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Abstract

The existing stability analysis of particle swarm optimization (PSO) algorithm is chiefly concluded by
the assumption of constant transfer matrix or time-varying random transfer matrix. Firstly, one coun-
terexample is provided to show that the existing convergence analysis is not possibly valid for PSO sys-
tem involving random variables. Secondly, the joint spectral radius, mainly calculated by the maximum
eigenvalue of the product of all asymmetric random transfer matrices, is introduced to analyze and dis-
cuss convergence condition and convergence rate from numerical viewpoint with the aid of Monte Carlo
method. Numerical results show that there is one major discrepancy between some preview convergence
results and our corresponding results, helping us to deeply understand the tradeoff between exploration
ability and exploitation ability as well as providing certain guideline for parameter selection.

Keywords: Particle swarm optimization, Convergence analysis, The joint spectral radius, Monte Carlo

method

1. Introduction

Particle swarm optimization (PSO), firstly devel-
oped by Kennedy and Eberhart in 1995 [1][2], is
essentially one typical stochastic global optimiza-
tion method. Its original idea is mainly inspired by
searching for the food by swarm animals, such as
birds flocking, fish schooling, to name a few. In
the original or improved PSO algorithm, two con-
cepts including the velocity and the position are in-
troduced to update each particle in the whole evo-
lutionary process. By updating the velocity and the
position of each particle in a simple way, its com-
putational complexity, as well as the computational
time, is relatively low compared with other evolu-
tionary methods, leading to the concise and effi-

cient code of PSO algorithm. Therefore, it has been
widely and successfully applied to many practical
systems in the realistic world and its main task is to
search for optimal combinatorial parameters to min-
imize or maximize the related objective function of
the scientific and engineering problems.

Roughly speaking, the most existing work on
PSO algorithm may be mainly classified into the
following categories: the essential and fundamen-
tal theory, multi-objective optimization, locating and
tracking the target in the uncertain and dynamic en-
vironment, and its practical applications, etc. Firstly,
it is of great significance to investigate the conver-
gence condition [3], the trajectory of single parti-
cle [4], the topology of all particles [5], parame-
ter selection [6], and the improved PSO algorithm

*To whom all correspondences should be addressed. Email: {DrJLBit,mathmhb}@ 163.com

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1022



Jun Liu, Hongbin Ma, Xuemei Ren, Tianyun Shi, Ping Li

[71[8]1[9]1[10][11][12], etc. And the corresponding
results are helpful for understanding its essence and
improving the efficiency of finding the suboptimal
or global optimum. Secondly, to optimize multi-
objective functions in parallel, PSO algorithm is
mainly to search for the Pareto dominance and the
Pareto-optimal front [13] in the solution space by
maintaining the diversity of the swarm. Thirdly, the
standard PSO algorithm is widely utilized in the un-
certain and dynamical environment [14][15][16][17]
to locate and track the targets [18][19][20][21][22].
Last but not least, it also has been successfully ap-
plied in the fields of electronic power system [23],
neural network [24][25], electromagnetic [26], PID
controller [27] and game theory [28], etc.

As mentioned above, convergence analysis of
PSO algorithm plays a significant role on parame-
ter selection, the trajectory of each particle and the
tradeoff between exploration ability and exploita-
tion ability, etc. The existing theoretical analysis
is mainly conducted for the simplified PSO algo-
rithm, regarding random variables as constant pa-
rameters, however, the standard PSO algorithm in
fact involves random variables. Ozcan and Mo-
han [29][30] discuss the trajectory of one dimen-
sional particle and multiple dimensional particles in
the absence of random variables. Trelea [31] gives
the convergence analysis from the perspective of
spectral radius, and analyzes the convergence con-
dition and convergence speed in the presence of the
deterministic transfer matrix, helping us to under-
stand the mechanism of PSO algorithm at one step.
Clerc and Kennedy [3] also discuss the stability of
the simplified PSO algorithm by a large number of
complicated equations, and introduce the constric-
tion factor method as well as the important param-
eters. Van den Bergh and Engelbrecht [4] present
the fully detailed convergence analysis on the sim-
plified PSO algorithm and discuss the trajectory of
single particle under different parameters. Kadirka-
manathan [32] regards PSO system as the nonlin-
ear feedback system and discusses the stability of
PSO algorithm including random variables by us-
ing Lyapunov function from the viewpoint of state
space. Considering the expectation and variance of
the position, Jiang and Luo [33] present the conver-

gence condition and parameter selection under the
fixed previous best positions of each particle and all
particles. Poli [34] and Milan [35] consider the sta-
bility of the standard PSO algorithm under random
variables and conclude convergence conditions from
the perspective of mean and variance. Luis Fernan-
dez and Esperanza Garcia [36] consider PSO algo-
rithm as the stochastic damped mass-spring system,
and analyze first and second order trajectories and
the role of crucial parameters. More importantly, it
also discusses the corresponding spectral radius, the
mean, the covariance and the derivatives of those tra-
jectories.

According to the aforementioned convergence
analysis, several main contributions of this paper are
highlighted as follows:

1. We highlight that the existing convergence
conditions of the simplified PSO algorithm
are not valid for the standard PSO algorithm,
furthermore, one constructed counterexam-
ple demonstrates that the parameters, which
strictly subject to the previous convergence
conditions, finally give rise to divergence be-
havior of all particles.

2. The joint spectral radius, which is firstly in-
troduced and defined in this paper to dis-
cuss the stability of the standard PSO algo-
rithm, measures convergence rate of all par-
ticles and describes the mathematical trade-
off between exploration ability and exploita-
tion ability. More importantly, it roughly sub-
jects to normal distribution under large inde-
pendent runs according to the corresponding
numerical results.

3. Because of asymmetric transfer matrix involv-
ing random variables in PSO system, it is very
challenging to calculate the final product ma-
trix and the joint spectral radius, which de-
termines the stability of the standard PSO al-
gorithm and the convergence rate. To han-
dle with this problem, Monte Carlo method is
utilized to analyze convergence condition and
discuss parameter selection.

The rest of this paper is organized as follows.
Section 2 provides a brief description of the standard
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PSO algorithm including the inertia weight method
and the constriction factor method. To demon-
strate that the existing convergence conditions are
not valid for the standard PSO algorithm, conver-
gence analysis of the simplified PSO algorithm, to-
gether with one counterexample, is briefly given in
Section 3. In order to discuss convergence condi-
tions and measure convergence rate, the joint spec-
tral radius is firstly defined and calculated in Section
4. As for two typical PSO methods, the mean and
variance spectral radii under different parameters are
calculated with the aid of Monte Carlo method in
Section 5. To demonstrate the discrepancy between
the existing convergence rates and those of our re-
sults, the mean spectral radius is analyzed and calcu-
lated under several benchmark functions in Section
6. Section 7 summarizes several interesting remarks
and concludes the future work.

2. The Random Particle Swarm Optimization

To clearly illustrate the random PSO algorithm, it is
firstly necessary to introduce several notations and
definitions in the standard PSO algorithm. In an n-
dimensional solution space €, let the position and
the velocity of ith particle be X; = (x;1, X2, , Xin)
and V; = (vi1,vi2, -+ ,vin). Let P; = (pi1, pi2,*+ » Pin)
and G = (g1,82,- - ,&n) be the personal best previous
position of ith particle and all particles, respectively.
Cognitive factor c¢; and social factor c;, generally
setting to 2.0, are non-negative constant real param-
eters. Notice that two random uniform distributed
numbers including r; and r; are generated for the
jth dimension of each particle at each step, there-
fore, the system of random PSO algorithm is the sec-
ond order time-varying dynamical system involving
random variables.

Several main steps of the standard PSO algo-
rithm [37][38] can be briefly summarized as:

Step1: Initialize the parameters including the
particle’s position X, the particle’s velocity V, the
number of all particles &, the dimension of solution
space D, the range of inertia weight and acceleration
coefficients, etc.

Step2: Calculate the fitness F(X;(¢)) and modify
the best previous position P;(f+ 1) of each particle

A new joint spectral radius analysis of random PSO algorithm

by

Xi(1) if F(Xi(1) < F(Pi(1))

P if FXi(0) > FPin)

Pi(t+1)= {
where ¢ denotes the number of current generation.
Step 3: Update the previous best position G of all
particles by

G(r+1) = argmin{F (P (1)), F(P2(1)),-- - , F(Pn(1))}.
(2)
Step4: Updating the velocity and the position of
each particle, which can reflect the idea of searching
for the food by the birds or the fish, is the core model
of the standard PSO algorithm, typically including
the inertia weight method and the constriction factor
method.
Firstly, the velocity and the position of each par-
ticle in the inertia weight method are described by

Vii(t+1) = wV;j(t) + c1r1 j(Pi(1) — X;(2)+
c2r2j(G(1) — X;5(0)
Xij(t+1)=Xij(l‘)+Vij(l+1) 4)

where the inertia weight w denotes the momentum
coeflicient of previous velocity. Large w in the early
stage encourages the powerful exploration ability to
locate the adjacent region of suboptimal or global
optimum, while small w in the latter stage promotes
the powerful exploitation ability to precisely locate
the optimum. In addition, i and j denote the index
of the particle and the dimension in this particle, re-
spectively. Moreover, the first part in (3) represents
the momentum of previous velocity, while the sec-
ond part so-called cognitive component represents
the personal thinking of each particle, and the third
part so-called social component represents the coop-
eration among all particles.

Secondly, the velocity and the position of each
particle in the constriction factor method are defined
as

Vi@ + 1) = x(Vij(®) + c1r1 j(Pi(1) — X;j()+
c2r2j(G(1) = Xi(0)))
Xij(l‘+1):Xij(t)+Vij(l+1) (6)
where the constriction factor y is generally set to

2 .
—= withg=c +c3.
2-p-V¢2-4¢l
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Actually, the inertia weight method and the con-
striction factor method have been considered as one
mathematical model, only having the different iner-
tia weight and acceleration coefficients.

Step5: Go to Step?2 until the stopping condition
is achieved.

According to core idea of PSO algorithm and its
main steps, the programming code of PSO algorithm
is easy to implement and its computational time is
generally less than that of genetic algorithm. In
the standard PSO algorithm, it is crucial to properly
select the inertia weight w and acceleration coeffi-
cients ¢; and ¢, since those parameters deeply con-
trol and determine behaviors of the particles and the
tradeoff between exploration ability and exploitation
ability, etc.

3. Convergence Analysis and One
Counterexample

The purpose of this section is to introduce a brief de-
scription of the existing convergence analysis in the
presence of the constant transfer matrix and calcu-
late the corresponding spectral radius. In addition,
we also provide one counterexample with respect to
the existing convergence condition. Exactly speak-
ing, those crucial parameters, which strictly yield to
the previous convergence condition, finally lead to
divergence behavior of the particles.

According to main steps of PSO algorithm, con-
vergence analysis is chiefly related to (3) and (4). In
order to simplify those equations, we assume

P1(DP() + ¢ (DG(D)
= 7
(1) ) (7

where ¢1(1) = c1r1j, ¢2(2) = carzj and ¢(1) = ¢1(2) +
$a(0).

According to (7), the equations (3) and (4) can
be simplified as

v(t+ 1) = w(Ov(t) + ¢(1)y(1) (®)

Yt +1) = —w@®Ov(®) + (1 = ¢(0)y(1) ©))

where y(7) is equal to Q(¢) — X(¢) and v(¢) is for short
V() e

Therefore, (8) and (9) from the perspective of the
matrix can be rewritten as

Y(t+1) = M(t)Y(t) (10)
where

[ v+ 1) _| w@® 9@
Ye+D=| o ,M(t)—[ ]

—w(r)  1-¢()
(11

Furthermore, the personal best position P(¢) and
the global best position G(¢) are generally assumed
to be constant parameters. With respect to the sim-
plified PSO algorithm, the time-varying transfer ma-
trix M(¢) can be thought of as the constant trans-
fer matrix M, therefore, the convergence condition
is only determined by the eigenvalues of matrix M.
Essentially, the simplified PSO algorithm mainly ne-
glects random variables in the transfer matrix.

For completeness, the main task of next subsec-
tion is to briefly introduce the previous convergence
analysis result for the simplified PSO algorithm.

3.1. Previous Convergence Analysis of PSO
Algorithm

According to (10), the real and complex eigenvalues
of the constant transfer matrix M are

B l+w-¢—VA
-

_l+w-¢+VA
=

where the discriminant A is equal to (¢ —w — 1) -
4w.

When the parameters including inertia weight
and acceleration coefficients are chosen such that
A >0 and |4 3| < 1, the constant transfer matrix M
has two real eigenvalues whose absolute magnitude
is strictly less than 1, which means that the par-
ticles have convergence behavior or probably con-
verge into one attractor or the suboptimal optimum.
The corresponding conditions can be concluded by

{w<¢+1—2\/$

[
w>§—l.

A (12)

A (13)

(14)

Hence, the area of the parameters including w
and ¢ can be plotted as the area F1 in Fig. 1.
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Figure 1: The previous convergence region of the simplified PSO algorithm, where /W and AC denote inertia

weight w and ¢, respectively.

When the parameters are chosen such that A <0
and |41 2| < 1, matrix M has two complex eigenval-
ues whose absolute magnitude is also strictly less
than 1, and the particles also have the oscillation
convergence behavior. The corresponding condi-
tions can be expressed by

p+1-Q/p<w< 1. (15)

Therefore, in this case, the area of the parameters
including w and ¢ can be also shown as the area F2
in Fig. 1.

According to (14) and (15), the previous conver-
gence conditions of the simplified PSO algorithm
are

w<l1

w>%-1 (16)
¢ >0.

As depicted in Fig. 1, the previous convergence
region of PSO algorithm is also plotted in [4][31],
where the parameters in F1 and F2 can lead to real
and complex eigenvalues subjecting to |4; 2| < 1, re-
spectively. Furthermore, the parameters in F3 can
lead to real eigenvalues satisfying |4;| > 1,|42| < 1
or || < 1,|42] > 1. The areas outside the region
0<w<1,0< ¢ <4 arenotin our consideration since
PSO algorithm does not generally set those parame-
ters outside the rectangle region.

3.2. Previous Spectral Radius Analysis of PSO
Algorithm

Definition 1 Spectral radius of matrix M is defined
as the largest modulus of the eigenvalues including
A1 and A, that is,

p(M) =max{|4| :>x # 0, Mx = Ax} 17)

where p denotes spectral radius of the transfer con-
stant matrix M. In addition, 1 and x denote the
eigenvalue and its eigenvector, respectively.

As for the simplified PSO algorithm, if the pa-
rameters subject to the conditions of 0.5¢ -1 < w <
¢+1—20/p and w < 1, spectral radius p(M) in the
convergence region F1 equals to A;.

If the parameters yield to the conditions of w >
¢+ 1—-2/¢ and w < 1, both eigenvalues are two
conjugate non-real complex numbers. According to
(12) and (13), those spectral radii can be rewritten as

l+w—¢+\4w—(p—w—1)2i

Aip= > (18)
therefore
l+w-—¢) +dw—(p—w-1)?
P =pp = LEZO T 0men D,
(19)
then
1] = 1] =Vw (20)
which implies that
p(M) =\w. (21
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spectral radius

Figure 2: Spectral radius of the simplified PSO algorithm.

As mentioned above, we can obviously conclude
that the spectral radius p(M) equals to A, when the
eigenvalues are real numbers, while the spectral ra-
dius p(M) is equal to vw when A; and A, are com-
plex numbers. From the viewpoint of the graph,
spectral radii in the three dimensional space are plot-
ted in Fig. 2.

According to the previous convergence result,
there is an interesting phenomenon in the case of
convergence rate. Specifically speaking, conver-
gence rate of the particles is generally determined by
inertia weight w and acceleration coefficients ¢ and
¢y in the standard PSO algorithm. However, accord-
ing to (20) and (21), convergence rate of the particles
is only dependent on inertia weight, since spectral
radius of matrix M finally equals to vw under the
condition of A < 0, therefore, the above-mentioned
analysis should be deeply analyzed and discussed in
the next subsections.

3.3. One Counterexample of Previous
Convergence Result

The main task of this subsection is to introduce one
counterexample which demonstrates that the previ-
ous convergence conditions do not coincide with the
standard PSO method according to simulation nu-
merical results. Specifically speaking, those crucial
parameters, yielding to the previous convergence
conditions (16), can give rise to divergence behav-
ior of the particles.

According to convergence conditions of the sim-

plified PSO algorithm, the parameters, which can be
selected to w=0.91, ¢;=1.9 and ¢,=1.9, make the
particles convergent according to (16). However,
those parameters finally give rise to divergence be-
havior in the standard PSO algorithm since the ele-
ments of the accumulated matrix in PSO system, de-
noting the product of all previous random matrices,
become larger and larger in the evolutionary process,
such as Fig. 3.

Remark 1 According to the behaviors of the parti-
cles in this counterexample, we may conclude that
the previous convergence conditions possibly do not
fit for the standard PSO algorithm, whose transfer
matrix is time-varying and consists of random vari-
ables.

4. The Joint Spectral Radius

In order to deeply analyze the essence of PSO al-
gorithm, the joint spectral radius is firstly defined
and introduced to analyze convergence conditions
and measure convergence rate of the standard PSO
algorithm. Since the transfer matrix M(f) is one
time-varying random matrix, convergence condi-
tions, corresponding to its convergence rate, are only
determined by the product of matrices M(¢) (1 < t<
o), therefore, the equation (10) can be further ex-
plicitly rewritten as

Y+1D)=MOM(r-1)---M(1)MO0)Y(0). (22)

Without loss of generality, one dimension of all
particles is merely considered to be analyzed, and
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Result(1,1)

Result(1,2)

8 v Result(2,1)
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The Value of the Standard Particle Swarm Optimization
3,
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0 200 400

. .
600 800 1000

Figure 3: The elements in the accumulated matrix in the whole evolutionary process, where the constant inertia
weight is set to 0.91 and acceleration coefficients are selected to be 1.90. Additionally, Result(i, j) denotes the

(i, j) element in the accumulated matrix.

the convergence condition of each particle should be
concluded as follows

M@OM(—-1)---M(1)M(0) -0 as t— oco. (23)

If the product of (23) approaches to 0, the parti-
cle can converge into the adjacent region of the local
or global optimum. From the perspective of spectral
radius, the equation (23) can be rewritten by

([ w® ¢ H w(t=1)
—w(t) 1=¢@) || —wi-1) 1-¢(-1)
wl)  ¢(1) w(©0)  ¢0)
[ —o(l) 1-g(1) H ~w(0) 1-9(0) ]) —0
(24
ast— oo,

However, it is very hard to calculate the prod-
uct of matrices M(#) (1 < t< o) and its eigenval-
ues from the theoretical viewpoint. Firstly, trans-
fer matrices M(¢) (t > 1) are asymmetric matrices.
Secondly, every transfer matrix M(¢) is composed
of random variables r; and r, subjecting to uniform
distribution. In order to overcome those aforemen-
tioned problem, Monte Carlo method is adopted to
compute two eigenvalues of the product of all trans-
fer matrices involving random matrices.

To measure convergence rate and analyze con-
vergence condition of the standard PSO algorithm,
the joint spectral radius is introduced to conclude

¢p(r=1) ]

some interesting and important results with the aid
of Monte Carlo method.

Definition 2 The joint spectral radius o is defined
as the geometric spectral radius of the product of
the whole random transfer matrices, and it can be
mathematically expressed by

0=pT (MOM@=1)--MM©0))  (25)

where t denotes the number of generations in the
whole search process.

According to the results of N independent times,
the mean spectral radius, which possibly denotes
the convergence rate of the standard PSO system or
the measurement of the tradeoft between exploration
ability and exploitation ability, can be calculated by

1 N
Mean(o) = N ZQ:‘- (26)
i=1

The variance spectral radius, which denotes the
measurement of the uncertainty of the joint spectral
radius, can be also expressed by

1 N
Var() = 5= ) (e~ Mean(@)’.  (27)
i=1

Remark 2 Naturally, the random factor in PSO al-
gorithm plays a great role on convergence analy-
sis and convergence conditions. The previous work
also considers random variables vy and rp, which
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may not reflect the realistic evolutionary process.
For example, the random transfer matrix in [34] is
changed into the constant matrix by expectation op-
erator from the perspective of mean and variance,
calculating and concluding convergence conditions
under random factors. However, as for the standard
PSO algorithm, it firstly needs to compute the prod-
uct of all random transfer matrices, and then calcu-
lates the distribution of their eigenvalues, and finally
gives the mean and variance of their eigenvalues. In
addition, the operator of calculating spectral radius
is essentially one nonlinear operator, that is to say,

E(p%(M(t)M(t— DM@—-2)---M(1)M(0))) +

T (E(M()EM(1 = 1)+ EM(1)E(M(0)))
(28)

5. The Joint Spectral Radius of Two Typical
PSO Methods

The main purpose of this section, with the aid of
Monte Carlo method, is to analyze and discuss the
relationship between the joint spectral radius and
crucial parameters including inertia weight and ac-
celeration coefficients. Exactly speaking, with re-
spect to the standard PSO algorithm including the
constriction factor method and the inertia weight
method, this section is to mainly deeply discuss
each relationship among w, ¢y, ¢, and o, Mean(o),
Var(o).

5.1. The Constriction Factor Method

Regarding the constriction factor method, the con-
striction factor 7 is generally set to 0.729 and accel-
eration coeflicients c¢; and ¢; are set to 2.0 according
to [3], however, the time-varying transfer matrix is
composed of the random variables.

5.1.1. Calculation of o in the Constriction Factor
Method

One simple example is to introduce the method of
calculating o to illustrate the computation process.
Taking one whole evolutionary process for example,

the transfer matrix in the constriction factor method
can be expressed by

0729 o)

MO=1_0729 1290 |

(29)

Suppose that the number of generations is set to
1000 in the whole evolutionary process, the product
M, of all transfer matrices involving random vari-
ables can be expressed as

M, = M(1000)M(999)--- M(1) (30)

that is to say, the final product M), is

o] 0729 1417 ] 10729 1097
=1 20729 -0417 ~0.729 —0.097
[ 0980 -0.592 .
_[—0.162 0.098 ]Xlo ‘

(3D
Two eigenvalues of the product M), of all random
transfer matrices are

=0, ,=1.082x10"%. (32)
According to (25), the joint spectral radius o is

0=0914. (33)

5.1.2.  Distribution of the Joint Spectral Radius

Due to the nature of time-varying random matrix of
M(¢), it is very hard to give explicit mathematical
results for the joint spectral radius, it is of impor-
tance to analyze and discuss the distribution of the
joint spectral radius via Monte Carlo method. As
depicted in Fig. 4, the comparison on the mean
spectral radius and the variance spectral radius un-
der different numbers of generations are plotted to
analyze the interesting results. It can be concluded
from Fig. 4 that all mean spectral radii, which sim-
ilarly subject to the normal distribution, are nearly
equal to 0.786 corresponding to different variance.
It highlights that the mean spectral radius is mainly
determined by the constriction factor ¥, c; and ¢y,
while the variance spectral radius is mainly depen-
dent on the number of generations. Naturally speak-
ing, large and small number of generations can give
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Figure 4: The distribution of the joint spectral radius under different numbers of generations.

rise to small and large variance of spectral radius,
respectively.

In order to further investigate the relationship be-
tween the number of generations and the joint spec-
tral radius, the mean and variance spectral radii are
compared and summarized according to Fig. 5(a)
and Fig. 5(b), respectively. When the number of
generations changes from 100 to 1000, the mean
spectral radius is nearly equal to 0.783 and the vari-
ance spectral radius quickly decreases. As can be
seen from Fig. 5(a), small number of generations
results in the unstable mean spectral radius while
large number of generations leads to the relative sta-
ble value. In order to measure the instability under
different number of generations, the corresponding
variance spectral radius is plotted in Fig. 5(b).

5.1.3. Relationship of Joint Spectral Radius and
Parameters when ci +cp =4

The joint spectral radius not only mainly depends on
the number of generations, but also is greatly deter-
mined by acceleration coefficients including c¢; and
cy. In order to study strong relationship between
spectral radius and acceleration coefficients under
the condition of ¢ +c, = 4.0, the mean spectral radii
are listed and compared in Fig. 6(a). Moreover, the
variance spectral radius denoting to the uncertainty
of the joint spectral radius is shown in Fig. 6(b).

On the basis of Fig. 6(a) and Fig. 6(b), several
interesting results and remarks, which are helpful for

parameter selection and understanding the essence
of the standard PSO algorithm, can be concluded as
follows:

1. According to the previous convergence anal-
ysis to the simplified PSO algorithm, spectral
radius should be only dependent on constric-
tion factor y when the eigenvalues are com-
plex numbers, in other words, acceleration
coefficients c¢; and ¢, should not play a role
on spectral radius when the discriminant A is
strictly smaller than 0. However, according
to Fig. 6(a), acceleration coefficients indeed
have a great effect on the joint spectral radius.
For example, the mean spectral radius under
the parameters (x=0.1, c¢;=2, ¢;=2) is larger
than that of the parameters (x=0.1, ¢; = 1,
C2=3).

In terms of Fig. 6(a), those results can ex-
plain why the particles have the low conver-
gence speed at the end of search stage. That
is to say, all particles do not easily converge
into the suboptimal or global solution under
small constriction factor %. Small y in the lat-
ter search stage can result in large ratio of di-
vergence behavior according to (16) and large
spectral radius, such as x=0.01, ¢; = ¢, = 2.

. In the realistic applications, it needs to quickly
converge into the suboptimal solution. With
respect to the constriction factor method, it
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The Mean Spectral Radius
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Figure 5: The joint spectral radius and the number of generations from 100 to 1000.

The Variance Spectral Radius

0.8 . - 0.8
Acceleration coefficient o 0.6

0.4 Constriction factor

Constriction factor

(a) Mean(o) (b) Var(o)

Figure 6: The joint spectral radius and other parameters (c + ¢z = 4.0) in the constriction factor method.
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can be obviously seen from Fig. 6(a) that
the parameters (y=0.2, c1=2, c»=2) can lead
to the smallest spectral radius and achieve the
quickest convergence rate of all particles.

5.2. The Inertia Weight Method

The inertia weight method has been successfully
and widely utilized in the realistic optimization ap-
plications and can be mathematically described by
(3) and (4), however, the essence of this method is
hardly studied because of inertia weight «w(?), ran-
dom variables r; and r, in transfer matrices M(r)
(t > 1). The purpose of this subsection is to discuss
convergence rate of the inertia weight method, con-
vergence conditions and the relationship between
the joint spectral radius and crucial parameters, etc.
In the general case, the inertia weight w in the whole
search process often linearly decreases from 0.9 to
0.4 and acceleration coefficients ¢ and ¢, are set to
2.0, that is to say, the transfer matrix M(¥) (f > 1)
consists of time-varying parameters w(¢) and ¢().
Firstly, it is also to introduce and calculate the de-
tailed process of calculating o in the inertia weight
method, and the transfer matrix can be expressed by

w®) @) ] (34)

M@= [ —o() 1-6(0)

where w(f) generally decreases from 0.9 to 0.4 and
¢(#) is one random variable in the range of [0, 4].
Therefore, the final product M), according to (30),
can be calculated by

M _[ 0.900  1.304 ][ 0.400 1.083 ]
P11 -0.900 -0.304 —-0.400 -0.083
| -0.310 -0.036 _s1
‘[ 0.126  0.015 }XIO '

(35)
The corresponding eigenvalues of final product
matrix are

A =-0295%x1071, 1, =-3.709%x107% (36)

and its joint spectral radius in the inertia weight
method is
o =0.8881. 37

A new joint spectral radius analysis of random PSO algorithm

Secondly, the joint spectral radius not only mea-

sures the convergence rate of the particles, but also
controls divergence behavior or convergence behav-
ior of the particles. Due to random variables in trans-
fer matrix, it is necessary to analyze the distribution
of the joint spectral radius according to the law of
large numbers, and its corresponding distribution is
depicted in Fig. 7. It can be clearly seen from Fig.
7 that the joint spectral radii are similarly yielded to
the normal distribution. The mean spectral radius
is approximately equal to 0.9099 when the inertia
weight w linearly changes from 0.9 to 0.4 and accel-
eration coefficients including ¢; and ¢, are usually
set to 2.0.
Remark 3 According to Fig. 4 and Fig. 7, the joint
spectral radius in the standard PSO algorithm is
likely yielded to the normal distribution, whose cen-
ter point, together with the corresponding variance,
is closely related to inertia weight w, ¢ and c;.

In order to systematically and comprehensively
analyze the relationship among crucial parameters,
Mean(o) and Var(o), the mean spectral radii are
listed under different ranges of inertia weight, where
the inertia weight w linearly decreases from the ini-
tial weight wy to the final weight w,. According to
(14), the initial and final inertia weights also play a
great role on the center of the joint spectral radius.

From the perspective of the graph, the mean
spectral radii, which can denote convergence rate of
the whole swarm, are depicted in Fig. 8. Accord-
ing to the detailed spectral radius in Fig. 8, several
results can be concluded as follows:

1. On the basis of the mean spectral radii, the
border condition between convergence behav-
ior and divergence behavior is closely related
to the ranges of [1.0 0.7], [0.9 0.8], [0.8 0.9]
and [0.7 1.0] in Fig. 8. Roughly speaking, if
the initial weight w; and the final weight w,
do not yield to (38), the particles may have
divergence behavior in the evolutionary pro-
cess. If wys and w, subject to (38), the par-
ticles may have convergence behavior in the
final evolutionary process. The border condi-
tion between both behaviors can be roughly
described as
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Figure 7: The distribution of the joint spectral radius in the inertia weight method, where the number of inde-
pendent runs is 100000 and the number of generations in each run is 500 times.

The Mean Spectral Radius

0.5
Final Weight 0.6

0.4 .
0 o 0.2 Initial Weight

Figure 8: The relationship between Mean(o) and the range from wj; to w,, where cy, setting to the identical value
¢y, is equal to 2.
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wWs+w, < 1.7
ws >0 (38)
w, > 0.

2. It can be also summarized from Fig. 8 that the
parameters, which fulfill the condition of (14)
and the previous convergence conditions, fi-
nally lead to divergence behavior, therefore,
there is also one of contradictive examples
between the previous convergence conditions
and numerical results.

3. According to Fig. 8, the initial weight wy
and the final weight w, are set to very small
values, resulting in relatively large spectral
radius and low convergence rate. It can be
clearly concluded that this phenomenon also
explains why the particles do not easily con-
verge into the suboptimal or global optimum
in the latter search process.

In order to provide the guideline for parameter
setting and the tradeoff between exploration ability
and exploitation ability at the initialization stage, the
joint spectral radius is closely related to the initial
weight w; and the final weight w, in the presence of
c1 = ¢, and the corresponding mathematical model
can be described by

0=-0.1933w? - 0.192w} - 0.1763w*w, — 0.1774w,w?

+0.4683w? +0.4665w? +0.4701ww, — 0.175 1w,

—0.1749w, +0.7487.
(39

5.3. Further Discussions

The main goal of this subsection is to discuss two
general cases to show the importance of crucial con-
trol parameters. In the first case, acceleration coeffi-
cients (¢ = cp) change from 0.0 to 2.0. In the second
case, the sum of ¢; and c; is equal to 4.0. Addition-
ally, the number of generations in per run is set to
1000 times and the number of runs is set to 5000,
respectively. In two cases, we are mainly concerned
with the relationship between the mean and variance
spectral radii and acceleration coefficients.

A new joint spectral radius analysis of random PSO algorithm

Firstly, the inertia weight w linearly decreases
from 0.9 to 0.4 and acceleration coefficient c; equal-
ing to ¢; is from 0.0 to 2.0. The mean spectral radius
is depicted in Fig. 9.

According to Fig. 9, if the acceleration coeffi-
cients (c¢1=c3) increase from 0.0 to 2.0, we can ob-
tain that

1. When acceleration coefficient c; setting to ¢
is equal to O, the mean spectral radius is 1,
leading to divergence behavior of all particles.

2. When c; is equal to 0.2, the mean spectral ra-
dius gets the smallest value which is near to
0.8, leading to the quickest convergence rate.
And acceleration coefficients including c¢; and
¢> should not be selected to small value, such
as 0.0~0.2.

Secondly, acceleration coefficient ¢; in another
typical case increases from 0.0 to 2.0 yielding to the
condition of ¢;+c>=4.0 and inertia weight w linearly
decreases from 0.9 to 0.4. The mean spectral radii is
shown in Fig. 10.

As can be seen from Fig. 10, we may conclude
that

1. Small ¢; and large ¢, probably lead to a large
ratio of divergence behavior and finally result
in the divergence behavior. Essentially, accel-
eration coefficients play a great role on the at-
tractor of PSO system.

2. Under the condition of ¢ +c¢y=4, acceleration
coefficient ¢, which equals to 2.0, leads to the
smallest spectral radius and the largest conver-
gence rate.

3. According to the variance spectral radius, the
divergence ratio under small acceleration co-
efficient is larger than that of large accelera-
tion coeflicient, therefore, small acceleration
coefficient gives rise to large variance proba-
bly due to large divergence ratio.

6. Simulation

In order to show and demonstrate the major differ-
ence between previous results and our results, sev-
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The mean spectral radius
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Figure 9: Mean(o) under c;=c;.

eral typical benchmark functions, i.e. Sphere func-
tion, Griewank function, Rastrigin function Rosen-
brock function, Schaffer’s f6 function and two typi-
cal multi-objectives functions, which have different
typical fitness landscapes and may serve as the ex-
amples of a wide range of optimization problems,
are testified in the simulations for the purpose of
comparing convergence rate of all particles and con-
vergence conditions of the standard PSO algorithm.
These results may give some intuitive hints to un-
derstand the role of those parameters and the con-
vergence behavior.

6.1. Benchmark Functions

Sphere function is the simplest objective function in
the benchmark optimization functions. It can repre-
sent the simple objective function with no local op-
tima and it can be explicitly expressed by

A=) (40)
i=1

where [V;;| < 100, |X;;| < 100. The particle’s ini-
tialization range is (50, 100)". The global optimum
point of Sphere function is (0,0,---,0)".

Griewank function is one of the most compli-
cated optimization functions because of many local
optima around the global optimum. It can represent
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Figure 10: Mean(po) under c1+c, = 4.0

the practical complex system and its formula is

1 n n X
HX) = 2000 ;xlz - l_[cos($) +1

i=1 L
where [V, < 600, |X;;| < 600. The particle’s initial-
ization range is (300,600)". The global optimum of
Griewank function is (0,0, ---,0)".

Rastrigin function is a challenging optimization
function. It is very hard to search the global opti-
mum because of many local optima in the solution
space. The formula of Rastrigin function is

(41)

AX) =) (xi-10c0s2rx) +10)  (42)
i=1

where |V;;| < 5.12, |X;;| < 5.12. The particle’s ini-
tialization range is set to (2.56,5.12)". The global
optimum of Rastrigin function is (0,0,---,0)".

Rosenbrock function is also a challenging opti-
mization function. Through it only has few local
optima, the solution space around the global opti-
mum is very flat, therefore, it is hard to converge
around the global optimum. The formula of Rosen-
brock function is

n—1

FX) = " (100(xi41 =) + (= D7),

i=1

(43)

where [V, < 30, [X;;| < 30. The initialization range
of the particles is (15,30)". The global optimum of
Rosenbrock function is (1,1,---,1)".
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Schaffer’s f6 function has many local optima
around the global optimum in the whole solution
space. Once getting into the local optimum, the par-
ticles hardly get out of local optima. The formula of
Schaffer’s f6 function is

(sim/x2 +y%)-0.5

(1+0.001(x2 +y?2))?

f5(x,y)=0.5+ 44)

where |x| < 100, |y| < 100. The initialization range
of the particles is (50,100). The global optimum of
Schaffer’s f6 function is (0,0).

In addition, one multi-objectives function by
Deb (0.1 < x1,x < 1) can be mathematically de-
scribed by

min £ (x1,Xx2) = X1 (45)

. X
mlnfg(xl,xz) = g( 2) (46)

where the related g(x,) function is

XZ—0.2 2 X2_0.6
=2.0- - -0. -
g(x2) =2.0—exp{—( 0.004 )7}=0.8exp{—( )

47)

Another two objectives function can be mathe-
matically described by

—-X x<1
. —2+x 1<x<3
min f1(x) = 4—-x 3<x<4 (“48)
—4+x  x>4
min f>(x) = (x—5)%. (49)

6.2. Parameter Setting

The population number of all particles is set to 20
and the maximum number of generations in per run
is set to 1000, respectively. Besides, the dimen-
sion of the whole solution space is 20. When the
absolute velocity of each particle is strictly smaller
than 0.001, it is reasonable to regard that the par-
ticles converge into the suboptimal or global opti-
mum, taking into convergence state account. In ad-
dition, when the velocity or the position of one parti-
cle goes beyond the specified range, its current value
should be reset to the random value in the specified
range.

)}

A new joint spectral radius analysis of random PSO algorithm

Finally, the number of generations in conver-
gence process is compared in the presence of differ-
ent crucial parameters, yet under same initial con-
ditions including the same initial velocity, the same
initial position, the same personal previous best po-
sition and the same previous best position of all par-
ticles, etc.

6.3. Discrepancy between Our Results and
Existing Results

Convergence rate of the standard PSO algorithm de-
termines the computational time and the efficiency
in the real practical applications. To show the dif-
ference between the existing results and our results,
the inertia weight is set to the constant parameter
in the whole evolutionary process and random vari-
ables including r; and r, are considered to be time-
varying variables. However, the inertia weight and
random variables are regarded as constant parame-
ters in the existing results.

There exist a number of results on the precision
of particle swarm optimization reported in the lit-
erature, however, to the best knowledge of the au-
thors, only a few of them are conducted before from
the perspective of convergence rate, therefore, the
following discussion mainly highlights the conver-
gence rate and the corresponding comparison be-
tween previous works and our results. The common
view is that the large convergence rate leads to the
powerful exploration ability and the small conver-
gence rate makes the powerful exploitation ability.
If the convergence rate is set to too small value, such
as 0.0, ---, 0.4, the particles easily converge into the
local optimum. If the convergence rate is set to too
large value, such as 0.9, ---, 0.99, the particles need
large number of epochs to converge the suboptimal
or global optimum.

In order to demonstrate the effectiveness of the
above-mentioned results for single objective opti-
mization problem, convergence rate under different
parameters as well as the discrepancy between our
results and the existing results is compared in Fig.
11(a), Fig. 11(b), Fig. 12(a), Fig. 12(b), Fig. 13(a),
Fig. 13(b), Fig. 14(a), Fig. 14(b), Fig. 15(a) and
Fig. 15(b), respectively. Taking Fig. 11(a) for ex-
ample, each datum is calculated according to 0.001x
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NG, where NG denotes the number of generations to
achieve the convergence status. Furthermore, con-
vergence rate is also dependent on the joint spectral
radius, and large o can result in the large conver-
gence rate, and vice versa. However, the conver-
gence rate is not in accordance with the existing re-
sult on convergence condition, specifically speaking,
some parameters in the existing convergence con-
dition finally give rise to divergence behavior, such
as w=0.95, ¢; = ¢, = 1.90, in addition, the conver-
gence rate has the major difference of convergence
rate when the spectral radius is the complex number.
In order to show the detailed difference between our
results involving random variables and the existing
results regarding random variables as constant pa-
rameters, the corresponding comparison under the
constant inertia weight is depicted in Fig. 11(b).

According to Fig. 11(a) - Fig. 15(b), we may
conclude the following remarks.

1. The joint spectral radius is not greatly influ-
enced by benchmark functions, but it closely
relates to crucial parameters, which are com-
posed of the inertia weight w, acceleration co-
efficients ¢; and c¢;. Convergence rate of ev-
ery function is similar to each other from Fig.
11(a), Fig. 12(a), Fig. 13(a), Fig. 14(a) and
Fig. 15(a).

2. Compared with the analysis of convergence
rate in [31], there is the major discrepancy be-
tween the existing convergence rate and our
results according to Fig. 11(b), Fig. 12(b),
Fig. 13(b), Fig. 14(b) and Fig. 15(b). In the
previous convergence analysis, convergence
rate in Fig. 2(b) [31] is merely determined
by inertia weight and it is not related to ac-
celeration coefficients when its spectral radius
is complex number. However, numerical re-
sults illustrate that two typical methods in-
cluding inertia weight and acceleration coeffi-
cients have a significant effect on convergence
rate.

3. In addition, we may observe that some param-
eters, which subject to the previous conver-
gence conditions according to (16), also lead
to divergence behavior of the particles in the

case of the above-mentioned benchmark func-
tions. Notice that the shapes of convergence
areas in Fig. 11(a), Fig. 12(a), Fig. 13(a),
Fig. 14(a) and Fig. 15(a) do not coincide with
those of Fig. 1, i.e. the areas F1 and F2.

Additionally, the new convergence analysis of
random PSO algorithm can be also applied for
multi-objectives functions. In the PSO system, the
convergence process can be divided into two sub-
stages. First substage, by utilizing the new conver-
gence analysis, is to ensure that each particle can
converge into its attractor according to the updating
velocity and position equations, while second sub-
stage is to make that those attractors converge into
one point or several points. As to the single objec-
tive function, the attractors of all particles converge
into one point or the global optimum. Additionally,
the corresponding attractors in the multi-objectives
functions converge into several points, which are the
crucial points in the Pareto front. In other words, the
difference by using PSO algorithm between single
objective optimization problem and multiple objec-
tives optimization problem is the topology of all par-
ticles in random PSO system. The new convergence
analysis is only applied in the first substage from the
initial point to its attractor.

In the case of two testing multiple objectives
benchmark functions, all particles with different
topology in PSO algorithm can search for several
discrete points, consisting of the Pareto front. The
PSO algorithm with one connecting particular topol-
ogy can find the Pareto front of Deb function in Fig.
16(a) and the last testing multi-objectives function
in Fig. 16(b).

Compared with the existing PSO convergence
analysis methods, such as the Poli’s and Luis
Fernandez-Martinez’s convergence results, several
remarks on the difference between their results and
our convergence results can be concluded in the fol-
lowing.

1. The existing convergence analysis methods
utilize the expectation operator to deal with
the randomness and obtain the convergence
condition, while our method is based on the
general evolutionary process. Specifically
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(a) Convergence rate in Sphere function (b) Comparison with the Trelea’s result on Sphere function

Figure 11: Convergence rate is mainly determined by the time-varying transfer matrix including random vari-
ables r; and r, in Sphere function. Larger convergence rate naturally needs too much computational time to
converge, while smaller convergence rate needs too small number of generations to converge. The major dis-
crepancy landscape is between Fig. 11(a) and the right subgraph of Fig. 2 in [31] on Sphere function. In essence,
both landscapes mainly result from spectral radii by different methods, where the former is calculated by the
time-varying transfer matrix, while the latter is directly based on the constant transfer matrix.

(a) Convergence rate in Griewank function (b) Comparison with the Trelea’s result on Griewank function

Figure 12: Convergence rate in Griewank function and the major discrepancy landscape between Fig. 12(a) and
the right subgraph of Fig. 2 in [31] on Griewank function.
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(a) Convergence rate in Rastrigin function (b) Comparison with the Trelea’s result on Rastrigin function

Figure 13: Convergence rate in Rastrigin function and the major discrepancy landscape between Fig. 12(a) and
the right subgraph of Fig. 2 in [31] on Rastrigin function.

(a) Convergence rate in Rosenbrock function (b) Comparison with the Trelea’s result on Rosenbrock function

Figure 14: Convergence rate in Rosenbrock function and the major discrepancy landscape between Fig. 12(a)
and the right subgraph of Fig. 2 in [31] on Rosenbrock function.
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Figure 15: Convergence rate in Schaffer’s f6 function and the major discrepancy landscape between Fig. 12(a)
and the right subgraph of Fig. 2 in [31] on Schaffer’s f6 function.
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Figure 16: PSO algorithm with different topology handles with multi-objectives optimization problem.
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speaking, the corresponding method calcu-
lates the joint spectral radius of the product
of all transfer random matrices.

2. The joint spectral radius can denote the math-
ematical tradeoff between exploitation ability
and exploration ability of PSO system.

3. By using our method, the setting parameters
at the initialization process can compute the
convergence speed of random PSO algorithm
according to (39).

4. Because of the random time-varying transfer
matrix, it is hard to obtain the mathematical
convergence condition in our paper. How-
ever, the existing PSO convergence analysis
method can get the concise convergence con-
dition of first order and second order PSO sys-
tem.

5. As to the corresponding result in this paper, it
is also hard to analyze the particle’s trajectory
in the presence of random variable ¢.

7. Concluding Remarks

In this contribution, from the perspective of the joint
spectral radius, we are mainly concerned with ana-
lyzing the stability and discuss parameter selection
of the standard PSO algorithm. One new conver-
gence analysis on the random PSO algorithm is pro-
vided to discuss the difference between the existing
results and our results. Essentially, its stability is
governed by the product of all time-varying transfer
matrices M(f) (1 < t < o), while the existing con-
vergence analysis for the standard PSO algorithm is
conducted by regarding M(#) as a constant transfer
matrix. Noticing that the product of time-varying
transfer matrices is in fact very complicated due to
the asymmetric transfer matrices involving random
variables and it is very hard to analytically work out
the explicit form of spectrum properties of the prod-
uct, we discuss and analyze the relationship between
Mean(o) and the parameters with the aid of Monte
Carlo method.

In terms of extensive results of spectral radius in
the simulations, the joint spectral radius, considering

random variables including r; and r,, maybe subject
to a certain normal distribution which needs further
theoretical analysis. This interesting and surprising
result indicates that there may exist some intrinsic
connections between the statistical parameters of the
resulting normal distribution and the parameters of
PSO algorithm, which may be critical to understand
PSO system in depth. Additionally, the relationship
between the mean spectral radius and the parameters
from the view point of theoretic analysis still needs
further investigation in the future.
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