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Abstract

In this paper, we consider the boundary valued problems for fuzzy partial hyperbolic functional differen-
tial equations with local and integral boundary conditions. A new weighted metric is used to investigate
the existence and uniqueness of fuzzy solutions for these problems in a complete fuzzy metric space.
Our results are demonstrated in some numerical examples in which we use the same strategy as Buckley-
Feuring to build fuzzy solutions from fuzzifying the deterministic solutions. Then by using the continuity
of the Zadeh’s extension principle combining with numerical simulations for ac—cuts of fuzzy solutions,
we give some representations of the surfaces of fuzzy solutions.

Keywords: Partial hyperbolic functional differential equations, fuzzy solution, local condition, boundary
condition, fixed point, Zadeh’s extension principle.

1. Introduction

The rise and development of science and tech-
nology such as computer science, robotics, artifi-
cial intelligence, language theory, etc, force us to be
engaged in specifying imprecise notions. In 1965,
Zadeh began to study fuzzy set theory', which is a
tool that makes possible the description of vague no-
tions. Today, fuzzy set theory has become a fash-
ionable theory used in many branches of real life
such as dynamics, computer, biological phenomena,

*Corresponding author: hvlong@utc.edu.vn

financial forecasting, etc. The concepts of fuzzy
sets, fuzzy numbers, fuzzy metric spaces, fuzzy val-
ued functions and necessary calculus of fuzzy func-
tions were introduced in>3. The fuzzy derivative
was first investigated by Chang and Zadeh in*, later
Dubois and Prade’® defined the fuzzy derivative by
using Zadeh’s extension principle and was followed
by Puri and Ralescu®. In view of the develop-
ment of calculus for fuzzy functions, the investi-

gation of fuzzy differential equations (fuzzy DEs)
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and fuzzy partial differential equations (fuzzy PDEs)
have been initiated” 8.

In recent years, there has been a significant de-
velopment in fuzzy calculus techniques in fuzzy
DEs and fuzzy differential inclusions, some recent
contributions can be seen for example in the papers
of Chalco - Cano and Romin - Flores'®, Choudary
and Donchev!!, Li et al.!2, Rodriguez-Lépez 13 or
the monograph of Lakshmikantham and Mohapatra’
and the references cited therein. However, the de-
velopment of fuzzy PDEs has not been commensu-
rate with its importance. Since Buckley and Feuring
gained the existence of BF solutions and Seikkala
solutions for fuzzy PDEs by crisp solution and the
extension principle’, some other efforts have been
done to deal with this kind of equations and the
achievements are included in some researches of Al-
lahviranloo et al.'#, Arara et al.'>, Bertone et al.'0,
Long et al.'” and Chen et al.'®. Especially, in'#
Allahviranloo and his coworkers succeeded in ap-
plying the same strategy as Buckley-Feuring in’ to
find the exact solutions for fuzzy wave-like equa-
tions with variable coefficients. In our understand-
ing, this results can be considered as the significant
contributions on fuzzy linear PDEs.

Functional differential equations with state-
dependent delay appear frequently in applications as
model of equations and for this reason the study of
this type of equations has received great attention in
the last year; see for instance!® and the references
therein. The literatures related to partial functional
differential equations with state-dependent delay are
limited; see for instance22!.

In this paper we are interested by the existence of
fuzzy solutions of some boundary valued problems
for partial hyperbolic functional differential equa-
tions (PHFDEs) with state-dependent delay. Our
results may be interpreted as extensions of previ-
ous results of Arara et al.'> for fuzzy hyperbolic
PDEs with local and nonlocal initial conditions and
Bertone et al.'® with linear type of hyperbolic equa-
tions. The results in'> based on some complicated
constraints on data and domain. Meanwhile, those
conditions may be not necessary or can be reduced
to be milder. In this paper, new weighted metrics are
used and suitable weighted numbers are chosen in

order to prove that the existence and uniqueness of
fuzzy solutions only depend on the Lipschitz prop-
erty of the right side of the equations. Especially, we
investigate the well-posedness for fuzzy boundary
value problems with integral boundary conditions.
This class of equations has various applications in
applied fields such as blood flow problems, chemi-
cal engineering, thermoplasticity, underground wa-
ter flow, population dynamics, and so forth. For a
detailed description of the integral boundary con-
ditions, we refer to the papers’>. Moreover, we
know that fuzzy boundary value problems with in-
tegral boundary conditions constitute a very inter-
esting and important class of problems. They in-
clude two, three, multi-points boundary value prob-
lems and local, nonlocal initial conditions problems
as the special cases. Therefore the results of the
present paper can be considered as a contribution to
the subject.

The remainder of the paper is arranged as fol-
lows. In section 2, we give some basic preliminar-
ies which will be used throughout this paper. Sec-
tion 3 and 4 give the main results of the existence
and uniqueness of fuzzy solutions for some class of
PHFDESs with local conditions and integral condi-
tions. Here the idea of a new weighted metric is used
to get the best conditions on databases to ensure the
existence and uniqueness of solutions. Especially
in section 5, some illustrated example for our results
are given with some numerical simulation for a-cuts
of the fuzzy solutions.

2. Preliminaries

In this section, we recall some concepts of fuzzy
metric space that will be used throughout the paper.
For a more thorough treatise on fuzzy analysis, we
refer to the books?.

We denote the set consisting of all nonempty
compact, convex subsets of R” by . Let A and
B be two nonempty bounded subsets of %/ '. De-
note by ||.|| a norm in R”. The distance between A
and B is defined by the Hausdorff metric

dp(A,B) =max {sup i
acA be

flla—b inf |[a—b
ofla— ] supinf a5/}

then (', dy) is a complete metric space.
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Let E" be the space of functions u: R" — [0, 1]
satisfying

i) there exists a xo € R" such that u(xg) = 1;

ii) u is fuzzy convex, that is for x,y € E" and
0<A<I,

u(Ax+ (1= 2)y) = minfu(x),u(y)};

iil) u is semi-continuous;

iv) [4]® = {x € R":u(x) > 0} is a compact set in
R".

We call u € E" a fuzzy number and the a-cuts or
level sets of u are defined by

[u]* ={xeR":u(x) > o} foreach0 < ot < 1.

Then from (i) to (iv), it follows that [u]* is in JZ.

The a-cut of fuzzy number can be presented by
an order pair of function [u; (o), uz2(@)], 0 < @ < 1,
called parametric form, which satisfies the following
requirements

e uj(ax) is a bounded left continuous non-
decreasing function of ¢,

« up() is a bounded left continuous non-increasing
function of «,

e ui(1) =uy(1).

If g : R" xR" — R" is a function, then accord-
ing to Zadeh’s extension principle we can extend g
to E" x E" — E" by the function defined by

gu,v)(t) = t:SLEp )min{u(X)N(y)}-

If g is continuous then the continuity property of
extension principle states that

(8 (u,v)]* =g ([]*, [V]%)

forallu,ve E", 0 < a < 1.

Especially, we will define addition and scalar
multiplication of fuzzy numbers in E” levelsetwise,
that is, for all u,v € E", 0 < o < 1, k € R\{0},

o o

[+ v]% = [u]* + V]

Fuzzy partial hyperbolic functional differential equations

and
[ku]* = k[u]*,
where
(u+v)(t) = [:stlllft2 min{u(t;),v(ty)}
and

ku(t) = u(t/k).

Supremum metric is the most commonly used
metric on E" defined by the Hausdorff metric dis-
tance between the level sets of the fuzzy numbers

de(u,v) = sup Hg ([u]”,[v]%)

O<a<l

for all u,v € E™. It is obviously that (E",d..) is a
complete metric space. From the properties of Haus-
dorff metric, we infer

o doo(cu,cv) = |c|dw(u,v),
o d(u+u',v+v) <dw(u,v)+do(u',V),
o do(u+w,v+w)=do(u,v),

for all u,v,u’,v',w € E" and ¢ € R\{0}.

For any positive real number r > 0, we denote
Jo = [-n0] x [-r0], J, = [-ra] X [-nb], J, =
J:\(0,a] x (0,b] and J,, = [0,a] x [0,b].

Definition 1. A mapping f :J, — E" is called con-
tinuous at (f9,s¢) € J, if the multi-valued mapping
fo(t,8) = [f(t,5)]* is continuous at (ty,so) with re-
spect to the Hausdorff metric dy for all a € [0,1].

In this paper, we denote by C(J,, E") the space of
all continuous functions f :J, — E" with the supre-
mum weighted metric H) defined by

Hy(f,g) = sup {dw(f(t’s)’g(tjs))e—l(t—ks)}.

(t.5)ed,

Since (E",d..) is a complete metric space, it can be
shown that (C(J,,E™),H, ) is also a complete metric
space for A > 0 arbitrary.

Definition 2. A mapping f : J. x E" — E" is called
continuous at point (g, so,up) € J. X E" provided
that for any fixed a € [0, 1] and arbitrary € > 0, there
exists 8(&, &) > 0 such that

du ([f(t7s7u)]a7[f(t07s07u0)]a) <&
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whenever (¢,s,u) € J, x E" satisfying

max{ [t —tol,|s —so| ,du ([u]®, [uo]™) } <o(g,q).

Definition 3. For any fuzzy valued mapping f :
Jap — E", the integral of f over J,,, denoted by
Jafbs(t,s)dsdt, is defined by

[/Oa/obf(t,s)dsdt]a - /Oa/ob[f(t,S)]“dsdt

a rb
= {/ / v(t,s)dsdt|v: J, — R" is a measurable
0 Jo

selection for [f(z,5)]*},

for all o € (0,1]. A function f : J,, — E" is inte-
grable on J, if [ [0 f (t,s)dsdt is in E".

Let f,g: Ju» — E" be integrable and A € R. The
integral has the elementary properties as follows

o [EIO1f(e,5) 4 g(t,s)|dsdr = [ 2 f(2,5)dsdr
+ J§ Jy 8 (e 5)dsdt,
o JOSOAS(t,8)dsdt = A [S [0 £ (2, 5)dsdt,

d.. ( JSLL (2, 5)dsdt, [ fg’(z,s)dsdt>
< foaféjdm(f(t,s),g(t,s))dsdt.
Definition 4. Let x,y € E". If there exists z € E"

such that x = y + z then we call z the Hukuhara-
difference of x and y, denoted by x — y.

Definition 5. For any fuzzy valued mapping f :
Jap — E", the fuzzy partial derivative of f with re-
spect to x at the point (xo,yo) € J is a fuzzy set

9F(50:30) ¢ pn yhich is defined by
o0x
9f (x0,50) _ lim f (xo+h,y0) — f (x0,y0)
ox h—0 h '

Here the limit is taken in the metric space (E",d..)
and u — v is the Hukuhara-difference of u and v in
E". The fuzzy partial derivatives of f with respect to
y and higher order of fuzzy partial derivative of f at
the point (xo,y0) € Jyp are defined similarly.

3. Fuzzy partial hyperbolic functional
differential equations with local conditions

In the first part of this section, we consider the
following fuzzy PHFDEs

%u(x,
%yy):f(x’y’“(w)), (x,y) €Jap (1)

with initial condition

u(x,y) = @(x,y),(x,y) € Jy, 2)
and local conditions are

u(x,0) =n;(x), a

u(0,y) = m(y) ,b] 3)

where f: J,p x C(Jy,E™) — E™ is a continuous func-
tion, n; € C([0,a],E"), N2 € C([0,b],E") and ¢ €
C(Jo,E™) are given functions and state-dependent
delays u ) (t,s) is defined by

Uiry)(t,8) = u(x+1,y+5), (t,5) € Jo,

here, u(y,)(.,.) represents the history of the state
from time (x — r,y — r) up to the present time (x,y).
Hypothesis (H). There exists K > 0 such that

do (f(x,y, u(x,y) )af(xaya V(x,y) ))
< Kdo(u(x+ @,y +6),v(x+ 0,y + 0))

holds for all u,v € C(J,,E"), (x,y) € Ju and
((1),9) € Jo.

Definition 6. A function u € C(J,,E") is called a
fuzzy solution of the problem (1)-(3) if it satisfies

u(x,y) =m(x)+m2(y) — ¢(0,0)+
// (t,5,u(5))dsdt, (x,y) € Jap

u(x,y) =m(x)+n2(y) — ¢(0,0)+
I/ D F(ts,up))dsdt, (x,y) € Juy

and u(x,y) = @(x,y),(x,y) € J,. By using the
weighted metric H, in the space C(J,,E"), we
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receive following result about the existence and
uniqueness of solutions of the problem (1)-(3).

Theorem 1. Assume that the Hypothesis (H) is sat-
isfied. Then for all A > /K, the problem (1)-(3)
has a unique solution in C(J,,E") with metric Hj.
Proof. From the Definition 6, we realize that fuzzy

solution of the problem (1)-(3) (if it exists) is a fixed
point of the operator N, : C(J,,E") — C(J,,E") de-
fined as

M) +n2(y) — ¢(0,0)
+f0 fO (t S, u ts )det (X,y) € {flb
o(x,y) (x,y) € J.

Ni(u(x,y)) =

We will show that V| is a contraction operator.
Indeed, for arbitrary u,v € C(J,,E"), and (x,y) €
Jap then

Ny (u(x,y)) =m (x) + n2(y) — ¢(0,0)

—i—// tsu” )dsdt

x) +m(y) — ¢(0,0)

+//ftsv” )dsdt.

From the properties of supremum metric, we have
following inequality

deo (N1 (u(x,y)), N1 (v(x,y)))

//ftsu” )dsdt,
/0 /0 f(t,5,v(1,5))dsdr)

xXory

</0 /0 dos (f (1,801 4)), f(£,8,V(1.5)) )dsdt
X ory

</ / Kd(u(t+o,5+0),v(t + o,s+ 0))dsdt
0 Jo

Xy
<KH;L(14,V)/ / HMOTOFE9) gy
0 Jo

and

Ni(v(x.y)) =

< KHA(M,V)%ek(aH—O)/x(ek(t+y) — My
0

K X
< SHAn) OO P 1)@

Fuzzy partial hyperbolic functional differential equations

Multiplying both sides of this inequality by e~*(+2)
then taking supremum metric we receive
e M (N (u(x, ), N1 (v(x, 7))

szJL (u, v)el(aHO)(elx _ 1)(6“ _ l)eil(xﬂ’)

K .
< ﬁ]_])L (u, v)el(a)+0)elxelyefl(x+))

K
< ﬁHA (M,V).
If (x,y) € J, then

e (N (u(,3)), N (v(x,3))) = 0.
Thus

M 4N (u(.9)). N () < g 1.9

holds for all (x,y) € J,. From the definition of metric
H; we have

H (N1 (1) Ny () < 33H 0,

for all u,v € C(J,,E").

So by choosing A > /K, we imply that N; is
a contraction operator and by fixed point theorem,
N; has a unique fixed point, that is a solution of the
problem (1)-(3). The proof is completed. O

In this second part, we consider the fuzzy
PHFDEs in more general form

u(x,y)  A(p(x,y)ulx,y))
axay - ay +f(x7y7u(x,y)), 5)

for (x,y) € Jup, with the initial condition is

u(x,y) = @o(x,y),(x,y) € J, (6)

and the local conditions are

], (7

where f: Jup X C(Jo,E") = E", p € C(Jup,R), My €
C([0,a],E™), my € C([0,b],E™) are given functions
and @ € C(Jo,E").
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Definition 7. A function u € C(J,,E") is called a
solution of the problem (5)-(7) if it satisfies

u(x,y) =q(x,y) + /0 xp(t,y)u(ny)dt

X [y
+/0 /0 f(t,s,u(,7s))dsdt,

where

g(x,y) =m(x)+na(y) — ¢(0,0)

m(x)
_/0 p(t,0)n(¢)dt, (x,y) € Jup

and

u(x7y) = (p(x,y), (x,y) € Jr.

Theorem 2. Assume that the hypothesis (H) is satis-
fied. Then for all A > 0 satisfying

Ar— sup |p(t,s)|A—K>0 (8)

([,S) EJab

the problem (5)-(7) has a unique solution in the met-
ric space C(J,,E") with metric H),.

Proof. Transform the problem (5)-(7) into a fixed
point problem. To this end, we consider the operator
N, : C(J,,E") — C(J,,E™) defined by

q(x,y) + Jo p(t,y)u(t,y)d
Na(u(x,y)) =

o(x,y), (x,y) €,
where

a5.3) =11 () +1a1) = 9(0.0)— [ p(e.0)mi (1)

In order to show N, being a contraction opera-
tor, we consider u,v € C(J,,E") and (x,y) € Jo». We
have

dea (N2 (4(x, 7)), N2 (v(x, 7))

<dm(/xp(ty) tydt/pty (ty)dt>
<//ftsu,s )dsdt,
/O/Of(t,s,v(,as))dsdt) )

+Jo fo (t 8, Uzg) )dsdt, (x,y) € Jup,

Set p = SUD (1 )c |p(t,s)|. One gets following as-
sessment

X

dol [ pttyyute, ), / ply)v(e.y)d)

< sup pts| d u(t,y),v(t,y))dt

tS Eja;,
< p/O deo(u(t,y),v(t,y))dt.

By doing the same previous arguments one gets

e—k(x+y)dm(/0xp(z,y)u(t,y)dt,/Oxp(t,y)v(t,y)dt)
<pe ) [ d(ut,y) vie,) e
< pH) (u,v)e *0) /0 S M) gy

H), (u,v)e +) l[el(ery) — M)

A
Hy (u,v). (10)

<

S

<

>

The second term in the right side of (9) is estimated
as the same in inequality (4), that leads to

//ftsu,s dsdt//ftsv,s )dsdr)
AQHA(M V) k(aH—O)( Ax 1)(67@—1)

and

Ha (/ / fts“m )dsdt,
/0 /0 f(r,s,v(tJ))dsdt)

;LZH;L(M V). (11)
When (x,y) € J,
H?L(NZ(M(x7y))7N2(v(x7y))) =0. (12)

From (9) to (12) we can see that

efl(xwLy)dm(Nz(u)?Nz(v)) < (% + %)HA (M,V)
(13)
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satisfies for every (x,y) € J,.
Hence

< (P4 (),

Hj (N2 (u), N2(v)) <
for all u,v € C(J,,E").
It is easy to see that for all A > 0 satisfying (8) we

K
have P + 2 < 1. It follows that N, is a contraction

A
operator. Therefore the problem (5)-(7) has a unique
solution, which is the fixed point of the operator N,.

The theorem is proven completely. O

4. Fuzzy partial hyperbolic functional
differential equations with integral
boundary conditions

In this section, we consider the fuzzy PHFDESs

9%u(x,y)
dxdy

_ 9(pxy)ulxy))
dy

Ty uy)), (14)

for (x,y) € Jup, with the following integral boundary
conditions

u(x,0) +/ ki(x)u(x,s)ds = gi1(x,y),  (15)
u(0,y) +/ ka(y)u(t,y)dt = g2(x,y),  (16)

for (x,y) € Ju and
u(x,y) = @(x,y), (x,y) €Jr (17)

where f : Ju X C(Jo,E") — E",p € C(Jpp,R) is
a continuous function; g1,82 € C(Jw,E"), k1 €
C([0,a],R), k, € C([0,b],R) are given functions
and ¢ € C(Jo,E") satisfied g(x,0) = ¢(x,0) and
82(07}7) = (,0(07}7)

Definition 8. A function u € C(J,,E") is called a

solution of the problem (14)-(17) if u(x,y) = ¢@(x,y)
for (x,y) € J, and for (x,y) € J, it satisfies the fol-

Fuzzy partial hyperbolic functional differential equations

lowing integral equation

u(x,y) = Q(x,y) /kl
/ 2(y)u(t,y)dt — ki (0 //kz

+/0 p(t,y)u(t,y)dt—/0 p(2,0)u(z,0)dt

Xy
—1—/0/0f(t,s,u(t7s))dsdt

where

u(x,s)ds

t s)dtds

=g1(x,y) +&2(x,y) — £1(0,y)
+k1(0) /Oy g2(x,8)ds.

O(x,y)

For simplicity, we set p = sup(, ¢, |P(t,5)],
ki = sup.ejo,q k1 (x)| and ky = sup,cjop) k2 (y)]. Let
u,v € C(J,,E") and (x,y) € Jyp.

Theorem 3. The problem (14)-(17) has a unique so-
lution in C(J,,E") provided that the Hypothesis (H)
is satisfied and
ki +ky+2p n kiko 4+ K
A A?

Proof. Consider operator

<1

N3 :C(J,,E")— C(J,,E")
defined by

y
N3(u(x,y)) = Q(x,y) — / key (x)u(x, s)ds

om0 [ [ 1o

+ /O plt,y)ult,y)di — /O p(t,0)u(t,0)dr

X [y
+/(; /0 f(t,S,l/t(tys))dsdt

for (x,y) € Jup, where

O(x,y)

u(t,y)dt — u(t,s)dtds

=g1(x,y) +&2(x,y) — £1(0,y)
+k1(0) /Oy g2(x,8)ds

and

N3(M(x7y)) - (p(x7y)7 (xvy) €Jr.
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We will prove that N3 is a contraction operator.
In fact

deo (N3 (u(x,)), N3 (v(x

< doo /lq xsds/lq

+%wawwm/@wwwm

< / / ka(s)u(t,s)drds,
/ / ka(s dtds)

+@%p<»awwﬁ plt.y)Y(e.3)dr)
+do (/x (2,0)u(t, O)dt/ p(2,0)v(t,0)dr)

+de <//ftsu,s )dsdt,
/O/Of(t,s,\/(m))dsdt) (18)

First of all, we have

v(x,s)ds)

e Mg (/ ky(x)u (x,s)ds,/oykl(x)v(x,s)ds)
<e M) qup [y (1) |du( /0 T, 5)ds, /0 " (x,9)ds)

x€[0,d]

Y
<kle_l(x+y)/ deo(u(x,5),v(x, s) )& HEH9) A0H5) g g
0

< le;L(u,v)e—k(x-i-y) /yek(x+s)ds
0

_ %HA (bt v)e—l(x+y) (el(x+y) - ekx)
< “LHy (). 19)

Similarly, we obtain

e Mty g </Oxkz(y)u(t,y)dt,/Oxkz(y)v(t,y)dt>

k
fH;L(u,v). (20)

N

Nevertheless

e Mty g ( / / ko (s)u(z,s)dtds,
/ / ka(s)v(t,s) dtds>

< kikpe ) / / doo(u(t,s),v(t,s))dtds

< kikyHy (u,v)e A(x+y) / / M) dtds
kiks )

< ?H o (u,v)e P (A 1) (M - 1)
k1k2
7LZ —5 H (u,v). (21)

From (10) we get

e—x(x+y)dm(/0xp(17y)u(t,y)dn/Oxp(t,y)v(t,y)dt)

< 2Hy (u,) (22)

and

e—)t(x+y)dw(/0xp(;7())u(t?O)dtj/Oxp(t,())v(t,())dt)

< 5 Hy (u,v). (23)

>

Finally, from (11) we have

Aty g (// f(t,s,uq 5))dsdt,
/ / f(tvsvv(t.s))d‘gdt>
0 Jo ’

7L2H/l (u,v). (24)

It is clear that if (x,y) € J, then

d°°(N3(u(x7y))7N3(V(x7y))) =0. (25)

Substitute (19)-(24) into (18) after multiplying both
sides by e () we have

e d (N3 (u(x,y)),N3(v(x,y)))

ki +k+2p kikb+K
< ( 2 + 212 )Hl(uav)
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holds for all u,v € C(J,,E") and (x,y) € J,. That
leads to

H; (N3(u),N3(v))
ki+k+2p kikb+K
< ( 2 22 )Hl (l’tv V)-
Since we can choose A > 0 satisfying

ki +ky+2p kiko+K

A A?
we receive N3 is a contraction operator. Hence N3
has a unique fixed point, that is a solution of the
problem (14)-(17). The theorem is proven com-
pletely. ad

<1,

Remark 1. In 15 Arara et al. studied the existence of
fuzzy solutions of equation (1) with local conditions
(2) and (3). However, these results base on some
constraint conditions on the domain, such as condi-
tion Kab < 1. These conditions are too strict for the
domain J,;, to satisfy if the Lipschitz constant K is
big enough. On the other hand, it depends on the
large scale of the domain. To relax this restriction,
in this paper we introduced new weighted metric H;
in the complete fuzzy metric space C(J,,E"). Since
then, we can extend some existence and unique-
ness theorems to the whole domain without any con-
straints in the boundary of domain.

5. Numerical examples

In this section, we present some numerical ex-
amples showing the existence of fuzzy solutions for
PHFDEs. Firstly by using the same strategy as
Buckley-Feuring, we fuzzify the deterministic solu-
tion (see '*) to build fuzzy solutions. After that,
we use the continuity of Zadeh’s extension principle
and numerical simulation (see for more details in '©)
to show some graphical representations of the fuzzy
solutions.

Example 1. Consider the following fuzzy PHFDEs
1 1
Uy+200U)y = 2U(x7y)(—§,—§) +C,
for (x,y) € Ji11 = [0,1] x [0, 1], with the local condi-
tions

U(x,0) =Cx+C, U(0,y) =C, U(0,0) =C, (27)

(26)

Fuzzy partial hyperbolic functional differential equations

where C is a fuzzy number in universal interval
I =[0,M], M >0 and
U(x,y) =Cxy+Cx+1, (28)
for (X,y) € ‘71/2 = [_%7 1] X [_%a 1]\(07 1] X (07 1]
From (26), we have

1
F(x,3,U(xy)) =2U(x— 5,y —

=)+C
2 )+C,

2

thus

dm(F(xny) U(x,y) )7F(X,y, V(x,y) ))
1 1

1 1
<2de(U(x—=,y—=),Vx—=,y—2)).
V=553 Vlr=3y-3))
It means that the Hypothesis (H) is satis-
fied with K = 2. Since p(x,y) = —2y, we have

sup |p(x,y)| =2. So, from Theorem 3.2 we see
(xy)e0,1)?
that, if we choose positive weighted number A satis-

fying
A2—21—-2>00r A1 >1+3,

then there exists a unique fuzzy solution U of
problem (26)-(28) in the weighted metric space
(C(Jl/27E2)7Hl)'

The deterministic solution of the crisp PHFDEs
corresponding to (26)-(28) is u(x,y) = g(x,y,¢) =
cx +c. We now fuzzify this crisp solution to find
fuzzy solution of fuzzy PHFDESs (26)-(28). To this
end, let us denote h(x,y,c) = c¢. We apply the fuzzi-
fication in ¢, and supposed that the parametric form
of corresponding fuzzy number C is

[C1% = [e1(ar), ca(@)]

where the sufficient conditions are
(@) ci(a) is a bounded left continuous non-
decreasing function with respect to c.
(b) c2(or) is a bounded left continuous non-
increasing function with respect to .
(©) c1(0r) < ez(), for all o € [0, 1].

By using the extension principle, H is computed
from s and Y is computed from g. We will show
that Y is the fuzzy solution of this problem. Indeed,
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since all the partials of /& and g with respect to ¢ are
positive. We see that

[H(x,y,C)]a :[Hl(x Y ) HZ(xvyva)]

=] rerfg]l {h(x,y, )}’62}2]’3 {h(x,y,¢)}]

=[e1(a),c2(at)]
satisfied conditions (a) — (c). So [H (x,y,C)]* is the
a—cuts of fuzzy number C. Similarly
Y (x,%,C)]% = N (x,y, ), Y2 (x,y, )]

= [clgg]la{g(x,y,c)},g[gﬁ {g(x,y,¢)]

=[c1(o)x+ci(a),cr(0)x+ ca(a)]

are the ax—cuts of fuzzy number Cx + C. Define dif-
ferential operator

11)

(P(Dx,Dy)U(x,y) = ny+2(yU)y—2U(x7y)(—§7 —2

and
S(x,y,a) = | @(Dy,Dy)Yi(x,y,0),

(p(vaDy)YZ(xvyv OC) .

We first check to see if Y (x,y) is differentiable. We
compute

[(p(DX7Dy)Yl (xvyv OC), (p(DX7Dy)Y2(x7y7 O!)]

which equals to [c; (o), c2 ()], which are the a-cuts
of fuzzy number C. Hence, Y (x,y) is fuzzy differen-
tiable. Because all partials of z and g with respect to
c are positive. And we easily see that

Yl(XOOC)—Cl( )X+C1(O€)
Y2 (x,0,0) = cr(ot)x+cz (@)

Yl(07y7 ) Yl( ) ) _CI(OC)

Y2(07y7 ) ( ) ) - CZ((X)
which are all true. Therefore, Y (x,y) is the fuzzy so-
lution of (26)-(28) in the sense of Buckley and Feur-
ing (see in”?3), which satisfies the boundary condi-
tions. This solution may be written as

U(x,y)=Cx+C

Now to have a figure of ot—cut of the solutions,
we consider fuzzy number C with membership func-
tion is Laplace function®*

C(1) :2<1+ex (ng\;_d)) , 1> 0.

It is easily to find the a-cuts of C are

A= e~ m (2 —1).e 0Y8

——1
in (2~ 1)),
for a € (0,1].
The continuity of extension principle states that
the at-cuts of U (x,y) = Cx+C ((x,y) is fixed) are

U) = |+ 1)[c —il n(2-1),

(x—i—l)[c—i—GT\/gln(%—l)] .

Obviously, the deterministic solution is the preferred
solution [U(x,y)]', which means that it has mem-
bership degree 1. So the membership function of

U(x,y) is

]
U (x,y)(t) :2<1 +exp(n|x%\/g|)>

Figure 1 and 2 shows some graphs of membership
functions of Laplace fuzzy numbers and U (x,y)(t)
at some fixed values of (x,y) € Ji;.

Laplace function

L L L
0 0z 04 06 08 1 12 14 16 18 2
t

Fig. 1. The curve of Laplace fuzzy number.
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Fig. 2. The curve of fuzzy solution U (x,y) at different val-
ues of (x,y).

A simulation was carried out using numerical
methods for the deterministic solution together with
the continuity of Zadeh’s extension principle. Fig-
ure 3 shows five concrete o-cuts of fuzzy solu-
tions. Concretely, the first and the fifth dark curves
from the bottom to the top of the surface corre-
spond to the lower bounded and the upper bounded
solutions of U (x,y). They are the curves of level
set [U(x,y)]*0%! here we choose o = 0.0001,
a small enough level number, for demonstrating
upper-lower bounded solutions. The second and the
fourth ones are the curves of level set [U(x,y)]",
which are the medium membership degree of so-
lutions. Finally, the dark curve in the center of
the surface corresponds to the deterministic solution
[U(x, )" = elx+1).

08 06 04 02 o0

¥

Fig. 3. Some a—cuts of fuzzy PHFDEs (26)-(28). The dark
curve in the center of the surface corresponds to the deter-
ministic solution [U(x,y)]".

Example 2. In this example we consider following

Fuzzy partial hyperbolic functional differential equations
fuzzy PHFDEs

Upy — (CXP(_%)U)y

1 -1 1
__U(x,y)(TvT)+CICOS(x_Z)+C3 (29)

with the boundary conditions are
¥
U (x,0) +/ U(x,s)ds
0

= (Crcosx+C3)(y+ 1) +Crexp(y) (30)

and

X
U0+ [ UGyr
0
= C(1 +sinx) + Co(1 4+ x)exp(y) + C3(1 +x)
€2y
where (x,y) € Jz; = [O,g] x [0,1], C; are fuzzy
numbers in [; = [0,M;],M; >0 (i = 1,2,3) and the
initial conditions is

U(x,y) = Cicoslx(y+ 1)+ Ca(e” +xy) +C3, (32)

here (x,y) € J; = [, 5] < [, 1\(0, 5] % (0,1]

)
Since

-1 —1 1
F(x,y, U(x,y)) = _U(x,y)(Tv T)+Cl COS(X— Z) +G3
satisfied
dm(F(xvya U(x,y))vF(xaya V(x,y)))
1 1 1 1

< dw(U(x,y)(_Za _Z)7V(X’Y)(_Z7 _Z))a (33)

for all U,V € C(J1/4,E2), (x,y) € Jzy. It means
that Hypothesis (H) is satisfied with K = 1. Due to
ki =k, =1, p=e /4, from inequality

242e7 14 2

2 +ﬁ<l

we imply that A > 1 +e /44 /3 +2e~1/4 + ¢ 1/2.
Thus all the conditions of Theorem 4.1 are hold.
And we conclude that there exists a unique fuzzy so-
lution U of problem (29)-(32) in the weighted metric
space (C(J)/4,E"),Hy).
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Let h(x,y,c) = cjcos(x — i) + ¢3, where ¢ =
(c1,¢2,¢3). The solution of the crisp PHFDEs
corresponding to (29)-(31) is u(x,y) = g(x,y,c) =
c1cosx + crexp(y) + ¢3, where ¢; € I, (x,y) € Jr.
We apply the fuzzification in c;, gained the paramet-
ric form of C;

[C]* = [ca(a),ca(a)], o €[0,1].

Let [C]* =I[Ci]*. By using the extension princi-
ple, we compute H from 4 and Y from g. After that,
we will show Y being fuzzy solution of this problem.
Indeed, since the partials of & and g with respect to
c; are positive

[H(x,y,C)]a :[Hl (xvyv OC),Hz(X,)@ OC)]

=[ min {A h
[Jgfgfa{ (x,,¢)}, max {h(x,y.c)}]

which equals to
1
c11 (o) cos(x — é_l) + 31 (o),

cr2(0t) cos(x— %) +cxn(a)

satisfied conditions (a) — (c). So [H(x,y,C)]* is the
o—cuts of fuzzy number Cj cos(x — i) + C3. Simi-
larly

[Y(x,y,C)]a = [Yl (x,y,a),Yz(x,y,Ot)]

= [Clg}éﬁ‘a {g(x,y,0)}, max {g(x,y,¢)]

= [c11(a) cosx+ ca1 (o) exp(y) + c31(x),
ca(or) cosx + cxn (o) exp(y) + ez ()]

is the oa—cuts of fuzzy number Cjcosx +
Crexp(y) +Cs.
Define differential operator

(P(Dany)U(xvy)
= Uy — (exp(—%)U)y—FU(X— i,y— %)

and
S(x,y,a) = |@(Dy,Dy)Y1(x,y,t),

(p(DX7Dy)Y2(x7y7 O!) .

We first check to see if Y (x,y) is differentiable. We
compute

[(p(DX7Dy)Y1 (xvyv OC), (p(DX7Dy)Y2(x7y7 O!)]

which equals to
1
[c11(0t)cos(x — é_l) +c31(a),
1
cra(0)cos(x — é_l) +cn(a)]

which are o-cut of fuzzy number Ccos(x — %) +GCs.
Hence, Y (x,y) is differentiable.

Because all partials of 4 and g with respect to ¢;
are positive, Y (x,y) is a fuzzy solution in the sense
of Buckley and Feuring. The integral boundary con-
ditions

y
Y1 (x,0, @) —|—/ Y1 (x,s)ds
0

= [Cii(a)cosx+Ca(a)](y+1) + Car (@) exp(y)

y
Y>(x,0, ) —|—/ Ys(x,s)ds
0

= [Cia(a)cosx+ Cy(a)](y+ 1)+ Co (o) exp(y

Yi(0,y, 00) + /O Yi(r,y)dr

= Cyy () (1+sinx) + oy () (1 +x) exp(y)
+C31(OC)(1 +x)

Y2(O7y7a) + AXYZ(tvy)dt
= Cr2(00)(1+sinx) + Cop () (1 +x)exp(y)
+C32(OC)(1 +x)

are all true. Therefore, Y (x,y) is fuzzy solution
which also satisfies the boundary conditions. This
solution may be written as

U(x,y) = Cicosx+Crexp(y) + Cs.

By using the continuity of extension principle
and Matlab simulation we will show some numer-
ical fuzzy solutions of problem.
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Case 1. Firstly, we consider C; =C, =C3 =C,
where C is a Gaussian fuzzy number 24

C(t) = exp(—2500(r — c)?), t € [0,00).
The o—cuts of C are

[C1% = [e1(@), c2(a0)]

1 1
=[c—0.024/In—,c+0.024/In—],
o o

for o € [0, 1].
The continuity of Zadeh’s extension principle
states that fuzzy solution of (29) — (32) are

U (x,y)]* = [(c ~0.02y/In é)(cosx—i—exp(y) +1),

(c+0.024/1n é)(cosx—i— exp(y) + 1)] .

So we can convert this interval valued function into
single valued function, that is the membership func-
tion of U (x,y)

t

U(x,y)(t) =exp <—2500[

Figures 4 and 5 show some graph of membership
functions of Gaussian fuzzy number and fuzzy solu-
tion U (x,y) at different values of (x,y).

Gaussian function

citt)

0 L L L
09 092 094 096 098 1 1.02 104 106 108 11
t

Fig. 4. The curve of Gaussian fuzzy number.

2
cosx+exp(y)+1 — >

Fuzzy partial hyperbolic functional differential equations

""""" x=pi,y=-0.3
——x=pi.y=0 ]
""""" x=pi,y=03

Fig. 5. The curve of fuzzy solutions U (x,y) at different val-
ues of (x,y).

Some simulations for three a-cuts of fuzzy so-
lution are shown in Figure 6. The dark curves
from the bottom to the top of the surface corre-
spond to the lower bounded, the deterministic (level
set [U(x,y)]') and the upper bounded solutions of

U(x,y).

Fig. 6. The lower bounded, deterministic and upper
bounded solutions of PHFDESs (29)-(32).

Figures 7 and 8 show some 2D graphs of some
a—cuts of fuzzy solution. The continuous line in
the center corresponds to the deterministic solution.
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This is the parametric form of an triangular fuzzy
number, so the membership fuzzy of fuzzy solution
is

U(x,y)(t) = <a1 cosx+apexp(y) +az,cicosx

+crexp(y) + ¢3,b1 cosx+ byexp(y) + b3>

Figure 9 shows membership functions of C; =
1'EU U.‘Z U.‘4 U.‘E UjB ; 112 114 16 (070'57 1)7 C2 = (0'57 172)’ C3 = (0'77 1'572) and
U(0,0) =C;+C,+C;.

1

JE—

Fig. 7. The 2D graphs of some o.—cuts of fuzzy solution. 09t 0
e C3
. 08 e C1+C2+C3 | ]
—— (g o
""""" Upitd yiI°* osp
4B | e [Ugpiid y)*® =
—— i g 0*
— ipia s

Fig. 9. The curves of some triangular fuzzy numbers.

Numerical simulations are used to obtain a
graphical representation of the fuzzy solution. The
surface of fuzzy solution is shown in figure 10.

Fig. 8. The 2D graphs of some o.—cuts of fuzzy solution.

Case 2. In this part, we consider C; =
(aj,ci,b;), (i =1,2,3) are three different triangu-
lar fuzzy numbers with membership functions in the

form
difa; <1 <
Ci(f) =4 2L if¢; <t <

0  otherwise.

1

c
b;

Uix,y)

The oc—cuts of C; are

[ai + (ci —a;)a,b; — (b — ¢;)al.

Then the ov—cuts of fuzzy solution are
Fig. 10. The surface of fuzzy solution with triangular fuzzy
numbers C;, i = 1,2,3.
cosx[a; + (c1 —ar) o] +exp(y)[az + (c2 — az) o]

+as+ (c3 — az) o, cosxlby — (by — ¢1) 0] 6. Conclusions

The main ambition of this article has been to

+exp(y)[b2 — (b —co)a] +b3 — (b3 —c3)x | investigate the fuzzy solutions of some class of
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partial hyperbolic functional differential equations
with local conditions and integral boundary condi-
tions. Our study provides a theoretical foundation
for many numerical solution methods and computa-
tional intelligence of some classes of fuzzy PDEs
and ensures the consistency, stability and conver-
gence of computational algorithms. We illustrate
our results by some computational examples, in
which we compute the fuzzy exact solutions of some
fuzzy boundary problems with time delay. The next
step in the direction proposed here is to study the
fuzzy solution for the partial hyperbolic functional
differential equations with the nonlocal conditions.
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