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Abstract 

Normal support vector machine (SVM) algorithms are not suitable for classification of large data sets because of 
high training complexity. This paper introduces a novel two-stage SVM classification approach for large data sets. 
Fast clustering techniques are introduced to select the training data from the original data set for the first stage 
SVM, and a de-clustering technique is then proposed to recover the training data for the second stage SVM. The 
proposed two-stage SVM classifier has distinctive advantages on dealing with huge data sets such as those in 
bioinformatics. Finally, we apply the proposed method on several benchmark problems. Experimental results 
demonstrate that our approach has good classification accuracy while the training is significantly faster than other 
SVM classifiers. 
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1. Introduction

    With the development of software and hardware, 
enormous quantities of high dimensional data are being 
stored in databases continuously. Semi-automatic data 
classification methods are needed to analyze and 
understand huge amounts of data. A classification 
model can serve as an explanatory tool to distinguish 
between objects of different classes [34]. A 
classification process includes two phases which are 
training phase and testing phase. In the training phase, a 
training set is used to decide how the parameters ought 
to be weighted and combined in order to separate 
various classes of objects. The learning attempts to 
discover an optimal representation of a data set with 
known class memberships. In the test phase, the weights 
determined at the training phase are applied to a set of 
objects with unknown class labels (test set) to determine 

their classes. Some practical classification methods 
involve a heuristic approach intending to find a "good-
enough" solution to the optimization problem. 
    There are several standard classification techniques in 
literature, such as simple rule based and nearest 
neighbor classifiers, Bayesian classifiers, artificial 
neural networks, decision tree, support vector machine 
(SVM), ensemble methods, etc. Among those, neural 
networks are one of the most widely used technique 
[25]. As a universal approximator, neural network 
classifier has a very expressive hypothesis space. 
However, neural network training is a time consuming 
process, and the classification accuracy cannot be 
always guaranteed since they are quite sensitive to the 
presence of noise in the training data. Decision trees 
have also been used for classification problems. 
Decision trees technique is faster at the training phase 
than neural networks. But, they are not flexible at 
modeling parameter space [30]. A simple classifier may 
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be the nearest-neighbor approach [15]. Nearest neighbor 
methods have the advantage that they are easy to 
implement. But, this technique is still too slow if the 
input data sets have many examples. On the other hand, 
they are very sensitive to the presence of irrelevant 
parameters. 
    Among these techniques, SVM is one of the best-
known techniques for its optimization solution [10]. 
Recently, some new SVM classifications are proposed. 
A geometric approach to SVM classification is given by 
Mavroforakis et al [22]. Fuzzy neural network SVM 
classifier is studied by Lin [21]. Despite of its good 
theoretic foundations and generalization performance, 
SVM is not suitable for classification of large data sets 
since it needs to solve the quadratic programming (QP) 
in order to find a separation hyper-plane, which causes 
an intensive computational complexity. Many 
researchers have tried to find possible methods to apply 
SVM classification for large data sets. Generally, these 
methods can be divided into two types; Modify SVM 
classifier so that it could deal with large data sets within 
an acceptable time, and Reduce a large data set to 
smaller one so that a normal SVM could be applied. 
    Chunking is the first decomposition method used, a 
standard projected conjugate gradient (PCG) chunking 
algorithm can scale somewhere between linear and 
cubic in the training set [9][17]. Sequential Minimal 
Optimization (SMO) is a fast method to train SVM 
[27][8]. SMO breaks the large QP problem into a series 
of smallest possible QP problems; it is faster than PCG 
chunking. Dong et al introduced a parallel optimization 
step where block diagonal matrices are used to 
approximate the original kernel matrix so that SVM 
classification can be split into hundreds of sub-problems 
[1]. A recursive and computational superior mechanism 
referred as adaptive recursive partitioning was proposed 
in [19], where the data is recursively subdivided into 
smaller subsets. Genetic programming is able to deal 
with large data sets that do not fit in main memory [12]. 
Neural networks technique can also be applied for SVM 
to simplify the training process [16]. 
    Clustering is an effective tool to reduce data set size. 
For examples, hierarchical clustering [39][1], k-means 
cluster [28] and parallel clustering [33]. Clustering 
based methods can reduce the computations burden of 
SVM, but they are very complex for large data set. 
Rocchio bundling is a statistics-based data reduction 
method [35]. Another approach is to apply the Bayesian 

committee machine to train SVM on large data sets [32] 
where the data is divided into m subsets of the same 
size, and m models are derived from the individual sets. 
But it has more error rate than normal SVM and the 
sparse property does not hold. Random selection is to 
select data in such way that the learning is maximized 
by the data <cite>Schohn:00</cite>. However, it could 
over-simplify the training data set and lose the benefit 
of SVM. 
    In this paper, we propose a two-stage SVM 
classification method by using reduced data set in each 
stage. 
    Clustering is an important technique for fast retrieval 
of relevant information from databases. The goal of 
clustering is to separate finite unlabeled items into a 
finite and discrete set of "natural" hidden data 
structures, such that items in the same cluster are more 
similar to each other and those in different clusters tend 
to be dissimilar, according to certain measure of 
similarity or proximity. A large number of clustering 
methods has been developed, e.g., squared error-based 
k-means [2], fuzzy C-means [26], kernel-base clustering 
[14]. However, for these clustering methods, the optimal 
number of clusters should be predefined which involves 
more computational cost than clustering itself [38]. In 
this paper, we select the cluster centers and data of mix-
labeled clusters as training data for the first stage SVM, 
we believe these data are the most useful and 
representatives in a large data set for finding support 
vectors. However, our objective is to select 
representatives data from a large data set for training 
SVM, we do not take care of the optimal number of 
clusters. So we need to find clustering techniques in 
which this computation cost can be eliminated. Two fast 
data selection techniques, MEB and random selection, 
are introduced for this purpose in the next section. 
    However, are the selected data representatives 
enough? Note that, data of the clusters near the hyper-
plane are not used totally for training SVM we have 
only selected the cluster centers and mixed clusters. So, 
this may affect the classification precision, i.e., the 
obtained decision hyper-plane may not be precise 
enough. However, at least it gives us a reference on data 
distribution. To compensate this disadvantage, we train 
SVM again using the data near the hyper-plane obtained 
by the last SVM (we call it the first stage SVM), it is the 
second stage SVM. 
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    By the sparse property of SVM, the data which are 
not support vectors will not contribute the optimal 
hyper-plane. The input data sets which are far away 
from the decision hyper-plane should be eliminated, 
meanwhile the data sets which are possibly support 
vectors should be used. According to above analysis, we 
make the following modification on the training data set 
of the first stage SVM. 
    1). Remove the data far from the hyper-plane from 
the training data set because they will not contribute to 
find the support vectors, 
    2). Keep the data of the mix-labeled clusters since 
they are more likely support vectors. 
    3). Additionally, we add the data of the clusters 
whose centers are support vectors of the first stage 
SVM.

In general, our approach consists of four steps which 
are shown in Figure 1: 1) data selection, 2) the first 
stage SVM classification, 3) de-clustering, 4) the second 
stage SVM classification. 

Training data set

Clustering

Clusters centers 
+

mixed labeled clusters

SVM classification                
Stage 1

Support 
vectors

De-clustering Data near the optimal 
hyperplane

The optimal 
hyperplane

X Y

SVM classification                
Stage 2

Training data set

Clustering

Clusters centers 
+

mixed labeled clusters

SVM classification                
Stage 1

Support 
vectors

De-clustering Data near the optimal 
hyperplane

The optimal 
hyperplane

X Y

SVM classification                
Stage 2

  Figure 1. Two-stage SVM classification 

    We firstly obtain clusters by using a clustering 
algorithm and the first stage SVM is applied on the data 
which are cluster centers or in the mixed clusters. Then, 
we remove the clusters whose centers are not support 
vectors from the original data set. For the remaining 
clusters, we apply the de-clustering technique, and use 
the data in these clusters to train the second stage SVM. 

The experimental results show that the accuracy 
obtained by our approach is very close to classic SVM 
methods, while the training time is significantly shorter. 

The rest of the paper is organized as follows. Section 
II introduces two new clustering methods. Section III 
explains the two-stage SVM classification. Performance 
and complexity analysis are given in Section IV. 
Section V shows our experiment results on four well-
known data sets, comparisons with other SVM based 
algorithms are made. Conclusion and discussion are 
given in Section VI. 

2. Related work 

    To use clustering techniques before computing the 
classifier is an interesting strategy for large data sets 
problems. Although many methods for solving the 
optimization problem of SVM by clustering methods 
are available, we list here only some interesting 
techniques which can be used to train SVMs on a large 
data set, such as CB-SVM [39], CB-SOCP [31], CT-
SVM [18], and RS-MCS [7]. 
    CB-SVM [39] applies a hierarchical micro-clustering 
that scans the entire data set only once, the proposed 
method scales well for large data sets and gives 
accuracies comparable to other SVM implementations. 
However CB-SVM the hierarchical micro-clustering 
employed is hight dependent of the dimension of the 
input data set and may not perform as well with high 
dimensional data sets. 
    CB-SOCP [31] presents a formulation for large data 
sets. Their authors assume that the class conditional 
densities of mixture data points can be modeled using 
mixture models. The algorithm uses BIRCH in order to 
estimate a second order statistics of the components. 
The proposed method is scalable for large data sets and 
the accuracies obtained using CB-SOCP are comparable 
to other SVM implementations. However CB-SOCP 
algorithm sampled the input data and is clear that if we 
sampling the input data we could hurt the training 
process of SVM, especially when the probability 
distribution of training and testing data were different 
[39].
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    CT-SVM [18] applies reduction techniques by 
clustering analysis to find relevant support vectors in 
order to speed up the training process, the algorithm 
builds a hierarchical clustering tree for each class in the 
data set iteratively in several epochs. SVM is trained on 
the nodes of each tree. The support vectors of the 
classifier are used as prior knowledge which govern the 
tree growth. Only support vectors are allowed to grow, 
and non support vectors are stopped. This method is 
scalable for large data sets and the accuracies obtained 
are comparable to other SVM implementations. 
However the algorithm is susceptive to noisy and 
incomplete data sets. 
    RS-MCS [7] use mirror point pairs and a multiple 
classifier system to reduce the training time of a support 
vector machines. The authors developed a approach by 
K Means Clustering in order to selecting and combining 
a given number of member classifiers which takes into 
account accuracy and efficiency. The accuracies 
obtained using this algorithm is comparable to other 
SVM implementations. However this method works 
only with small and medium size data sets. 
    The main contribution of this paper is the 
demonstration that the speed of SVM can be increased 
by reducing drastically the input data set to SVM 
(which is crucial in large data sets). This has been done 
using two stages of SVM and by demonstrating its 
power in both speed and accuracy. 

The first main advantage of this mechanism, when 
compared to other SVM implementations, is that this 
algorithm obtain support vectors from a first stage of 
SVM and use them in order to obtain all the data points 
near support vectors. The great advantage of this step is 
to remove most nonsupport vectors quickly and collect 
training sets for the next step. 

3. Clustering algorithms 

Clustering is an unsupervised classification method, it 
divides a data set into subsets (clusters), so that the 
patterns belonging to any one of the clusters are similar 
and the patterns of the different clusters are as dissimilar 
as possible. A large number of clustering methods have 
been developed, e.g., squared error-based k-means [2], 
fuzzy C-means [26], kernel-base clustering [14]. 
However, clustering algorithms are generally time 
consuming for large data sets. Clustering is not the final 
objective of this paper; we only use the cluster centers 
that are support vectors and data points enclosed on 

them as representative data set from original large data 
set, so that SVM could be applied. Therefore, the 
precision of clustering algorithm does not affect too 
much on our classification. What we need is a fast 
clustering algorithm which can give us a scheme of 
cluster distribution. In this section, we propose two new 
fast clustering algorithms, one is the minimum 
enclosing ball (MEB) clustering, the other is a random 
selection technique. We use them to partition the 
training data set and select data according to the 
partition result to train the first stage SVM. Both 
methods do not need to calculate the optimal number of 
clusters, so, they can be done in a short time. 

3.1.  Fuzzy C means clustering 

Consider a finite set of elements 
nxxxX ,,, 21

as being elements of the  p   dimensional Euclidian 

space  pR   , that is,  p
i Rx   The problem is to 

perform a partition of this data set into  l   fuzzy sets. 
The criterion is usually to optimize an objective 
function. The final result of fuzzy clustering can be 
expressed by a partition matrix  U   such that  

,ijuU ,1 ni ,1 lj    iju   is a 

numeric value in  1,0  . There are two constraints on 

the value of  .iju   First, a total membership of the 

element  Xxi   in all classes is equal to  1  , second 
every constructed cluster is non-empty. That is,  

ljnu

niu

ij
n

i

ij
l

j

,2,1 allfor   ,0

,,2,1 allfor   ,1

1

1   (1) 

A general form of the objective function is   
ijj

l

k
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i
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jkij uxwguJ ),(,
111

v     

,, ki vxd   where  )( jxw   is the a prior weight for 

each  ,jx    ki vxd ,   is the degree of dissimilarity 

between the data  ix   and the supplemental element  kv
, which can be considered as the central vector of the  
k  th cluster. The degree of dissimilarity is defined as a 
measure that satisfies two axioms: 1)  ,0, ki vxd
2)  ikki vxdvxd ,,  . So the fuzzy clustering can 
be formulated as an optimization problem: 

nuu
vuJ
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iij
l
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where  ,2,1, lki .2,1 ni   The objective 
function of the fuzzy C-means (FCM) is 

2

11

,, ji
m
ij

n

i

l

j
kij vxuvuJ     (3) 

where  m
iju   denotes the membership grade of  ix   in 

the cluster  kA  , jv   denotes the center of  ,kA   and  

ji vx ,   is the distance of  ix   to center  ,jv ix   and  

jv   are  p  dimension vectors,  ,1m   is called an 
exponential weight which influences the degree of 

fuzziness of the membership function,  m   influences 
the degree of fuzziness of the membership function. 
Note that the total membership of the element  ix   in all 

classes is  1  , i.e., ,1
1 ki

l

k
u    .1 ni   To 

solve the minimization problem (2) with respect to the 
objective function (3), we can fix  iju   and  iv   and 
apply the conditions (1), that is 
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3.2. Minimum enclosing ball (MEB) clustering 

The MEB problem can be dated back as early as in 
1857, when Sylvester first investigated the smallest 
radius disk enclosing  m   points on the plane. It has 
found applications in diverse areas such as computer 
graphics (e.g., for collision detection, visibility culling), 
machine learning (e.g., similarity search), facility 
locations problems, shape fitting problems. In this 
paper, by  )1(  -approximation of MEB we propose 
MEB clustering approach. The running time of the new 
algorithm is linearly or near linearly dependent on the 
number of points and the dimension. MEB clustering 
proposed in this paper uses the concept of core-sets in 
[20][3]. It is defined as follows. 

Definition 1. The ball with center  c   and radius  r
is denoted as  ., rcB

 Definition 2. Given a set of points  mxxS ,1

with  p
i Rx   the minimum enclosing ball (MEB) of  

S   is the smallest ball that contains all balls and also 
all points in  ,S   it is denoted as  ).(SMEB

Because it is very complicated to find the optimal 
ball  ),(SMEB   we use an approximation method 
defined as follow. 

 Definition3. 1  approximation of  

SMEB   is denoted as a ball  ,1, rcB 0
with  SMEBrr   and  .1, rcBS

 Definition 4.  A set of points  S   is a core-set of  S
if rcBSMEB ,   and  .1, rcBS

For clustering problem, there should be many balls 
in the data set  .S   So the definition of  1
approximation of  SMEB   is modified as 

 Definition 5.  In clustering,  )1(
approximation of MEB( S  ) is denoted as a set of  k
balls  iB ki 1   containing  S   with the same 

radius, i.e.,  kBBBS 21  . 

In other words, given  ,0   a subset  ,S   is said 
to be a  )1(  approximation of  S   for clustering 

if iii
k
i rcBSMEB )1(,)( 1   and  

,)1(,1 iii
k
i rcBS i.e., S   is a  )1(

approximation with an expansion factor  )1(  . 
In order to include include all recovered data, a 

possible way is to select the radius  r   as the maxima 
margin,  

w
r 2

   (5) 

 How to choose the user-defined  r   is a trade-off 
problem. If  r   is too small, there will be many groups 
at the end, their centers will be applied for the first-stage 

SVM. The data reduction is not good. Conversely, if  r
is too large, many objects that are not very similar may 
end up in the same cluster, some information will be 
lost. 

In this practice, we use the following equation 
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l
cckrk

minmaxrand1  (6) 

where  l   is the number of the balls,  Vn   is the number 

of the support vector in the first stage,  rand   is a 
random number in  ,1,0    ,maxmax kcc

Vnk 1  ,  kcc minmin  . In order to simplify 
the algorithm, we use the same  r   for all balls 

l
cc

r
Vn

i

2

2
minmax1   (7) 

Now we consider a finite set of elements  
nxxxX ,,, 21   in  p   dimensional Euclidian 

space  pT
ipii Rxxx ,,1  . At first we randomly 

select the ball centers in the data set such that they can 
cover all range of the data. In most cases, there is no 
obvious way to select the optimal number of balls 
(clusters),  .l   An estimate of  l   can be obtained from 
the data using cross-validation, for example, the v-fold 
cross-validation algorithm [4] can automatically 
determine the number of clusters in the data, but this 
procces can be very cost and determining the optimal 
number of custers may involve a conputational cost very 
high. For this algorithm, we firstly guess the number of 
clusters  l   as  %1.0   of the data number  n.   If the 
accuracy is bad, we increase  %05.0   the number of 
clusters. 

MEB clustering is a process to partition the data set into  
l   balls with a minimum radius that include all data. 
Now consider a simple MEB clustering case when the 
number of balls (or clusters) is three, i.e.,  3l  , see 
Figure 2. After randomly selecting three centers, we 
need to check if the three balls with radius  r
determined by (5). If all data has been included in the 
balls, we end the clustering process, and the three balls 
are the three clusters. If not, we enlarge the radius to  

r)1(  , and repeat to check again if all data are 
included into the new balls with new radius. In Figure 2, 
A1, B1 and C1 are not included in the three small balls 
Ball_A, Ball_B and Ball_C. then we enlarge the radius 
to r)1(  , and the new balls in dashed lines have 
already included them. But, A2, B2 and C2 are still 
outside of the new balls, so we need to enlarge  
again, and so on, until all data in  X   are inside the 
balls, i.e.,  ii

l
i rcBX )1(,1 .

r

r)1(
* +

+

+
+

o

o
o o

o

*

*

*

*

C1
o

o

* Ball_C

Ball_B

Ball_A

A1

B1

B2

A2 C2

Figure 2. MEB clustering when the number of clusters 
is three. 

The MEB clustering algorithm of sectioning  l
balls is as follows: 

Step 1: Use the random sampling method (6) to 
generate l  ball centers lccC ,,1 , select the 

ball radius r  as (5), and set .0
Step 2: For point ,ix  calculate its distance to each 

ball center

nilkcxx kiik ,,1,,,,1,)( 2

The minimum distance is ,)(min)( ikki xx
suppose the minimum value occurs at center .mc

If ,)( rxi  then put point ix  into the ball 

),( rcB m . Goto Step 3. 

If ,)( rxi  then we increase the radius to 

,)1( r  where ,r  is the 
increasing step. Repeat increasing  until 

.)1()( rxi  Then put point ix  into the 

ball ))1(,( rcB m . Set rr )1(  and 
goto Step 3.

Step 3: Set ,1ii
if ,ni   then goto Step 4; 
otherwise, goto Step 2.

Step 4: Complete the clustering and output the 
obtained clusters .,,1,)1(, lkrcB k

3.3. Random selection clustering 

Is impossible to obtain a perfect uniform random 
number generator. Fortunately, the restriction on the 
randomness of selected data for our first stage SVM 
classification is not very strict, since we have an 
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additional step (de-clustering) to compensate the 
information lost of this step. 

We propose a new random selection algorithm to 
select training data for the first stage SVM. Assume that  

YX ,  be the training patterns set, where  

},...,,{ 21 nxxxX   is the input data set,  ix   can be 
represented by a vector of  p   dimension, i.e.,  

T
ipii xxx 1  , },...,,{ 21 nyyyY   is the label 

set, label  1,1iy  . Our objective is to select a 

sample set  ),,,( 21 lcccC   from  X   . Note that  

l   has a similar meaning as number of cluster centers in 
MEB clustering, it needs to be predefined and suitable 
to be training data size for normal SVM algorithms. 

Firstly, we divide the input data  X   into two 
groups according to their label  Y  . Suppose the 
number of positive labeled data is  q   and the number 
of negative labeled data is  m  , where  mqn  , we 
define the positive and negative labeled input data in 
array form as  X   and  X  , and their corresponding 

label  Y   and  Y   respectively. i.e.,  

1,,1,,1
1,,1,,1

,,1
,,1

myyY
qyyY
mxxX
qxxX

Thus, the original input data set is the union of  X
and X  , i.e.,  XXX  . 

Secondly, we select data by sampling the subsets  
X   and  X   independently. Here we use swapping 

method during selection process, see Figure 3. The 
selection is done in the following way: the first sample 
data 1c   is chosen from  X   (or  X  ) uniformly 
and randomly, then it is exchanged with the last data  

)(qx   (or )(mx  ) ,   i.e.,  )(,1 qxcSwap   (or  

)(,1 mxcSwap  ). The second sample  2c   is 
selected from the remaining data  

)}1(,),1({ qxx  , then it is exchanged with the 

second last data  )1(qx   (or  )1(mx  ), ,   i.e.,  

)1(,2 qxcSwap   (or  )1(,2 mxcSwap  ), 

and so on, until the required number of data for  X
(or  X  ) is selected. Generally, we may select  2/l
samples from each labeled original data sets, i.e.,  2/l
samples from  X   and  2/l   samples from  X   if 
the labels are distributed evenly. If not, we may 
predefine a proportion on the samples for each label 
according to their distribution on original data or 
experience.  

Original data

First sample

First swapping

Second sampling

Second swapping

Figure 3. Random selection clustering 

This swapping method can be also regarded as 
generating the first  l   entries in a random permutation. 
Above random selection can be realized by the 
following algorithm. 

For  ni :   to  1ln   Do 
  Generate a uniform  ]1,0[   random variate  .X
   iXs
  Swap ][ ],[ ixsx
Return  ][,],1[ nxlnx

4. Two-stage SVM classifier 

In our approach, the classification task is divided into 
two stages. The first stage SVM classification obtains 
an approximated hyperplane, then the data near by the 
hyperplane of the first stage SVM will be de-clustered, 
and be used as training data for the second stage SVM, 
so that a more precise classification can be obtained. 
Our classification can be summarized as 4 steps which 
are shown in Figure 1. The following subsections will 
give a detailed explanation on each step. 
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4.1. Lists of items 

After clustering, the obtained clusters can be 
classified into three types: 

clusters with only positive labeled data, denoted by  
 , i.e.,  }1|{ yi  ; 

clusters with only negative labeled data, denoted by  
 , i.e.,  }1|{ yi  ; 

clusters with both positive and negative labeled 
data (or mix-labeled), denoted by  m  , i.e.,  

}.1|{ yim

Figure 3 (a) illustrates the clusters after MEB, where 
the clusters with only red points are positive labeled ( 

 ), the clusters with green points are negative 
labeled (  ), and clusters A and B are mix-labeled ( 

m  ). We select not only the centers of the clusters but 
also all the data of mix-labeled clusters as training data 
in the first SVM classification stage. If we denote the 
set of the centers of the clusters in    and    by  
C   and  C   respectively, i.e.,  

centers labeled negative }1|{
 centers labeled positive }1|{

yCC
yCC

i

i

 then the selected data set which will be used in the 
first stage SVM classification is the union of  C  ,  
C   and  m  , i.e.,  mCC  . In Figure 4 

(b), the red centers belong to  C  , and the green 
centers belong to  C  . It is clear that the data in Figure 
4 (b) are all cluster centers except the data in mix-
labeled clusters A and B. Figure 5 (a) and (b) show the 
similar results of random selection. Note that the 
training data set via random selection is composed of 
only selected data without center and mix-labeled 
cluster identification process. 

In fact, data selection in our two-stage classification 
can be based on any clustering result regardless of 
clustering algorithm. However, we only use MEB and 
random selection. 

.

a) Data selection b) 1st stage SVM

d) 2nd stage SVMc) De-clustering

B

A

Figure 4. Two-stage classification via MEB 
clustering 

a) Data selection
b) 1st stage SVM

c) De-clustering d) 2nd stage SVM

Figure 5. Two-stage classification via random selection 

4.2. The first stage SVM classification

Let  ),( YX   be the training patterns set,  

pT
ipiii

nn

Rxxxy
yyYxxX

,,1
},,{},,,{

,1

11

 The training task of SVM classification is to find 
the optimal hyperplane from the input  X   and the 
output  Y  , which maximize the margin between the 
classes. i.e., training SVM yields to find an optimal 
hyperplane or to solve the following quadratic 
programming problem (primal problem), 

kk
T

k

k

n

k

T
bw

bxwy

cwwwJ

1:subject

min
1

2
1

,  (8) 

 where  k   is slack variables to tolerate mis-

classifications  ,0k    ,1 nk    c 0  , kw   is 

the distance from  kx   to the hyperplane  

0bxw k
T  ,  kx   is a nonlinear function. 

The kernel which satisfies the Mercer condition [10] is  
., i

T
kik xxxxK   (8) is equivalent to the 
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following quadratic programming problem which is a 
dual problem with the Lagrangian multipliers  ,0k

cy

xxKyyJ

kkk

n

k

k

n

k
jkjkjk

n

jk

0,0:subject

,max

1

11,
2
1  (9) 

 Many solutions of (9) are zero, i.e., 0k  , so 
the solution vector is sparse, the sum is taken only over 
the non-zero  .k   The  ix   which corresponds to 

nonzero  i   is called a support vector. Let  V   be the 
index set of support vectors, then the optimal 
hyperplane is 

0, bxxKy jkkk
Vk

  (10) 

 The resulting classifier is  

bxxKysignxy kkk
Vk

,)(

 where  b   is determined by Kuhn-Tucker 
conditions. 

Sequential minimal optimization (SMO) breaks the 
large QP problem into a series of smallest possible QP 
problems [27]. These small QP problems can be solved 
analytically, which avoids using a time-consuming 
numerical QP optimization as an inner loop. The 
memory required by SMO is linear in the training set 
size, which allows SMO to handle very large training 

sets [17]. A requirement in (9) is  ,0
1

ii

l

i
y   it is 

enforced throughout the iterations and implies that the 
smallest number of multipliers can be optimized at each 
step is two. At each step SMO chooses two elements  

i   and  j   to jointly optimize, it finds the optimal 
values for these two parameters while all others are 
fixed. The choice of the two points is determined by a 
heuristic algorithm, the optimization of the two 
multipliers is performed analytically. Experimentally 
the performance of SMO is very good, despite needing 
more iterations to converge. Each iteration uses few 
operations such that the algorithm exhibits an overall 
speedup. Besides convergence time, SMO has other 
important features, such as, it does not need to store the 
kernel matrix in memory, and it is fairly easy to 
implement [27]. 

In the first stage classification, we use SVM with 
SMO algorithm to get the decision hyperplane  

0, 1,1
1

bxxKy kkk
Vk

 with training data set  mCC   obtained 

in section data selection,  V1   is the support vector set. 
Figure 4 (b) and Figure 5 (b) show the results of the first 
stage SVM classification via MEB and random 
selection respectively. 

4.3. De-clustering

Note that, the original data set is reduced 
significantly after data selection, and the training data 
set in the first stage SVM classification is only a small 
percentage of the original data. This may affect the 
classification precision, i.e., the obtained decision 
hyperplane cannot be precise enough. However, at least 
it gives us a reference on selecting training data for the 
second stage SVM. On the other hand, we like to make 
a classification using as many useful data as possible. 
But, some useful data has not been selected during the 
data selection stage. So, a natural idea is to recover 
those data which are near to the support vectors, and use 
the recovered data to train the second stage SVM. 

By the sparse property of SVM, the data which are 
not support vectors do not contribute to the optimal 
hyperplane. The input data which are far away from the 
decision hyperplane can be eliminated, meanwhile the 
data sets which are possibly support vectors should be 
used. Therefore, we propose to recover the data into 
training data set by including the data in the clusters 
whose centers are support vectors of the first stage 
SVM, we call this process de-clustering. Thus, more 
original data near the hyperplane can be found through 
the de-clustering. Figure 4 (c) illustrates the de-
clustering process via MEB and random selection. 

Note that the data selected by random selection 
don´t belong to clusters, so we need to give a technique 
to make clusters for them. Here we propose to draw 
circles with certain radius by taking select data as 
centers, see Figure f5 (c). It is clear that how many data 
will be recovered depends on the radius selection and an 
extreme case is that all original data are recovered if the 
radius is large enough. We intend to recover a data set 
size near to the training data set size suitable for the 
SVM algorithm we are using. In this paper, we use the 
maxima margin of the first-stage SVM as the radius  
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w
r 2

 where  ,
1

kkk
Vk

xyw    k   is the solution of 

(9). The recovered data set is  ,, rcA ici
  where  

1Vi   and  1V   is the support vector set of the first 
stage classification. 

The de-clustering process not only overcomes the 
drawback that only small part of the original data near 
the support vectors are trained, but also helps to 
improve the accuracy since data near by the hyperplane 
are used efficiently in the second stage SVM. 

4.4. The second stage SVM classification  

Taking the recovered data as new training data set, 
we use again SVM classification with SMO algorithm 
to get the final decision hyperplane  

0, 2,2
2

bxxKy kkk
Vk

  (12) 

 where  2V   is the index set of the support vectors in 
the second stage classification. Generally, the 
hyperplane (10) is close to the hyperplane (12). 

In the second stage SVM, the training data set is  

mici
 , where  ici

  consists of the 
data of the clusters whose centers are support vectors of 
the first stage classification,  ,1Vi   and  m   is the 
data of mix-labeled clusters. For random selection 
clustering case,  m   is empty. 

Figure 4 (d) and Figure 5 (d) illustrate the second 
stage classification results via MEB and random 
selection respectively. One can observe that the two 
hyperplanes in Figure 4 (d) and Figure 4 (b) (also Figure 
5 (d) and Figure 5 (b)) are different but similar. 

5. Performance analysis 

In this Section, we show the space and time 
complexities. Is clear that without a decomposition 
method, is almost impossible for normal SVM to obtain 
the optimal hyperplane when the training data size  n
is huge. Is very difficult to analyze the complexity of 
SVM algorithm precisely. This operation involves 
multiplication of matrices of size  n  , which has 
complexity  )( 3.2nO   and  )( 83.2nO   at worst. In the 
following, we assume that a QP implementation of each 
stage of SVM takes  )( 3nO   time and  )( 2nO   space 
for  n   input data. 

5.1. Memory space  

In the clustering stage, the input data of  p
dimensions are loaded into the memory. The data type is 
float, so the data size is  4   bytes. If we use normal 
SVM classification, the memory size for the input data 

should be  24 pn   at worst ,   on the other hand the 

clustering data is  pn4  , Is clear that, in modern 
SVM implementations, it is not needed that the entire 

kernel matrix be put into the memory simultaneously .
In the first stage SVM classification, the training 

data space is  ,4 2pml   where  l   is the number 
of the clusters,  m   is the number of the elements in the 

mixed clusters .
In the second stage SVM classification, the training 

data size is  ,4 2
1 pmni

l
i   where  in   is the 

number of the elements in the clusters whose centers are 
support vectors. 

The total storage space of our two stage 
classification via FCM and MEB clustering is  

.44 2
2

1

2 mlmnppn i

l

i

 (13) 

 which consists of the storage of the clustering 
algorithm and both stages SVM. 

The total storage space of our approach via random 
selection clustering (where  0m  ) is  

2
2

1

244 lnppn i

l

i

 (14) 

When n   is large (large data sets),  ,in    m   and  
,nl   the memory spaces by (13) and (14) of our 

approach is much smaller than  24 pn   which is 
needed by a normal SVM classification 

5.2. Algorithm complexity  

The complexity of this algorithm can be 
approximated as follows. The complexity of the 
clustering of FCM is  )(ncpO   where  n   is the 
number of input data,  c   is the number of clusters and  
p   is the dimension of the data points. The 

approximate complexity of the two SVM training is  

.3
1

3 mnOmlO i
l
i   The total complexity 

of two stage classification via FCM is  
3

1

3)( mnOmlOncpO i

l

i

 (15) 
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 where  l   is the total number of cluster,  in   is the 
number of the elements in the  i  th clusters whose 

centers are support vectors,  m   is the number of the 
elements in the mixed labeled clusters. The choice of  l
is very important to obtain fast convergence. When  n
is large, the cost for each iteration will be high, and a 
smaller  l   needs more iterations, hence, and will 
converge more slowly. 

The complexity of the MEB clustering is  )( 1O   as 
proved. The total complexity of two stage classification 
via MEB is 

3

1

32 )( mnOmlOnpO i

l

i

 (16) 

Obviously, (25) is much smaller than the complexity 
of a normal SVM  )( 3nO .

5.3. Training time 

The training time of the approach proposed in this 
paper includes two parts: clustering algorithm and two 
SVMs. The training time of FCM is 

ffnf cnncCT
2

12

 where  fc   is the cost of the evaluating the fuzzy 
distance,  n   is the number of the training data. The 
training time of MEB is 

ee cnlT
 where    is the times of  1

approximation,  l   is number of clusters,  ce   is the 
cost of the evaluating the Euclidian distance. 

The training time of SVM can be calculated easily 
as follows. We assume that the major computational 
cost comes from multiplication operators (SMO) 
without considering the cost of the other operators such 
as memory access. The growing rate of the probability 
of support vectors is assumed to be constant. 

Let )(tnm   be the number of non-support vector 
points at time  t  . The probability of the number of 
support vectors at time  t   is  )(tF   which satisfies 

)(1)(
)( )(

tFmltn
tF

m

ml
tnml m

 where  l   is the number of the clusters centers,  m
is the number of the elements in the mixed labeled 
clusters. The growth rate of the number of support 
vectors (or decreasing rate of the number of non-support 
vectors) is  

)(1
)(

)(
1)()(

tFml
tF

tndt
tndth

m

m

 Since the growth rate is constant  ,)(th   the 
solution of the following ODE 

mltFmltF )()(
 with  0)0(F   is  

tmletF 1)(
 The support vector number of the first stage SVM 

at time  t   is ),(1 tnsv   it satisfies 

)1()()(1
tml

sv emltFmltn  (17) 

 Here  .0   It is monotonically increasing. The 
model (17) can be regarded as a growing model by the 
reliability theory [13]. 

The support vector number of the second stage SVM 
at time  t   is ),(2 tnsv   it satisfies 

0),1()( 1
12

tml
sv emltn

 where mnl i

l

i 1
1

We define the final support vector number in each 
cluster in the first stage SVM is  ,ih    .1 li   From 

(17) we know  ),1( tml
i emlh   so

li
hml

ml
ml

t
i

i 1ln1

 We define  1c   as the cost of each multiplication 
operation for SMO. For each interactive step, the main 
cost is  .4 1cml   The cost of the optimization in the 
first stage classification is 
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 In the second stage classification, it is  

1
ln4

1
4

1
4

1
111

)2(

1

1

1

1

1

1
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cmlT

c
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i

i

Another cost of computing is the calculation of 
kernels. We define  2c   be the cost of evaluating each 

element of  K.   In the first stage is 

21
)2(

ker2
)1(

ker , cmlTcmlT
The total time for the three approaches (fuzzy C-

means (FCM), minimum enclosing ball (MEB) and 
random selection (RAN)) is  

21
4

13

21
4

1

2

21
4

1

2
1

1

22 :RAN
22

 :MEB
22

 :FCM

ccmllT
ccmll

cnlT
ccmll

cT

e

f
nn

 the training time of a classic SVM is  

21
41 ccnT

 For a large data set,  ,1 fcc    ,1 ecc    
,21 mlln   so,  ,iTT    3,2,1i  , the 

training time of SVM is much longer than that of our 
approach. 

6. Experimental results 

 We use three examples to compare our algorithms 
with some other SVM classification methods. In order 
to clarify our basic idea, we consider a very simple case 
of classification and clustering in Example 1, and 
compare our two-stage SVM via MEB clustering 
(abbreviated as MEB two-stage) with two classic SVMs, 
SMO [27] and simple SVM [10]. Example 2 is a 
benchmark data set which was proposed in IJCNN 2001 
[29][6]. With this data set, we compare our two-stage 
SVM via random selection (abbreviated as RS two-
stage) with LIBSVM [6], simple SVM and our two-
stage SVM via MEB clustering. 

Example 3 is a RNA sequence data set. SVM has 
been proposed to detect RNA sequences [24] [36]. 
However, long training time is needed generally, so, it is 
impossible to repeat a normal SVM classification on the 
updated data set in an acceptable time when new data 

are included into the data set frequently or continuously. 
In Example 3, our two-stage SVM classifier is used to 
show how to deal with the training speed problem 
without loss of accuracy when data set is very large. 
Additionally, comparison are made between our two-
stage SVM via MEB clustering and three classic SVMs, 
LIBSVM, SMO and simple SVM. 

 Example 1. We generate a set of data randomly in 
the range of  40,0  . The data set has two dimensions  

2,1, , iii xxX  . The output is decided as follows:  

otherwise1
 if1 thbWX

y i
i  (18) 

 where  ,3.2,2.1 TW ,10b    .95th   In 
this way, the data set is linearly separable. We generate  

000,500   data randomly whose range and radius are 
the same as in [39]. The RBF kernel is chosen as 

22
exp,

ck

T

r
zxzxzxf  (19) 

 we choose  5/rrck  . Experiments were done 
using MEB two-stage (SMO+MEB), Comparisons were 
made with SMO [27] and simple SVM [10]. Figure 6 
shows the results on "running time" vs.  "training data 
size". We can see that, SMO has less training time and 
higher accuracy than our approach for small data set 
(less than  410   data). But, for large data set (more than  
104   data), the training time is dramatically increased 
in other SVMs while ours only increases a little. Figure 
7 shows the results on testing accuracy vs. training data 
size. Although the classification accuracy cannot be 
improved significantly when data size is very large, it 
does not get worse, and the testing accuracy is still 
acceptable. 

10
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6100
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Simple SVM
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SMO + MEB

Size of training data (log) 
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Figure 6. Example 1: running time vs training data 
size 
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Figure 7. Example 1: testing accuracy vs training 
data size 

Example 2.(IJCNN 2001) The data set is available 
at [29] and [6]. There are  49990   training data points 
and 91701  testing data points, each record has  22
attributes. The sizes of the training data we used are  

000,1  , ,000,5    500,12  ,  000,25  ,  500,37
and 990,49  . 

The following notations are used in the following 
tables. 

"#" is the data size; 
"t" is the training time of the whole classification 

which includes the time of clustering, the first stage 
SVM training, de-clustering and the second stage SVM 
training; 

"Acc" is the accuracy; 

" l  " is the number of clusters used in the 
experiment; 

"#MC" is the number of data in all mixed labeled 
clusters; 

"TrD1" is the training data size of the first stage 
SVM classification; 

"SV1" is the number of support vectors obtained in 
the first stage SVM; 

"TrD2" is the training data size of the second stage 
SVM classification; 

"SV2" is the number of support vectors obtained in 
the second stage SVM. 

Table 1. Two-stage SVM classification results on 
IJCNN 2001 data set 

IJCNN data set

MEB two-stage

#10
3

t Acc #MC SV1 TrD2 SV2

1 22 93 39 125 199 51

5 31 95 84 128 467 115

12 38 97 105 105 733 160

25 59 97 147 143 1342 228

37 196 97 179 254 1399 267

50 462 98 201 748 1728 295

IJCNN data set

RS two-stage

#10
3

t Acc l SV1 TrD2 SV2

1 4.53 92.8 350 86 473 175

5 8.73 95.1 400 109 541 180

12 13.31 97.3 450 127 673 193

25 25.98 97.4 500 118 712 287

37 45.30 97.7 1000 122 1693 358

50 78.08 98.0 2000 185 2370 430

Table 1. Two-stage SVM classification results on 
IJCNN 2001 data set 

Table 1 shows our experiment results on different 
data size with MEB two-stage and RS two-stage. For 
example, in the experiment on  49990   data points we 
sectioned it into  2000   clusters using MEB clustering 
and random selection. In the first stage classification of 
MEB two-stage, we got  2200   training data after data 
selection where cluster centers and data in mixed 
labeled clusters were selected, and  748   support 
vectors were obtained. Following the de-clustering 
technique,  1728   data were recovered as training data 
for the second stage SVM, which included the cluster 
centers which are support vectors and clusters with 
mixed labels. In the second stage SVM,  295   support 
vectors were obtained. From Table 1, we can also see 
that MEB two-stage has a little better accuracy than RS 
two-stage, while its training time is longer than that of 
RS two-stage. 
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IJCNN data set

MEB two-stage RS two-stage SMO

# t Acc t Acc t Acc

1000 22.34 93.1 4.53 92.8 1.672 96.1

5000 31.28 95.7 8.73 95.1 89.87 97.2

12500 38.41 97.5 13.31 97.3 — —

25000 59.18 97.5 25.98 97.4 — —

37500 196.6 97.7 45.30 97.7 — —

49990 462.4 98.2 78.08 98.0 — —

IJCNN data set

Simple SVM LIBSVM

t Acc t Acc

2.1 94.3 0.5 93.1

4.6 96.3 7.5 96.3

182.6 96.1 47.6 98.2

3823 97.2 177.8 98.6

10872 97.7 394.1 98.8

20491 98.2 730.7 98.8

Table 2. Training time and accuracy of different 
algorithms on IJCNN 2001 data set 

Table 2 shows the comparison results on training 
time and accuracy between our two-stage classification 
and some other SVM algorithms including SMO, simple 
SVM and LIBSVM. For example, to classify  1000
data, LIBSVM is the fastest, and SMO has the best 
accuracy, our two approaches are not better than them, 
although the time and accuracy are still acceptable. 
However, to classify  49990   data, Simple SVM and 
SMO have no better accuracy than the others, but their 
training time is tremendous longer. Comparing to our 
two approaches, LIBSVM takes almost double training 
time of MEB two-stage, and almost  10   times of the 
time of RS two-stage, although it has the same accuracy 
as ours. This experiment implies that our approach has 
great advantage on large data sets since it can reach the 
same accuracy as the other algorithm can in a very short 
training time. 

Example 3 (RNA Data set) The RNA data set is 
available at http://www.pubmedcentral. 
nih.gov/articlerender.fcgi?artid=1570369#top from 
Supplementary Material (additional file 7). The data set 
consists of 23605 data points, each record has 8 
attributes with continuous values between 0 to 1. The 
data set contains  3919   ncRNAs and  19686
negative sequences. We used sizes  500,2  , 000,10
and 605,23   in our experiments.

Experiments were done using MEB two-stage, RS 
two-stage, SMO, LIBSVM and simple SVM. Table 3 
shows our experiment results on different data size with 
MEB two-stage and RS two-stage. Table 4 shows the 
comparisons between our approach and other 
algorithms. Similarly to the conclusion of Example 2, 
our approach can reach the same accuracy as the others 
within a much shorter training time, while the data size 
is large. 

RNA sequence data set

MEB two-stage

# t Acc l SV1 RD SV2

23605 174.5 88.4 1500 278 1307 416

RNA sequence data set

RS two-stage

# t Acc l SV1 RD SV2

23605 65.7 88.3 1500 257 1275 381

Table 3. Two-stage SVM classification results on RNA 
sequence data set

RNA sequence data set

MEB two-stage RS two-stage

# t Acc t Acc

2500 15.56 87.3 11.21 87.1

10000 69.26 88.2 30.22 87.8

23605 174.5 88.4 65.7 88.3

RNA sequence data set

LIBSVM SMO Simple SVM

t Acc t Acc t Acc

3.06 87.4 4.20 87.7 561.3 88.1

48.38 88.2 1122.5 89.6 —- —-

298.3 88.6 —- —- —- —-

Table 4. Training time and accuracy comparison 
between different algorithms on RNA sequence data set.

7. Conclusions and discussions 

In this paper, we have presented a classification method 
which have applied reduction techniques in order to 
speed up the training time of SVM. In order to solve the 
trade-off problem between SVM classification accuracy 
and training time for large data sets, a two-stage SVM 
classification approach is proposed. To reduce SVM 
training time for large data sets, two fast clustering 
methods are introduced to select training data. From our 
experiments, we conclude our approach as following: 

1. Our two stage classification approach is convenient for 
large data sets. But not good for small data sets since 
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data reduction may affect a lot on the accuracy when 
the data set size is small. 

2. Generally our approach can have almost the same 
accuracy as other SVM classifiers when data set is 
large, while its training time is super short. 

3. .Random selection is faster than MEB and other 
clustering based data selection because it does not 
partition data, but it restricts that the original data set 
should be relatively uniform. 

4. Two stage SVM classifier via MEB clustering may be 
the best method for general use comparing with other 
SVMs including two stage SVM via random 
selection.

The accuracy decrease is caused by the lost of support 
vectors, several possible solutions may avoid it. 

1. Increasing cluster number may increase the training 
data for the first stage SVM classification, so more 
support vectors may be obtained. 

2. The relations between the clustering and the support 
vectors play an important role for classification 
accuracy. It may be solved from the point of data 
density. 

3. .Since clustering is unsupervised, some useful 
information (support vectors) of original data set may 
be lost. New clustering approaches which use label 
information may improve the accuracy. For example, 
the random selection of this paper is carried on in the 
two classes (labels ±1) independently. This kind of 
method may be extended furthermore to more general 
semi-supervied clustering. 
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