulation in-

volves an explicit upper bound on the worst-case

misclassification accuracy after selecting a subset

of features. That is, we can control the tradeoff

between the number of features and misclassifica-

tion probability by controlling the bound δ .

• The L0-MPM outperforms the existing the L1-

MPM in terms of a better ability of feature selec-

tion ability.

3.1.2. Solving L0-MPM

The following multivariate generalization of the

Chebyshev-Cantelli inequality [14] is subsequently

used to derive an upper bound on the misclassifica-

tion probability of a random vector taking values in

a given half space.

Lemma 1. Let X be a n dimensional random vec-
tor. The mean and covariance of X are μ ∈ Rn

and Σ ∈ Rn×n respectively. Let H(w,b) = {z|wT z <
b,w ∈ Rn,w �= 0,b ∈ R} be a given half space. Then
the following inequality holds:

P{X ∈ H}� (b−wT μ)2
+

(b−wT μ)2
++wT Σw

(20)

where (x)+ = max{x,0}.
Applying Lemma 1, the constraint for class X1 in

Eq.(16-19) can be handled by setting

P{X1 ∈ H1}� (wT μ1 −b)2
+

(wT μ1 −b)2
++wT Σ1W

� δ (21)

which results in two constraints:

wT μ1 −b �
√

δ
1−δ

√
wT Σ1w (22)

wT μ1 −b � 1 (23)

For simplicity, we assume that both Σ1 and Σ2 are

positive definite. Our results can be extended to

general positive semi-definite cases. Then, let Σ1 =
C1CT

1 and Σ2 = C2CT
2 ,C1,C2 ∈ Rn×n. Similarly, by

applying Eq.(20) to the other constraint, Eq.(16-19)

can be formulated as

min
w,b

‖w‖0 (24)

s.t. wT μ1 −b �
√

δ
1−δ

‖CT
1 w‖ (25)

b−wT μ2 �
√

δ
1−δ

‖CT
2 w‖ (26)

wT μ1 −b � 1,b−wT μ2 � 1 (27)

X1 ∼ (μ1,Σ1),X2 ∼ (μ2,Σ2) (28)

with fixed δ ∈ (0,1). A a good approximation [11] of

the ‖w‖0 would be

‖w‖0 ≈
n

∑
i=1

η(wi) (29)

where η is the function (see Fig.1) defined by

η(z) = 1− ε−α|z|,α ∈ R,α > 0,∀z ∈ R (30)

Thus, the L0-norm ‖w‖0 is approximated by:

‖w‖0 ≈ eT (e− ε−α|w|),α > 0 (31)
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With this approximation, the resulting optimization

Eq.(24-28) takes the form:

min
w,b

n

∑
i=1

η(wi) (32)

s.t. wT μ1 −b �
√

δ
1−δ

‖CT
1 w‖ (33)

b−wT μ2 �
√

δ
1−δ

‖CT
2 w‖ (34)

wT μ1 −b � 1,b−wT μ2 � 1 (35)

X1 ∼ (μ1,Σ1),X2 ∼ (μ2,Σ2) (36)

Assuming that Ω is the feasible set of Eq.(32-36) and

χΩ(x) denotes the indicator function for the convex

set Ω: χΩ(x) = 0 if x ∈ Ω,and +∞ otherwise. Let

x = (w,b) ∈ Rn+1, and

g(x) = αeT |x| (37)

h(x) = αeT |x|− eT e+ eT ε−α|x|. (38)

Obviously, g(x) and h(x) are both convex functions,

and η(x) = g(x)− h(x). Therefore, Eq.(32-36) can

be reformulated as the following DC program:

min{g(x)+χΩ(x)−h(x)} (39)

Furthermore, it can be seen that h(x) is differentiable

everywhere and that ∇h(x) = (v,0) with

v j =

{
α(1− ε−αw j), w j � 0

−α(1− εαw j), w j < 0
(40)

According to the generic DCA scheme, we solve the

following convex program to obtain xk+1 in the k-th

each iteration

min{g(x)+χΩ(x)−∇h(xk)T x} (41)

Let |w|� t. Solving the Eq.(41) amounts to solving

the following SOCP for a fixed δ ∈ (0,1) with α > 0

min
w,b,t

αeT t − (vk)T w (42)

s.t. wT μ1 −b �
√

δ
1−δ

‖CT
1 w‖ (43)

b−wT μ2 �
√

δ
1−δ

‖CT
2 w‖ (44)

wT μ1 −b � 1,b−wT μ2 � 1 (45)

− t � w � t (46)

with w, t ∈ Rn and b ∈ R. The problem can be effec-

tively solved in polynomial time using the interior

algorithm . Next we describe our DCA applied to

Eq.(39).

Algorithm 1
Step 1. For a fixed δ ∈ (0,1),ε > 0 is sufficiently

small, and set k=0. Choose an initial point x0 ∈ Ω.

Step 2. Compute ∇h(xk) via (40).

Step 3. Solve the SOCP (42-46) to obtain xk+1 .

Step 4. If either‖xk+1 − xk‖ < ε or g(xk+1)−
h(xk+1) � g(xk)− h(xk)− ε , stop and xk+1 is the

computed solution. Otherwise, set k=k+1 and go to

Step 2.

Theorem 1

• Algorithm 1 generates a sequence {xk} such that
g(xk)−h(xk) decreases monotonously.

• The sequence {xk} converges linearly.

Proof: These conclusion are direct consequences of

the convergence properties of general DC program.

The proof is then complete.

3.2. Nonlinear version

The approach in this paper can also be extended to

formulate a nonlinear version using very few support

vectors. Assume that the discriminating hyperplane

is {x|β T k(x) = b} which divides the feature space

into two subsets {x|β T k(x) < b} and {x|β T k(x) >
b}, where kernel k is a function obeying the Mercer

conditions [8]. The k(x) is a vector whose ith compo-

nent is k(x,xi). In the feature space, we would like

to find a sparse decision hyperplane

H(β ,b) = {x|β T k(x) = b} (47)

with as few feature vectors as possible. According

to the above analysis, this can be designed to min-

imize the cardinality of the set S = {i|βi �= 0}; in

other words, this can be designed to minimize the

L0-norm of β .

Assume that k1 = k(X1) is a random vector cor-

responding to class X1 while k2 = k(X2) is another

random vector belonging to class X2. Let the the

means of k1 and k2 be k1 and k2 respectively, and
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the variances be Σ1 and Σ2 respectively. Using the

Chebyshev bound, feature selection for the nonlin-

ear MPM can be formulated as:

min
β ,b

‖β‖0 (48)

s.t. β T k1 −b �
√

δ
1−δ

√
β T Σ1β (49)

b−β T k2 �
√

δ
1−δ

√
β T Σ2β (50)

β T k1 −b � 1,b−β T k2 � 1 (51)

k1 ∼ (k1,Σ1),k2 ∼ (k2,Σ2) (52)

Similarly, using the same approximation of the L0-

norm as in the linear case, we have

‖β‖0 ≈
n

∑
i=1

η(βi) = eT (e− ε−α|β |),α > 0 (53)

which leads to the following nonconvex optimiza-

tion

min
β ,b

n

∑
i=1

η(βi) (54)

s.t. β T k1 −b �
√

δ
1−δ

√
β T Σ1β (55)

b−β T k2 �
√

δ
1−δ

√
β T Σ2β (56)

β T k1 −b � 1,b−β T k2 � 1 (57)

k1 ∼ (k1,Σ1),k2 ∼ (k2,Σ2) (58)

For a fixed δ ∈ (0,1), this can also be reformulated

as a DC program. Moreover, the solution of the

Eq.(48-52) can be reached by solving Eq.(54-58).

A corresponding DCA to solve this problem is con-

structed similarly. In this paper, we report the exper-

imental results for this problem only.

4. Numerical experiments

To evaluate the proposed framework, numerical ex-

periments are carried out on both a synthetic dataset

and the real world data sets, Sonar, Pima, Iono-

sphere, Spam, WOBC, WPBC, WDBC and Made-

lon, from the University of California Irvine (UCI)

Machine Learning Repository. The specifications of

these datasets are summarized in Table 1.

Table 1. The description of datasets

datasets instances Features

Sonar 208 60

Pima 568 8

Ionosphere 350 34

Spam 200 57

WOBC 699 9

WPBC 198 32

WDBC 569 30

Madelon 200 500

Synthetic 15 1000

All of the methods were implemented in Matlab

7.0, and the experiments used the popular package

SeDuMi[15] as a solver. In addition, 10-fold cross-

validation was used in our experiments. The follow-

ing performance criteria were used to evaluate the

considered methods:

• Test-set accuracy (TSA), which is the classifi-

cation correctness rate of all samples from two

classes;

• Matthew’s correlation coefficient (MCC)[16][17],

which is a comprehensive measure of the quality

of the classification model; the higher the value of

the MCC is, the better the model is; The above

values can be obtained from the decision function

and are defined as[16]

T SA = T P+T N
T P+FN+T N+FP (59)

MCC = T P·T N−FP·FN√
(T P+FP)(T P+FN)(T N+FP)(T N+FN)

(60)

where TP and TN denote true positives and true

negatives; FN and FP denote false negatives and

false positives, respectively.

• Average number and percentage of selected fea-

tures (PSF);

• Average number of iterations for the two iteration

algorithms L0-MPM and S-MPM[2].

The proposed method makes use of two parameters,

α and δ . The Gaussian parameter α implements

a tradeoff between accuracy and the number of fea-

tures. These parameters should be optimized before-

hand.
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• The feature selection ability of the proposed

method also depends on the choice of the bound

parameter δ . From Table 2 and Fig.2, which il-

lustrate the relationship between parameters α ,δ
and PSF in a linear setting,we observe that the

number of selected features generally decreases

as the value of α increases. For small values of δ
, fewer features are reported, while as δ increases,

the L0-MPM selects a greater number of features.

• The accuracy of the proposed method depends

heavily on the values of parameters α and δ . In

a linear setting, the relationship between the TSA

and the α is illustrated in Fig.3, while the rela-

tionship between the TSA and δ is illustrated in

Fig.4.

Table 2. Feature numbers as α and δ for Spam dataset

α\ δ 0.9 0.7 0.5 0.3 0.1

50 3.7 3.4 2.9 2.3 2.0

10 3.7 3.4 3.0 2.4 2.0

5 3.7 3.4 3.1 2.5 2.0

1 3.9 3.4 3.3 2.5 2.0

0.5 3.9 3.4 3.3 2.5 2.0

0.1 3.9 3.5 3.4 2.5 2.0

We find that the accuracy of the L0-MPM increases

when δ ranges from 0.1 to 0.9, and that the L0-MPM

produces greater accuracy when α is set to a larger

value. These findings were helpful in the choice of

parameters α and δ in the following benchmark ex-

periments.

According to the above analysis, parameters

α = 5 and δ = 0.9 were chosen for our experiments

on the UCI datasets, except the Ionosphere dataset,

for which we set α = 0.5.

4.1. Experiments on UCI datasets

Here we considered two experiments. First, we

compared our linear L0-MPM with the linear MPM,
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L1-MPM and S-MPM. Then, we compared our non-

linear L0-MPM with the nonlinear MPM and L1-

MPM.

4.1.1. Experiments on linear versions on UCI
datasets

We compared the linear L0-MPM with the linear

MPM, L1-MPM and S-MPM on eight UCI datasets.

The TSA and MCC for the three methods,L0-MPM,

MPM and L1-MPM, in a linear setting, are summa-

rized in Table 3. In addition, a comparison of the

PSF for the three methods is presented in Fig.5.

Table 3. Comparison of L0-MPM, MPM and L1-MPM in terms
of TSA and MCC

dataset criteria MPM L1-MPM L0-MPM

(%) (%) (%)
Sonar TSA 75.10 77.89 79.50

MCC 61.71 68.06 70.89

Pima TSA 73.80 65.53 65.79

MCC 45.46 42.86 44.91

Ionosphere TSA 85.40 71.18 85.74

MCC 79.10 53.51 82.58

Spam TSA 67.02 60.57 67.08

MCC 55.36 23.89 62.41

WOBC TSA 91.61 89.46 75.26

MCC 80.05 78.00 72.56

WPBC TSA 24.21 62.11 61.58

MCC 13.06 25.03 24.99

WDBC TSA 90.71 90.89 88.75

MCC 82.42 83.65 85.63

Madelon TSA 60.30 60.58 61.30

MCC 23.81 22.89 31.98

Comparison of the L0-MPM and MPM.
The results from Table 3 show that the proposed L0-

MPM does not outperform the other two methods on

all datasets. In terms of the TSA criterion, the per-

formance of the L0-MPM is not significantly differ-

ent to that of the MPM on four datasets (Ionosphere,

Spam, WDBC, and Madelon). On the WPBC and

Sonar datasets, the L0-MPM is superior to the MPM

with respect to the TSA criterion, whereas the MPM

performs slightly better than our method on the

WOBC and Pima datasets. In addition, with respect

to the MCC, we find that the L0-MPM is superior to

the MPM in six of the eight datasets. Meanwhile,

Fig.5 shows that our model can always suppress

many more features than the MPM. These results

show that our model does not have an adverse effect

on generalization, yet always selects fewer features

than the MPM.

Comparison of the L0-MPM and L1-MPM.
Table 3 shows that the L0-norm MPM shows no sig-

nificant difference compared with the L0-MPM with

respect to TSA analysis in six of the eight datasets.

However, Fig. 5 shows that the L0-MPM reduces the

number of features considerably with the percentage

of suppressed features by our method varying from

3 to 20%. Moreover, the L0-MPM consistently re-

alizes better performance than the L1-MPM with

respect to PSF analysis in seven datasets, excluding

Pima, while the two models have the same PSF re-

sults for Pima. Moreover, in terms of MCC, we find

that the linear L0-MPM is superior to the L1-MPM

in six of the eight datasets, while in the other two

datasets the performances of the two methods show

no significant difference. These results suggest that,

without loss of generalization, the proposed linear

framework always selects fewer features than the

linear L1-MPM.

To further evaluate the performances of the three

algorithms, average ranks for these are given in Ta-

ble 4, from which we observe that the average rank

of the L0-MPM is lower than that of the MPM and

L1-MPM. Moreover, Fig.5 show that our L0-MPM

suppress much more features than the L1-MPM and
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MPM. A possible reason for these is that the L1-

MPM improves classification accuracy by removing

irrelevant features compared with the MPM. In ad-

dition, the L0-MPM, without loss of generalization,

suppresses many more features than the L1-MPM by

minimizing the L0-norm instead of the L1-norm as

is the case in the latter method.

Comparison of the L0-MPM and S-MPM.
In this section, we present a comparison of the L0-

MPM and S-MPM with respect to TSA, MCC, PSF,

and number of iterations. The average results on

the three datasets, Ionosphere, Sonar, and Spam, are

given in Tables 5, 6, and 7, respectively.

According to the above analysis, we find that

the PSF for the L0-MPM is noticeably lower than

that for the L1-MPM and MPM in most cases. This

means that our method does not have an adverse ef-

fect on the generalization of the MPM by removing

many irrelevant features, while the performance in

feature selection is better than that of the L1-MPM.

Thus, one notable benefit of the proposed method is

its efficiency in feature selection.

For the TSA comparison, Table 5 reports that the

performances of the two models are similar on all

three datasets. At the same time, Tables 6 and 7

show that the performance of the L0-MPM is quite

good compared with that of the S-MPM according

to PSF and the number of iterations on all three

datasets. In addition, Table 6 shows that the PSF

of the L0-MPM is noticeably lower than that of the

S-MPM on two of the three datasets, which shows

that the L0-MPM outperforms the S-MPM in feature

selection.

Table 4. Comparison with MPM and L1-MPM for ranks

datasets MPM L1-MPM L0-MPM

Sonar 3 2 1

Pima 1 2 3

Ionosphere 2 3 1

Spam 2 3 1

WOBC 1 2 3

WPBC 3 1 2

WDBC 2 1 3

Madelon 3 2 1

Synthetic data 2.5 1 2.5

Average rank 1.83 2.0 1.72

Table 5. Comparison of TSA and MCC between L0-MPM and
S-MPM

dataset criteria Ionosp Spam Sonar

(%) (%) (%)
S-MPM TSA 85.12 79.00 78.65

MCC 78.02 60.20 68.06

L0-MPM TSA 85.74 67.08 79.50

MCC 82.58 62.41 70.89

Table 6. Comparison of PSF (%) between L0-MPM and S-
MPM

dataset Ionosp Spam Sonar

S-MPM 14.71 21.05 8.33

L0-MPM 5.88 7.02 8.33

Table 7. Comparison of the number of iterations between L0-
MPM and S-MPM

dataset Ionosp Spam Sonar

S-MPM 5 8 34

L0-MPM 2 2 3

4.1.2. Experiments on the nonlinear versions on
UCI datasets

For the nonlinear case, we used the popular Gaus-

sian kernel with the kernel width σ selected over the

range {2i|i = −3,−2, · · · ,3} for each dataset. We

compared the nonlinear L0-MPM with the nonlinear

L1-MPM and MPM. Investigation of the TSA and

PSF was carried out using four datasets: Ionosphere,

Sonar, WDBC, and Madelon. The results are illus-

trated in Figs. 6 and 7, from which we find that the

nonlinear L0-MPM is superior to the nonlinear L0-

MPM and MPM in both generalization and feature

selection ability on all four datasets.

4.2. Experiments on a synthetic dataset

Consider a synthetic dataset generated as follows.

The class label, y, of each observation was ran-

domly chosen to be 1 or -1 with probability 0.5. The

first ten features of the observation, x, were drawn

asyN(−i,1), where N(μ,σ2) is a Gaussian distri-

bution with mean μ and variance σ2. In total, 990

other features were drawn as N(0,1) with 50 such
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observations generated. The feature selection prob-

lem was to detect the first 10 features since these are

the most discriminatory of the given 1000 features.

The generation of the synthetic data is reported in

Table 1.

We also experimented with the proposed L0-MPM

using different values of α on the synthetic dataset.

The experiment results are depicted in Fig. 8, from

which we find that the L0-MPM reports greater ac-

curacy as the value of α increases. Finally, we set

α=10 for the synthetic dataset. Moreover, we find

that as the value of δ increases the formulation re-

ports more discriminatory features.

Our L0-MPM provides a good classification:

the correctness of the classification on the test

set varies from 46.78 to 86.67%, while the per-

centage of suppressed features varies from 55

to 90%. For α=10 and δ =0.9 in the 10 re-

peated experiments, the corresponding list of the

number of features selected by the L0-MPM and

L1-MPM are {9,7,11,12,8,11,12,10,11,10} and

{9,7,11,12,8,11,12,10,11,10}, respectively. The

numbers of features selected by the MPM are

{937,930,926,932,939,935,930,933,932,936}
for the 10 repeated experiments. These results show

that despite sample size being low compared with

the number of features, the L0-MPM formulation is

able to discover the most discriminatory features.

In addition, we also present a map to illustrate

the comparison of our linear version with the linear

L1-MPM and MPM. Experimental results averaged

over the 10 repeated experiments are presented in

Fig. 9.

From Figs.8 and 9 we see that the L0-MPM is

competitive with the L1-MPM and MPM. However,

our L0-MPM considerably reduces the number of

features compared with the L1-MPM and MPM. The

three formulations identify most of the discrimina-

tory features, but the L0-MPM formulation selects

more features. This demonstrates that the L0-MPM

identifies discriminatory features and is comparable

with the L1-MPM and MPM in terms of generaliza-

tion.
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From the above analysis, we find that in terms of

generalization, the L0-MPM is almost the same as

the L1-MPM and S-MPM, but contains fewer fea-

tures than these existing methods.

5. Conclusions and future directions

We constructed a new feature selection framework

based on the L0-norm in which the data are summa-

rized by their moments. By applying suitable DC

decomposition to the L0-norm, we presented several

DC program formulations for the proposed frame-

work using the moments of the dataset. Moreover,

problems can be solved effectively using the DCA.

The resulting DCA needs to solve only successive

SOCPs and converges linearly.

The feature selection abilities of the proposed

formulations were tested on both synthetic and real

world datasets. Experiments show that, compared

with existing methods, the proposed framework ei-

ther improves or shows no significant difference in

generalization, yet suppresses more features. A pos-

sible reason for this is that removing irrelevant fea-

tures in classifications does not reduce the general-

ization of classifiers.

• Compared with the original MPM, the proposed

L0-MPM improves accuracy by removing irrele-

vant features in almost all cases.

• Compared with other feature selection ap-

proaches, L1-MPM and S-MPM, this L0-MPM

does not sacrifice generalization in selecting fewer

features.

The above results suggest that applying the L0-norm

to feature selection yields a particular benefit: it is

an ideal approach for enforcing sparsity without sac-

rificing classification performance. However, find-

ing more effective approximations of the L0-norm

would be interesting. Better methods to optimize

the L0-norm directly will be investigated in future

work.

The construction of DCA involves DC compo-

nents g and h but not the function f itself. Hence,

for a DC program, each DC decomposition corre-

sponds to a different version of DCA. Currently, the

question of ”good” DC decompositions of L0-MPM

is still open, and works in these directions are in

progress.

In this paper, we have only considered the binary

cases because multi-class problems can be easily ap-

proached via standard techniques, such as the one

vs. others and the one vs. one technique.
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