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Abstract 

In this work, an implicit Lagrangian for the dual twin support vector regression is proposed. Our formulation leads 
to determining non-parallel ε –insensitive down- and up- bound functions for the unknown regressor by 
constructing two unconstrained quadratic programming problems of smaller size, instead of a single large one as in 
the standard support vector regression (SVR). The two related support vector machine type problems are solved 
using Newton method. Numerical experiments were performed on a number of interesting synthetic and real-world 
benchmark datasets and their results were compared with SVR and twin SVR. Similar or better generalization 
performance of the proposed method clearly illustrates its effectiveness and applicability. 
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1. Introduction 

Support vector machine (SVM) which is based on 

structural risk minimization (SRM) induction principle is an 

excellent kernel-based machine learning tool. It has been 

successfully applied to classification and regression problems 

of practical importance such as face recognition1, 

biomedicine2, image segmentation3 and time series 

forecasting4,5 . It is a supervised learning method where the 

training leads to solving a quadratic programming problem 

(QPP) having unique optimal solution. Further, since it results 

in better generalization performance over other learning 

methods such as artificial neural networks (ANNs), it becomes 

one of the most attractive methods used in machine learning.  

The central idea of SVM for classification is to 

construct a surface that partitions the input samples from 

different classes with maximum margin6,7. Recently, a new 

method called multi-surface proximal SVM was proposed8

wherein two non-parallel planes are constructed so that each 

one of them is closest to points of its own class meanwhile as 

far away as possible from points of other class. This turns out 

to solving two generalized eigenvalue problems whose 

solutions become the eigenvectors corresponding to their 

smallest eigenvalues. Similar in sprit to this idea, twin support 

vector machine (TWSVM) was proposed in Ref.9 wherein two 

non-parallel planes are constructed by solving a pair of QPPs 

of smaller size in comparison to the standard SVM. TWSVM 

has attracted much attention due to its low computational cost 

and better generalization classification ability over the 

standard SVM9-11. 

The goal of regression problem is in determining the 

functional relationship between the inputs and their 
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corresponding observed values. Originally, SVMs have been 

developed for classification problems and with the 

introduction of ε -insensitive error loss function by Vapnik7  

it has been extended to regression problems. Support vector 

regression (SVR) formulation leads to solving a QPP subject 

to linear inequality constraints6,7 and it exhibits excellent 

performance in many fields of importance such as time series 

prediction4,5 and optimal control12. For the study on 

“equivalent” SVR formulations in 2-norm instead of the usual 

1-norm, the interested reader is referred to Refs. 13-16.  

Recently, Peng17 proposed twin SVR (TSVR) 

similar in sprit to TWSVM9 wherein a pair of nonparallel 

functions corresponding to the ε -insensitive down- and up- 

bounds are determined. This formulation leads to solving two 

related SVM-type of problems, i.e. QPPs, of smaller size 

rather than a single large one as in the standard SVR. This 

strategy makes TSVR works faster than SVR with the added 

advantage of better generalization ability over SVR17. By 

making a slight change in the formulation of TSVR to become 

a strongly convex optimization problem and employing 

smooth technique, a new formulation called smooth TSVR 

(STSVR) has been proposed in Ref.18 as an unconstrained 

minimization problem and further solved by the well-known 

Newton-Armijo algorithm. For the work on the formulation of 

TSVR as a pair of linear programming problems, we refer the 

reader to Ref.19.  

Motivated by the studies on implicit Lagrangian 

SVM for classification20 and regression21, in this work, we 

propose their extension on TSVR. Our formulation leads to 

solving a pair of unconstrained QPPs of smaller size in dual 

variables and their solutions are obtained by Newton method. 

Numerical experiments were performed on a number of 

interesting synthetic and real-world datasets and their results 

were compared with SVR and TSVR to verify the 

effectiveness of the proposed method.  

In this work, all vectors are assumed as column 

vectors. The inner product of two vectors yx,  in the 

−n dimensional real space 
nR  will be denoted by: yx t

, 

where 
tx is the transpose of x . When x  is orthogonal to y , 

we write yx ⊥ . For
nRx ∈ , the plus function +x  is 

defined as:  =+ ix )( },0max{ ix , where ni ,...,1= . 

The 2-norm of a vector x  and a matrix Q  will be denoted by 

|||| x  and |||| Q  respectively. We denote the vector of ones 

of dimension m  by e  and the identity matrix of appropriate 

size by .I
The paper is organized as follows. Section 2 dwells 

briefly SVR and TSVR. In Section 3 we begin with TSVR 

formulation and its dual in 2-norm and then formulate the 

implicit Lagrangian TSVR (LTSVR) as a pair of 

unconstrained minimization problems whose solutions are 

obtained using Newton method. Numerical experiments were 

performed and their results were compared with that of SVR 

and TSVR in Section 4 and finally we conclude our work in 

Section 5. 

2.  Background 

In this section, we briefly describe the standard SVR 

and twin SVR formulations.

 Assume that a training set miii yx ,...,2,1)},{( =  of m

points in n-dimensional input space 
nR  be given such that for 

each input example 
n

i Rx ∈ , let Ryi ∈ be its 

corresponding observed value. Throughout in this work we 

assume that the input examples are represented by a matrix 

nmRA ×∈  whose i-th row is taken to be 
t
ix and the vector 

of observed values by: 
t

myyy ),...,( 1= .  

2.1. Support vector regression formulation  

 The goal of the standard ε –insensitive error loss 

SVR problem is in determining the regression estimation 

function RRf n →: by mapping the input examples into 

a higher dimensional feature space via a feature map (.)ϕ
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and learning a linear regression function in the feature space, 

i.e. we will have:  

,)()( bxwxf t += ϕ        (1) 

where w  is a vector in the feature space and b  is a scalar. 

This problem can be formulated as a constrained minimization 

problem defined by6,7 : 

)(
2

1
21

,,,
min

21

ξξ
ξξ

ttt

bw

eeCww ++

subject to   

1))(( ξεϕ +≤+− eebwAy ,   

     

2))(( ξεϕ +≤−+ eyebwA

and          0, 21 ≥ξξ ,                                   (2) 

where 1ξ , 2ξ mR∈  are vectors of slack variables; 

0>C , 0>ε  are input parameters and the matrix 

])(;...;)(;)([)( 21
t

m
tt xxxA ϕϕϕϕ = .  

 By introducing Lagrange multipliers: 

t
muuu ),...,( 1111 = ,

t
muuu ),...,( 2212 = mR∈ , one can 

show that the Wolfe dual of (2) can be obtained in the 

following form: 

21,
min

uu )()()()(
2

1
21

1,
21 jj

m

ji
j

t
iii uuxxuu −−∑

=

ϕϕ

                 ∑∑
==

−−++
m

i
iii

m

i
ii uuyuu

1
21

1
21 )()(ε

subject to 

∑
=

=−
m

i
ii uu

1
21 0)(   and  Ceuu ≤≤ 21 ,0 . 

Now applying the kernel trick6,7, the dual problem 

can be  rewritten as: 

21 ,
min

uu ∑
=

−−
m

ji
jjjiii uuxxkuu

1,
2121 ))(,()(

2

1

                   ∑∑
==

−−++
m

i
iii

m

i
ii uuyuu

1
21

1
21 )()(ε

subject to 

           ∑
=

=−
m

i
ii uu

1
21 0)(   and  Ceuu ≤≤ 21 ,0 , 

where (.,.)k  is a kernel function.  In this work, we 

considered the Gaussian kernel function defined by:  

       )
2

||||
exp(),(

2

2

σ

ji
ji

xx
xxk

−
−=  for  i, j = 1,…,m

and 0>σ  is a parameter.  

Finally, for any input example 
nRx ∈  its 

prediction by the decision function (.)f  is given by6,7 : 

∑
=

+−=
m

i
iii bxxkuuxf

1
21 ),()()( . 

2.2. Twin support vector regression (TSVR) 

 Unlike in SVR where a single regression estimation 

function is learned to fit the given inputs, TSVR17 finds two 

non-parallel functions corresponding to the ε –insensitive 

down- and up-bounds. This formulation has the advantage of 

solving a pair of QPPs each having m  number of constraints 

instead of a single QPP with  m2  number of constraints as in 

SVR, where m  is the number of input examples.  

For the linear TSVR the down- and up-bound 

estimation functions, defined by: for any ,nRx ∈

111 )( bxwxf t += and 222 )( bxwxf t += ,                 

      (3) 

respectively, are determined such that  the unknowns 

nRww ∈21 ,  and Rbb ∈21 ,  become the solutions of the 

following pair of QPPs17 : 
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        min
1

111 ),,( mnRbw ++∈ξ

2
111 ||)(||

2

1
ebAwey +−− ε

                                    11 ξteC+

subject to   

            1111 )( ξε −≥+− eebAwy , 01 ≥ξ  (4) 

and 

       min
1

222 ),,( mnRbw ++∈ξ

2
222 ||)(||

2

1
ebAwey +−+ ε    

                 22 ξteC+

subject to   

            2222 )( ξε −≥−+ eyebAw ,    02 ≥ξ . (5) 

 As before, 0, 21 >CC ; 0, 21 >εε  are input parameters 

and 21,ξξ  are vectors of slack variables in 
mR .  

By introducing Lagrange multipliers: 

t
muuu ),...,( 1111 = , 

t
muuu ),...,( 2212 = mR∈ , one can 

show that the Wolfe duals of (4) and (5) can be obtained as a 

pair of QPPs of the following form17 : 

       min
1

mRu ∈

tu12
1 tt GGGG 1)( −

1u

()( 1
tey ε−− IGGGG tt −−1)( 1)u

subject to  

eCu 110 ≤≤     (6) 

and 

        min
2

mRu ∈

tu22
1 tt GGGG 1)( −

2u

−+− Iey t ()( 2ε tt GGGG 1)( −
2)u

subject to  

eCu 220 ≤≤ ,    (7) 

respectively.  The down- and up- bound estimation functions 

(3) can be obtained from the solutions of the dual problems (6) 

and (7) using the following relations:  

=⎥
⎦

⎤
⎢
⎣

⎡

1

1

b

w tt GGG 1)( − )( 11 uey −− ε   

and    

                =⎥
⎦

⎤
⎢
⎣

⎡

2

2

b

w tt GGG 1)( − )( 22 uey ++ ε ,  (8) 

where  AG [=   ]e  is an augmented matrix. 

Finally, the end regressor RRf n →:  is 

obtained using (.)1f  and (.)2f as: 

          ))()((
2

1
)( 21 xfxfxf +=  for all 

nRx ∈      ( 9) 

To generalize our results to nonlinear regressors, we 

employ the kernel technique followed in Ref.22.  

For the input matrix 
nmRA ×∈  and a nonlinear kernel 

function (.,.)k  given, consider  the kernel matrix 

),( tAAKK =  of order m whose (i,j)-th  element is 

defined by: .),(),( RxxkAAK jiij
t ∈=  Further, let 

=),( tt AxK )),(),...,,(( 1 mxxkxxk  be a row vector in 

mR .  

Consider the kernel generated down- and up- 

bounds (.)1f  and (.)2f , defined by:  for any 
nRx ∈ , 

111 ),()( bwAxKxf tt +=   

and                  

         222 ),()( bwAxKxf tt += .               (10) 

They will be determined using the solutions of the following 

two constrained minimization problems given by17: 

2
111

),,(

||)),((||
2

1
min

1
111

ebwAAKey t

Rbw mm

+−−
++∈

ε
ξ

  

11 ξteC+

subject to  
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1111 )),(( ξε −≥+− eebwAAKy t
,

01 ≥ξ                   (11) 

and 

2
222

),,(

||)),((||
2

1
min

1
222

ebwAAKey t

Rbw mm

+−+
++∈

ε
ξ

                  22 ξteC+

subject to 

2222 )),(( ξε −≥−+ eyebwAAK t
,

02 ≥ξ ,                                 (12) 

where 1ξ , 
mR∈2ξ  are slack variable vectors and 

0, 21 >CC ; 0, 21 >εε  are input parameters. Note that 

when the linear kernel function is applied, the kernel TSVR 

will reduce to the linear TSVR17. 

Proceeding as in the linear case, the pair of dual 

QPPs for the kernel TSVR can be obtained. In fact, the two 

QPPs for the kernel TSVR are found to be exactly the same as 

(6) and (7) satisfying (8) but the augmented matrix G  will 

become: ),([ tAAKG =   ]e . Finally the end regressor 

defined by (9) is obtained using (8) and (10). For a detailed 

discussion on the method of solution and numerical 

experiments of TSVR, see Ref.17. 

3. Implicit Lagrangian twin support vector regression 

(LTSVR) 

In this section, the implicit Lagrangian formulation 

for the TSVR in its dual is proposed as an extension of the 

work of Ref.20 initially suggested for classification problems. 

Our formulation leads to solving two unconstrained 

minimization problems whose solutions will be obtained using 

Newton method.  

Consider the primal TSVR in 2-norm as a pair of 

constrained minimization problems of the form: 

        
2

111
),,(

||)(||
2

1
min

1
111

ebAwey
mnRbw

+−−
++∈

ε
ξ

  11
1

2
ξξ tC

+

subject to   

1111 )( ξε −≥+− eebAwy                 (13) 

and 

      
2

222
),,(

||)(||
2

1
min

1
222

ebAwey
mnRbw

+−+
++∈

ε
ξ

                   22
2

2
ξξ tC

+

subject to   

2222 )( ξε −≥−+ eyebAw                (14) 

where ,1ξ 2ξ  are vectors of slack variables and 

0, 21 >CC ; 0, 21 >εε  are input parameters. Since the 

non-negativity constraints of the slack variables 1ξ  and 2ξ

will be satisfied automatically at optimality, they are no longer 

necessary to be considered explicitly in (13) and (14). Using 

the solutions of (13) and (14), the down- and up- bound 

regressors (.)1f  and (.)2f  defined by (3) will be 

determined.  

          The Wolfe duals corresponding to the pair of primal 

problems (13) and (14) can be written as a pair of QPPs of the 

following form: 

min
10 mRu ∈≤

tey )(
2

1
1ε− tt GGGG 1)( − )( 1ey ε−

2
1 ||||

2

1
ey ε−− ++

1
1 (

2

1

C

I
ut tt GGGG 1)( −

1)u   

          ()( 1
tey ε−− IGGGG tt −−1)( 1)u                (15) 

and 

min
20 mRu ∈≤

tey )(
2

1
2ε+ tt GGGG 1)( − )( 2ey ε+

2
2 ||||

2

1
ey ε+− ++

2
2 (

2

1

C

I
ut tt GGGG 1)( −

2)u      

          ()( 2
tey ε+− tt GGGGI 1)( −− 2)u ,            (16) 
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respectively, where ,1u mRu ∈2 are Lagrange multipliers 

and AG [= ]e  is an augmented matrix  such that (8) 

holds.  

         Define the matrix:  

=H tt GGGG 1)( −
.                                (17) 

Now, dropping the terms which are independent of the dual 

variables and substituting (17) in the dual formulations (15) 

and (16), TSVR in dual can be derived as a pair of 

minimization problems of the form: 

min
10 mRu ∈≤

=)( 11 uL 111112
1

uruQu tt −    

and      

min
20 mRu ∈≤

=)( 22 uL 222222
1

uruQu tt − ,          (18) 

where  

              =1Q +
1C

I
H ,        =2Q +

2C

I
H ,       

(1 =r IH − ))( 1ey ε−   

and  

(2 =r HI − ))( 2ey ε+ .                             (19) 

Finally, the end regressor (.)f  will be determined 

using (3), (8), (9) and the solutions of (18).  

The nonlinear TSVR in primal can be constructed as a 

pair of QPPs in 2-norm as: 

2
111

),,(

||)),((||
2

1
min

1
111

ebwAAKey t

Rbw mm

+−−
++∈

ε
ξ

    11
1

2
ξξ tC

+

subject to 

  1111 )),(( ξε −≥+− eebwAAKy t
         (20) 

and 

2
222

),,(

||)),((||
2

1
min

1
222

ebwAAKey t

Rbw mm

+−+
++∈

ε
ξ

    22
2

2
ξξ tC

+

subject to 

               2222 )),(( ξε −≥−+ eyebwAAK t
.       (21) 

Further, defining the augmented matrix G  as: 

),([ tAAKG = ]e , the pair of dual QPPs  corresponding 

to (20) and (21) can be formulated as a pair of minimization 

problems of the form (18) where 
mRuu ∈21,  are  

Lagrange multipliers and 2121 ,,, rrQQ  are computed using 

(17) and (19). In this case, the −ε insensitive down- and up- 

kernel generated regressors (.)1f  and (.)2f will become: 

for any vector
nRx ∈ , 

),([)(1
tt AxKxf = ]1 tt GGG 1)( − )( 11 uey −− ε

and    

),([)(2
tt AxKxf = ]1 tt GGG 1)( − )( 22 uey ++ ε , 

respectively. Finally, taking the mean of (.)1f and (.)2f

the kernel regressor RRf n →:  is obtained.  

Applying the Karush-Kuhn-Tucker (KKT) 

necessary and sufficient optimal conditions for the dual TSVR 

will lead to the following pair of classical complementarity 

problems23: 

0)(0 1111 ≥−⊥≤ ruQu                 

and 

   0)(0 2222 ≥−⊥≤ ruQu .               (22) 

However, using the well-known identity between two 

vectors vu, : 

00 ≥⊥≤ vu  if and only if +−= )( vuu α

for any 0>α , the solutions of the following equivalent pair 

of problems will be considered22: for any 0, 21 >αα ,  
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+−−=− )()( 11111111 ruuQruQ α        

and 

  +−−=− )()( 22222222 ruuQruQ α .    (23) 

It turns out that conditions (23) become  necessary and 

sufficient to be satisfied by the unconstrained minimum of the 

following pair of implicit Lagrangians24 associated to the pair 

of dual problems (18): for any 0, 21 >αα ,  

min
mRu∈

=)(1 uL uruQu tt
112

1
−    

     
2

111
1

||)((||
2

1
+−−+ ruuQ α

α
)|||| 2

11 ruQ −−    

                  (24) 

and 

min
mRu∈

=)(2 uL uruQu tt
222

1
−        

     
2

222
2

||)((||
2

1
+−−+ ruuQ α

α
)|||| 2

22 ruQ −−

.                    (25) 

In this work we solve the pair of dual QPPs defined 

by (24) and (25) using the well-known Newton method20.  

For ,2,1=k  the basic Newton’s step of the 

iterative algorithm is in determining the unknown 
1+iu at the 

thi )1( + iteration using the current ith iterate 
iu satisfying        

0))(()( 12 =−∇+∇ + iii
k

i
k uuuLuL

where  i=0, 1, 2, …

Now, for 
mRu ∈  one can obtain the gradient of )(uLk as: 

)[(
)(

)( kk
k

kk
k ruQ

QI
uL −

−
=∇

α

α

                       ])( +−−− kkk ruuQ α .

Note that for ,2,1=k  the gradient )(uLk∇  is not 

differentiable and therefore the Hessian matrix of second order 

partial derivatives of )(uLk  is not defined in the usual sense. 

However, a generalized Hessian of )(uLk  in the sense of 

Ref.25 exists and is given by: for all 
mRu ∈ , 

k
k

kk
k Q

QI
uL (

)(
)(2

α

α −
=∇

          )))()(( * kkkkk QIruuQdiag −−−+ αα

where diag(.) is a diagonal matrix of order m.

Using the property that the matrix 
mm

k RQ ×∈

defined by (19) is positive-definite and choosing the parameter 

kα  satisfying the condition20:   

|||| kk Q>α  where ,2,1=k   

the Newton’s iterative step can be rewritten in the following 

simpler form: for i=0, 1,2 …

),()( 11 i
k

i
k

ii uhuhuu −+ ∂−=               (26) 

wherein for any vector 
mRu ∈ , 

)(uhk +−−−−= )()( kkkkk ruuQruQ α

is a vector in 
mR  and )(uhk∂ is a matrix of order m defined 

by: 

kk Quh ()( =∂

)))()(( * kkkkk QIruuQdiag −−−+ αα . 

By defining the following diagonal matrices of order m:  

kD ))(( *kkk ruuQdiag −−= α , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+=

k

k
kkk C

DI
DF α   and  )(1

kkk DIFE −= −

where ,2,1=k  we can determine 

=∂ −1)(uhk
11)( −−+ kk FHEI .

Now, we state the Newton iterative Algorithm with 

Armijo stepsize14,15,20 for solving each of the unconstrained 

minimization problems defined by (24) and (25). 
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Newton Algorithm with Armijo stepsize  

for solving (24),(25) with 2,1=k

Start with any initial guess 
mRu ∈0

(i) Stop the iteration if 0)( =i
k uh

                Else 

                    Determine the direction vector 
mi Rd ∈ as the  

                  solution of the following linear system of equations 

                    in m variables: 

)()( i
k

ii
k uhduh −=∂

(ii) Armijo stepsize.    Define: 

                                
i

i
ii duu λ+=+1

,

                where the stepsize ,...},,1max{ 4
1

2
1=iλ is  

                such that:       

δλ −≥+− )()( i
i

i
k

i
k duLuL iti

ki duh )(λ   

                    and ).,0( 2
1∈δ

With the assumption that: for 2,1=k , |||| kk Q>α , the 

finite termination of the above Newton algorithm with Armijo 

step size will follow as a simple extension of the result of 

Refs. 20, 21.  

 Note that the matrix GGt
 is positive semi-definite. 

It is possible that in certain applications the matrix may be ill-

conditioned and therefore its inverse may not exist. In such 

cases, however, by introducing regularization term Iβ  the 

modified matrix )( GGI t+β will be used, where β  is 

chosen to be a very small positive number.   

4. Numerical experiments and comparison of results 

  In order to investigate the performance of the 

proposed implicit LTSVR, we performed experiments on a 

number of interesting synthetic and real-world datasets and 

compared the results with SVR and TSVR. In Table 1, the list 

of functions considered for generating synthetic datasets were 

summarized. Also we carried out experiments on several real-

world datasets- the Box Jenkins gas furnace data; Google, 

IBM, Intel, RedHat, Microsoft and  S&P 500 financial time 

series data; Sunspots and SantafeA time series forecasting 

data; the data generated by the Mackey glass and Lorenz 

differential equations; and Machine CPU, Bodyfat, Concrete 

compression strength (CS), Abalone and Kin-fh data. 

  All the regression algorithms were coded in 

MATLAB R2009a running on Windows XP OS with 2.8 GHz 

Intel P4 processor having 1.99 GB RAM. Although Newton-

Armijo algorithm converges globally, all the experiments were 

performed using (26), i.e. without Armijo stepsize. TSVR was 

implemented using optimization tool box of MATLAB and for 

the implementation of SVR we used MOSEK optimization 

tools for MATLAB available at http://www.mosek.com. In all 

the experiments considered, Gaussian nonlinear kernel 

function was chosen. The 2-norm root mean square error 

(RMSE) was selected as the measure of prediction 

performance and it was calculated using the following formula 

       ∑
=

−=
p

i
ii yy

p
RMSE

1

2)~(
1

, 

where p is the number of test samples and, iy  and iy~  are the 

observed and their  corresponding predicted values 

respectively. Since more parameters are to be selected in the 

proposed implicit LTSVR and TSVR in comparison to SVR, 

which will result in slower model selection speed, in all 

experiments we set: 01.021 == εε  and 21 CC = . For 

SVR, we assumed: 01.0=ε . The optimal parameter values 

were determined by performing 10-fold cross validation 

methodology. In fact, for each dataset, the best prediction 

performance on the training set was obtained by varying the 

regularization parameter CCC == 21  and kernel 

parameter σ  from the sets }10,...,10{ 33−
 and 

}2,...,2,2{ 10910 −−
 respectively and by choosing these 
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optimal parameter values for training, the RMSE on the test 

set was calculated.  

4.1 Synthetic datasets

 To demonstrate the performance of the proposed 

implicit LTSVR on synthetic datasets, first we consider the 

following function for approximation26:  

),3sin()2cos(
2||

4
)( xx

x
xy ++

+
=          

for ].10,10[−∈x

We selected, randomly, 200 points for training and 1000 

points for testing under uniform distribution over the interval 

]10,10[− . The observed values for the training data were 

polluted by adding two different kinds of noises namely: 

uniform noise over the interval ]2.0,2.0[−  and Gaussian 

noise with mean zero and standard deviation 0.2. Test data 

was assumed to be noise-free. The approximation functions 

obtained by SVR, TSVR and the implicit LTSVR for uniform 

and Gaussian additive noises were illustrated in Figure 1a and  

Figure 1b respectively along with the exact function. The 

noisy training samples are indicated by the symbol ‘o’. The 

results obtained on the test set were summarized in Table 2.  

 To further analyze the performance of the proposed 

method, another 5 synthetic datasets of 1200 samples each 

were generated using functions whose definitions are given in 

Table 1. As in the previous case, 200 samples were used for 

training and 1000 samples for testing. The observed value iy

for the training example ix  was obtained as follows: 

  iii xfy ς+= )( ,   for ,,...,1 mi =

where the additive noise iς  was sampled in two ways: (i). 

uniform distribution over the interval ]2.0,2.0[− ; (ii). 

Gaussian distribution with mean = 0 and standard deviation = 

0.2. By the tuning procedure explained above, the optimal 

parameter values were determined and using these values the 

RMSE on the test set was calculated. The results were 

summarized in Table 2. 

a).Uniform noise over the interval [-0.2, 0.2]. 
                     

b). Gaussian noise with mean zero and standard deviation 0.2. 

Figure 1: Results of approximation of )3sin()2cos(
2||

4
xx

x
++

+
 with our  method, SVR and TSVR when 

different kinds of additive noise were used. Gaussian kernel was employed.  
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Table 1. Functions used for generating synthetic datasets. 

Name                                      Function Definition Domain of Definition 

Function 1 

Function 2 

   
      

Function 3 
  

Function 4 

Function 5 

Function 6 

Table 2. Performance comparison of the proposed method with SVR and TSVR on synthetic datasets for uniformly distributed  and 
Gaussian noises. RMSE and training time (seconds) were used for comparison. Gaussian  kernel was employed. The best result is 
shown in boldface. 

Uniformly distributed noise Gaussian noise 

Datasets SVR 
RMSE 

TSVR 
RMSE 

Our Method 
RMSE 

SVR 
RMSE 

TSVR 
RMSE 

Our Method 
RMSE 

(Train size, Test size) 
(C, σ) 

Training 
time 

),21( σCC =

Training time 

),21( σCC =

Training time 

(C, σ) 
Training 

time 

),21( σCC =

Training time 

),21( σCC =

Training time 

Function1 
(200×1,1000×1) 

0.0397
(103,2-1)
0.9449 

0.0489 
(100,20) 
0.2898 

0.0463 
(101,20) 
0.2338 

0.0585
(10-1,21)
1.1812 

0.0769 
(102,20) 
0.2569 

0.0644 
(101,20) 
0.2355 

Function2 
(200×1,1000×1) 

0.0485 
(103,22) 
1.1613 

0.0463
(101,20) 
0.3011 

0.0475 
(101,20) 
0.2293 

0.1110 
(103,20) 
1.1414 

0.0835 
(10-1,20) 
0.1706 

0.0834
(10-3,20) 
0.2031 

Function3 
(200×5,1000×5) 

0.0626 
(103,21) 
1.1744 

0.0597
(102,21) 
0.3790 

0.0609 
(101,21) 
0.2295 

0.1039 
(102,20) 
1.1415 

0.0782 
(101,21) 
0.3238 

0.0700
(101,21) 
0.2259 

Function4 
(200×2,1000×2) 

0.0822 
(101,2-1)
1.0515 

0.0121
(101,20) 
0.3724 

0.014 
(101,20) 
0.2265 

0.0638 
(103,21) 
0.9596 

0.0338 
(10-1,20) 
0.1487 

0.0327
(100,20) 
0.2378 

( ) ( )xx
x
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+
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Function5 
(200×2,1000×2) 

0.0480 
(103,21) 
0.9807 

0.0206
(101,2-3) 
0.3621 

0.0244 
(101,2-3) 
0.2272 

0.053 
(102,20) 
0.9507 

0.0472
(100,2-2) 
0.2899 

0.0492 
(100,2-2) 
0.2459 

Function6 
(200×2,1000×2) 

0.0338 
(101,20) 
0.9440 

0.0228
(101,2-1) 
0.4060 

0.0553 
(101,20) 
0.2335 

0.0418 
(103,2-2)
0.9204 

0.0417
(101,20) 
0.3136 

0.0423 
(101,20) 
0.2301 

4.2. Real-world datasets 

 For all the real-world examples considered in this 

work, the original data is normalized in the following manner: 

minmax

min

jj

jij
ij

xx

xx
x

−

−
=

where ijx is the (i,j)-th element of the input matrix A , ijx is 

its corresponding normalized value and 

)(min 1
min

ij
m
ij xx == and )(max 1

max
ij

m
ij xx == denote 

the minimum and maximum values, respectively, of the j-th 

feature of A . 

     As the first real-world example, we considered the 

Box and Jenkins gas furnace data27. It consists of 296 input-

output pairs of points of the form: ))(),(( tytu  where )(tu

is input gas flow rate whose output )(ty  is the 2CO

concentration from the gas furnace. The output )(ty  is 

predicted based on 6 attributes taken to be of the form28: 

),2(),1(),3(),2(),1(()( −−−−−= tututytytytx

))3( −tu . Thus, in total, we get 293 samples of the 

form: )).(),(( tytx  The odd samples were selected for 

training whereas the even samples were taken for testing. The 

performance of the proposed method on the training and test 

sets were shown in Figure 2a and Figure 2b respectively. 

                As examples of financial time series, we considered 

the datasets of Google, IBM, Intel, RedHat, Microsoft and 

S&P 500. They were taken from the website:  

http://dailyfinance.com. In all the examples considered, 755 

closing prices starting from 01-01-2006 to 31-12-2008 were 

taken. Since we used five previous values to predict the 

current value, 750 samples in total were obtained. Among 

them the first 150 samples were used for training and the rest 

for testing.  

  In addition, we compared implicit LTSVR with 

SVR and TSVR on few more well-known time series datasets. 

As in the financial time series datasets, five previous values 

�������������������a). Prediction over the training set 

  
  b). Prediction over the test set      

Figure 2: Results of comparison for gas furnace data of Box-Jenkins. Gaussian kernel was used. 
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were used to predict its current value. 

The Sunspots dataset is taken from 

http://www.bme.ogi.edu/~ericwan/data.html. It consists of 295 

yearly readings from the year 1700 to 1994. As five previous 

values are used to predict the current value, 290 samples were 

obtained. We selected 100 samples for training and the rest for 

testing. The SantaFe-A time series dataset is available at: 

http://www-psych.stanford.edu/~andreas/Time-Series/ 

SantaFe.html. It consists of 1000 values from which we get 

995 samples in total. The first 300 samples were chosen for 

training and the rest for testing. 

We performed our experiments on two more time 

series datasets generated by the Mackey-Glass time delay     

differential equation4 given by 

10)(1
)(

)(
)(

τ

τ

−+

−
+−=

∂

∂

tx

tx
atbx

t

tx
 , 

where the parameters a, b and  time delay τ  were taken as: 

a=0.2, b=0.1 and 30,17=τ . They were obtained from 

http://www.bme.ogi.edu/~ericwan/data.html. The first 400 

samples were considered for training and the remaining 1095 

for testing. In this work, we denote the time series 

corresponding to 17=τ  and 30=τ  by 17MG and 

30MG respectively.  

 Consider the Lorenz differential equation29 given by 

xzyrxyxyx −−=−= && ),(ρ   

and              bzxyz −=& , 

where ρ , r  and  b  are input parameters. By taking 

different sampling rates, i.e. 05.0=τ  & 2.0=τ  and the 

parameter values: 10=ρ , 28=r , 3/8=b , two time 

series datasets 05.0Lorenz and 2.0Lorenz were 

generated. Each of them consists of 30000 values. To avoid 

the initial transients the first 1000 of them were discarded. The 

next 3000 of them were taken for our experiment. With five 

previous values being used to predict the current value, we get 

2995 number of samples in total. Among them the first 400 

samples were chosen for training and the remaining samples 

for testing.  

 Finally, five more commonly used benchmark 

datasets- Machine CPU, Bodyfat, Concrete CS, Abalone and 

Kin-fh -were considered for testing the performance of the 

proposed implicit LTSVR.   

 The Machine CPU dataset consisting of 209 samples 

having 7 continuous features is taken from UCI repository30. 

The first 100 samples were chosen for training and the 

remaining for testing. Bodyfat is a well-known dataset 

available in the Statlib collection:   http://lib.stat.cmu.edu/ 

datasets. It consists of 252 samples having 14 attributes. Here 

the observed value is the estimation of the body fat obtained 

from the body density values.  The first 150 samples were 

taken for training and the rest for testing.  

Table 3. Performance comparison of the proposed method with SVR and TSVR on real world datasets. RMSE and training time 
(seconds) were used for comparison. Gaussian kernel was employed. Bold type shows the best result. 

Datasets                           
(Train size, Test size) 

SVR 
RMSE                 
(C, σ) 

Training time 

TSVR 
RMSE 

(C1=C2, σ) 
Training time

Our Method 
RMSE 

(C1=C2, σ) 
Training time

Gas furnace 
(147×6,146×6) 

0.0410 
(103,23) 
0.5122 

0.0355 
(102,20) 
0.1854 

0.0318
(101,20) 
0.1243 

Google 
(150×5,600×5) 

0.0270
(103,24) 
0.5185 

0.0285 
(10-1,22) 
0.1355 

0.0299 
(10-1,22) 
0.1263 
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IBM 
(150×5,600×5) 

0.0339 
(101,21) 
0.517 

0.0321 
(10-1,21) 
0.1415 

0.0317
(10-3,21) 
0.1155 

Intel 
(150×5,600×5) 

0.0320
(103,24) 
0.5242 

0.0372 
(100,22) 
0.2214 

0.0429 
(101,22) 
0.1308 

RedHat 
(150×5,600×5) 

0.0343
(101,21) 
0.5256 

0.0381 
(100,22) 
0.1945 

0.0358 
(100,22) 
0.1262 

Microsoft 
(150×5,600×5) 

0.0330 
(101,21) 
0.5243 

0.0330 
(10-1,21) 
0.1409 

0.0328
(10-3,21) 
0.1146 

S&P500 
(150×5,600×5) 

0.0276
(103,22) 
0.5225 

0.0350 
(10-1,21) 
0.1513 

0.0361 
(10-1,21) 
0.1255 

Sunspots 
(100×5,190×5) 

0.0847
(102,21) 
0.2319 

0.0859 
(10-1,21) 

0.084 

0.0867 
(100,21) 
0.0625 

SantafeA 
(300×5,695×5) 

0.0417
(102,2-1) 
2.3343 

0.0473 
(10-1,2-2) 
0.4787 

0.0477 
(101,2-2) 
0.5599 

Mg17

(400×5,1095×5) 

0.0103 
(102,2-1) 
4.2819 

0.0069
(101,2-2) 
1.1487 

0.0069
(101,2-2) 
1.1165 

Mg30

(400×5,1095×5) 

0.0242 
(102,2-1) 
4.2059 

0.0226
(10-2,2-2) 
0.6254 

0.0229 
(10-3,2-2) 
0.9719 

Lorenz0.05

(400×5,2595×5) 

0.0053 
(103,23) 
7.0675 

0.0052
(101,20) 
2.4154 

0.0052
(101,20) 
1.7372 

Lorenz0.2

(400×5,2595×5) 

0.0076 
(103,23) 
7.2485 

0.0036
(10-1,2-1) 
1.5254 

0.0036
(101,2-1) 
1.7529 

Machine CPU 
(100×7,109×7) 

0.0364 
(103,22) 
0.2299 

0.0434 
(10-1,21) 
0.0909 

0.0433
(101,21) 
0.0586 

Bodyfat 
(150×14,102×14) 

0.0134
(103,24) 
0.5297 

0.0221 
(10-1,23) 
0.1368 

0.0456 
(10-1,23) 
0.1163 

Concrete CS 
(700×8,330×8) 

0.1607 
(101,20) 
14.8498 

0.1606
(10-2,21) 
1.8087 

0.1606
(10-3,21) 
2.7539 

Abalone 
(1000×8,3177×8) 

0.1332 
(103,24) 
33.8183 

0.1189 
(10-1,21) 
4.8581 

0.1174
(100,21) 
7.973 

Kin-fh 
(1000×32,7192×32) 

0.0968 
(103,25) 
34.2304 

0.0952
(10-3,23) 
5.5199 

0.0952
(10-3,23) 
6.1485 
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The Concrete CS dataset30 contains 1030 samples having 8 

features. The first 700 samples were used for training and the 

rest for testing. The goal of Abalone dataset30 is the prediction 

of the ages of the abalones using 8 physical measurements as 

their features. We have chosen the first 1000 samples for 

training and the remaining 3177 samples for testing. The Kin-

fh dataset31 represents a realistic simulation of the forward 

dynamics of eight link all revolute robot arm. Its goal is the 

prediction of the end-effector from a target with 32 features. 

The first 1000 samples were selected for training and the 

other 7192 samples for testing.  

  The tenfold numerical results of the real-world 

datasets by SVR, TSVR and the implicit LTSVR along with 

the number of training and test samples chosen, the number of 

attributes, the parameter values and the training time were 

summarized in Table 3.  

 One can observe from Table 2 that the best accuracy for 

the proposed method is achieved only on 3 occasions among 

the 12 synthetic datasets considered. Still, it is very much 

comparable to the best results obtained in the remaining cases. 

Note that, increasing the error tolerance accuracy used to 

terminate Newton iterative algorithm may lead to further 

improved generalization accuracy. As of the training time, the 

proposed method spends the least CPU time in most cases.  

 Among the total of 18 real-world datasets, the proposed 

method achieves the best accuracy for 10 datasets in 

comparison to SVR and TSVR including 3 datasets whose 

training set size is above 700. This clearly illustrates that the  

generalization ability of the proposed method is as 

competitive as of the remaining methods. Regarding the 

training time, the proposed method shows impressive 

advantage on small datasets. It is obvious from Table 3 that 

the proposed method is always faster than SVR. However, 

when the size of the training set is above 400, it lost its 

superiority to TSVR.  

 It should be noted that both SVR and TSVR were solved 

by optimization packages which implement fast algorithms 

whereas the proposed method solves matrix equations inside 

while loops.    

5. Conclusions 

  A new implicit Lagrangian twin SVR in its dual 

was proposed as a pair of unconstrained minimization 

problems and their solutions were obtained by Newton 

method. The algorithm is very simple to implement and no 

specialized optimization software is needed. Numerical 

experiments were performed on a number of interesting 

synthetic and real-world datasets. Comparison of results with 

SVR and twin SVR clearly demonstrates the effectiveness and 

suitability of the proposed method. 
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