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Abstract

This paper investigates roughness of fuzzy soft sets. A pair of fuzzy soft rough approximations is proposed
and their properties are given. Based on fuzzy soft rough approximations, the concept of fuzzy soft rough
sets is introduced. New types of fuzzy soft sets such as full, intersection complete and union complete
fuzzy soft sets are defined and supported by some illustrative examples. We obtain the structure of fuzzy
soft rough sets, investigate the structure of fuzzy topologies induced by fuzzy soft sets, reveal the fact
that every finite fuzzy topological space is a fuzzy soft approximation space and discuss fuzzy soft rough
relations. We proved that there exists a one-to-one correspondence between the set of all fuzzy soft
sets and the set of all [0,1]-valued information systems, which illustrates that we can research [0,1]-
information systems by means of fuzzy soft sets.
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1. Introduction

To solve complicated problems in economics, engi-
neering, environmental science and social science,
methods in classical mathematics are not always
successful because of various types of uncertainties
present in these problems. There are several the-
ories: theory of probability, theory of fuzzy sets
27, rough set theory 20 and the interval mathemat-
ics which we can consider as mathematical tools for
dealing with uncertainties. But all these theories
have their own difficulties 18. To overcome these
kinds of difficulties, Molodtsov 18 proposed a com-
pletely new approach, which is called soft set theory,
for modeling uncertainty.

Recently works on soft set theory are progress-
ing rapidly. Maji et al. 16 defined several operations
on soft sets and made a theoretical study on soft set
theory. Aktas and Cagman 2 introduced the concept
of soft groups. Jun 12 introduced the concept of soft
BCK/BCI-algebras. Jiang et al. 11 extended soft sets
with description logics. Feng et al. 7,8 and Ali 1

investigated the relationship among soft sets, rough
sets and fuzzy sets. Ge et al.10 discussed the rela-
tionship between soft sets and topological spaces.

In soft set theory, we observe that in most cases
the parameters are vague words or sentences involve
vague words. Considering this point, Maji et al. 17

devoted the concept of fuzzy soft sets by combining
soft sets with fuzzy sets. Roy et al. 24 presented
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a fuzzy soft set theoretic approach towards decision
making problems. Feng et al. 9 proposed an ad-
justable approach to (weighted) fuzzy soft set based
decision making. Yang et al. 26 introduced the con-
cept of interval-valued fuzzy soft set. Jun et al. 13

discussed the applications of fuzzy soft sets to the
study of BCK/BCI-algebras. Tanay et al. 25 inves-
tigated the topological structure of fuzzy soft sets.
Li et al. 14 considered L-fuzzy soft sets based on
complete Boolean lattices.

Rough set theory proposed by Pawlak 20 stud-
ies intelligent systems characterized by insufficient
and incomplete information. The rough set philos-
ophy is founded on the assumption that with every
object in the universe, we associate some informa-
tion (data, knowledge). From a practical point of
view, it is better to define basic concepts of rough
set theory in terms of data. In fact, information and
knowledge are stored and represented in a data table
in many data analysis applications. This data table
containing rows labeled by objects and columns la-
beled by attributes is called an information system
(also known as a knowledge representation system).
It is well-known that Pawlak’s rough set model is
based on equivalence relations. The core concept of
this theory is upper and lower approximation opera-
tions, which are the operations induced by an equiv-
alent relation on the universe. They can also be seen
as a closure operator and a interior operator of the
topology induced by an equivalent relation on the
universe.

Soft set theory, fuzzy set theory and rough set
theory are all mathematical tools to deal with uncer-
tainty. It has been found that soft sets, fuzzy sets
and rough sets are closely related concepts 2. Feng
et al. 7 provided a framework to combine fuzzy sets,
rough sets and soft sets all together, which gives
several interesting concepts such as rough soft sets,
soft rough sets and soft rough fuzzy sets. Based on
Feng’s models presented in 7, Meng et al. 19 pro-
posed a new soft rough set model called a soft fuzzy
rough set where a fuzzy soft set is employed to gran-
ulate the universe of discourse.

As the hybrid model combining fuzzy sets, rough
sets with soft sets could be exploited to extend many
practical applications such as dealing with knowl-

edge acquisition in information systems with fuzzy
decisions (see 6,7,8), roughening on fuzzy soft sets
deserve deeply research. Notice that Meng’s model
is too complicated, this paper will further investigate
relationships between fuzzy soft sets and rough sets
where roughening on fuzzy soft sets is considered
from the angle of fuzzy points based on the models
presented in 8.

The remaining part of this paper is organized as
follows: In Section 2, we recall some basic concepts
of fuzzy sets and soft sets. In Section 3, we consider
a pair of fuzzy soft rough approximations and give
their properties. In Section 4, we obtain the struc-
ture of fuzzy topologies induced by fuzzy soft sets
and reveal the fact that every finite fuzzy topological
space is a fuzzy soft approximating space. In Sec-
tion 5, we introduce the concept of fuzzy soft rough
sets based on fuzzy soft rough approximations and
get the structure of fuzzy soft rough sets. In Sec-
tion 6, we discuss fuzzy soft rough equal relations
and fuzzy soft rough belonging relations. In Section
7, we obtain two one-to-one correspondence rela-
tionships associated with fuzzy soft sets, which ex-
pounds the broad application prospect of fuzzy soft
sets. Conclusion is in Section 8.

2. Preliminaries

In this paper, U denotes initial universe, E∗ denotes
the set of all possible parameters, E and E ′ denote
two nonempty subsets of E∗, I denotes [0,1] and 2U

denotes the family of all subsets of U .
Throughout this paper, we only consider the case

where U and E∗ are both nonempty finite sets, and
stipulate that sup /0 = 0.

We briefly recall some basic concepts of fuzzy
sets and soft sets.

2.1. Fuzzy sets and fuzzy topologies

Definition 2.1 (3) A fuzzy set A in U is defined by a
membership function A : U → I whose membership
value A(x) specifies the degree to which x belongs to
A for each x ∈U.

In this paper, IU denotes the family of all fuzzy
sets in U . 1̃ represents the fuzzy set which satisfies
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1̃(x) = 1 for each x ∈U and 0̃ represents the fuzzy
set which satisfies 0̃(x) = 0 for each x ∈U .

If A,B ∈ IU , then some fuzzy set relations and
operations are given componentwise proposed by
Zadeh 27 as follows:

(1) A = B⇔ A(x) = B(x) f or each x ∈U .
(2) A⊆ B⇔ A(x) 6 B(x) f or each x ∈U .
(3) (A ∪ B)(x) = max{A(x),B(x)} or A(x) ∨

B(x) f or each x ∈U .
(4) (A ∩ B)(x) = min{A(x),B(x)} or A(x) ∧

B(x) f or each x ∈U .
(5) Ac(x) = 1−A(x) f or each x ∈U .
Moreover,

(
⋃

α∈Γ
Aα)(x)= sup {Aα(x) : α ∈Γ} or ∨{Aα(x) : α ∈Γ}

for each x ∈U and

(
⋂

α∈Γ
Aα)(x)= in f {Aα(x) : α ∈Γ} or ∧{Aα(x) : α ∈Γ}

for each x ∈U , where {Aα : α ∈ Γ} ⊆ IU .
Obviously, A = B ⇐⇒ A⊆ B and B⊆ A.
A fuzzy set is called a fuzzy point in U , if it takes

the value 0 for each y ∈U except one, say, x ∈U . If
its value at x is λ (0 < λ 6 1), we denote this fuzzy
point by xλ , where the point x is called its support
and λ is called its height (see 15,21).

For a fuzzy point xλ and A ∈ IU , we defined
xλ ∈ A by xλ ⊆ A.

Obviously,

xλ ∈ A ⇐⇒ λ 6 A(x).

Example 2.2 Let U = {x1,x2,x3,x4,x5,x6}.
(1) Put

A(x1) = 0.1,A(x2) = 0.7,A(x3) = 1,A(x4) =
0.2,A(x5) = 0.5,A(x6) = 0.9.

Then A is a fuzzy set in X. We denote it by
A = {(x1,0.1),(x2,0.7),(x3,1),(x4,0.2),

(x5,0.5),(x6,0.9)}.
(2) We have

Ac = {(x1,0.9),(x2,0.3),(x3,0),(x4,0.8),
(x5,0.5),(x6,0.1)}.

(3) Put
B = {(x1,0.4),(x2,0.2),(x3,0.8),(x4,0.3),

(x5,0),(x6,0.7)}.

Then
A∪B = {(x1,0.4),(x2,0.7),(x3,1),(x4,0.3),

(x5,0.5),(x6,0.9)}.
A∩B = {(x1,0.1),(x2,0.2),(x3,0.8),(x4,0.2),

(x5,0),(x6,0.7)}.
(4) Put

C = {(x1,0),(x2,0.6),(x3,0),(x4,0),
(x5,0),(x6,0)}.

Then C is a fuzzy point in U.
Pick λ = 0.6 and x = x2. Then xλ = C.
Obviously, xλ ∈ A and xλ 6∈ B.

Definition 2.3 (3) Let τ ⊆ IU . Then τ is called a
fuzzy topology on U, if

(i) 1̃, 0̃ ∈ τ , (ii) A,B ∈ τ implies A∩B ∈ τ , (iii)
{Aα : α ∈ Γ} ⊆ τ implies ∪{Aα : α ∈ Γ} ∈ τ .

The pair (U,τ) is called a fuzzy topological
space and every member of τ is called a fuzzy open
set in U. A ∈ IU is called a fuzzy closed set in U, if
Ac ∈ τ .

Moreover, τ is called the indiscrete fuzzy topol-
ogy on U, if τ = {1̃, 0̃}.

Let (U,τ) be a fuzzy topological space and let
A ∈ IU . Then interior of A and the closure of A (see
3), denoted respectively by int(A) and cl(A), are de-
fined as follows:

(1)

int(A) = ∪{B : B⊆ A and B ∈ τ},

(2)

cl(A) = ∩{B : B⊇ A and 1̃−B ∈ τ}.

Definition 2.4 (4,5) Let τ ⊆ IU . Then τ is called a
generalized fuzzy topology on U, if (i) 0̃ ∈ τ , (ii)
{Aα : α ∈ Γ} ⊆ τ implies ∪{Aα : α ∈ Γ} ∈ τ .

Moreover, the pair (U,τ) is called a generalized
fuzzy topological space and every member of τ is
called a generalized fuzzy open set in U. A ∈ IU

is called a generalized fuzzy closed set in U, if
1̃−A ∈ τ .

2.2. Fuzzy soft sets

Definition 2.5 (18) A pair ( f ,E) is called a soft set
over U, if f is a mapping given by f : E → 2U . We
denote ( f ,E) by fE .
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To illustrate this idea, let us consider the fol-
lowing typical example, which was initiated by
Molodtsov 18.

Example 2.6 Let U = {x1,x2,x3,x4,x5,x6} be a
universe consisting of six houses as possible alter-
natives, and let E = {e1,e2,e3,e4} be a set of pa-
rameters considered by the decision makers, where
e1, e2, e3 and e4 represent the parameters “beau-
tiful”, “modern”, “cheap” and “in the green sur-
roundings”, respectively.

Now, we consider a soft set fE = ( f ,E), which
describes the “attractiveness of the houses” that
Mr.X is going to buy. In this case, to define the soft
set fE means to point out beautiful houses, modern
houses and so on. Consider the mapping f given
by “houses(.)”, where (.) is to be filled in by one of
the parameters ei ∈ E. For instance, f (e1) means
“houses(beautiful)”, and its functional value is the
set consisting of all the beautiful houses in U. Let

f (e1) = {x1,x2,x5}, f (e2) = /0,
f (e3) = {x3,x4}, f (e4) = {x3,x4,x6}.

Then fE is described by the following Table 1. If
xi ∈ f (e j), then xi j = 1; otherwise xi j = 0, where xi j
are the entries in the table.

Table 1. Tabular representation of the soft set fE

x1 x2 x3 x4 x5 x6
e1 1 1 0 0 1 0
e2 0 0 0 0 0 0
e3 0 0 1 1 0 0
e4 0 0 1 1 0 1

Definition 2.7 (16) A pair ( f ,E) is called a fuzzy
soft set over U, if f is a mapping given by f : E →
IU . We also denote ( f ,E) by fE .

In other words, a fuzzy soft set fE over U is a
parametrized family of fuzzy sets in the universe U .

Example 2.8 Let U = {x1,x2,x3,x4,x5,x6} and E =
{e1,e2,e3}. Let fE be a fuzzy soft set over U, defined
as follows
f (e1) = {(x1,0),(x2,0.3),(x3,0.8),(x4,0.5),

(x5,0.7),(x6,0.3)},
f (e2) = {(x1,0.7),(x2,0.5),(x3,0.1),(x4,0.2),

(x5,0.2),(x6,0.6)},
f (e3) = {(x1,0.1),(x2,0.9),(x3,1),(x4,0.5),

(x5,0.1),(x6,0.7)}.
Then fE is described by the following Table 2.

Table 2. Tabular representation of the fuzzy soft set fE

x1 x2 x3 x4 x5 x6
e1 0 0.3 0.8 0.5 0.7 0.3
e2 0.7 0.5 0.1 0.2 0.2 0.6
e3 0.1 0.9 1 0.5 0.1 0.7

Definition 2.9 (16) Let fE and gE ′ be two fuzzy soft
sets over U. fE is called a fuzzy soft subset of gE ′ , if
E ⊆ E ′ and f (e) ⊆ g(e) for each e ∈ E. We denote
it by fE ⊆̃ gE ′ .

Definition 2.10 (16) Let fE and gE ′ be two fuzzy soft
sets over U. fE and gE ′ are called fuzzy soft equal, if
fE is a fuzzy soft subset of gE ′ and gE ′ is a fuzzy soft
subset of fE . We denote it by fE = gE ′ .

Definition 2.11 (16) Let fE be a fuzzy soft set over
U.

(1) fE is called null, if f (e) = 0̃ for each e ∈ E.
(2) fE is called absolute, if f (e) = 1̃ for each

e ∈ E.

Feng et al. 8 introduced the concepts of full and
intersection complete soft sets. This inspire us giv-
ing the following definition.

Definition 2.12 Let fE be a fuzzy soft set over U.
(1) fE is called full, if

⋃
e∈E

f (e) = 1̃.

(2) fE is called intersection complete, if for any
e1,e2 ∈ E, there exists e3 ∈ E such that f (e1) ∩
f (e2) = f (e3).

(3) fE is called union complete, if for any e1,e2 ∈
E, there exists e3 ∈ E such that f (e1) ∪ f (e2) =
f (e3).

(4) fE is called topological, if { f (e) : e ∈ E} is
a fuzzy topology on U.

Obviously, every topological fuzzy soft set is
full, intersection complete and union complete, and
fE is intersection complete (resp. union complete) if
and only if for any E ′ ⊆ E, there exists e′ ∈ E such
that

⋂
e∈E ′

f (e) = f (e′) (resp.
⋃

e∈E ′
f (e) = f (e′)).

Example 2.13 Let U = {x1,x2,x3,x4} and E =
{e1,e2,e3}. Let fE be a fuzzy soft set over U, de-
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fined as follows

f (e1) = {(x1,0),(x2,1),(x3,0),(x4,1)}, f (e2) = 0̃,

f (e3) = {(x1,1),(x2,0),(x3,1),(x4,0)}.

Obviously, fE is full.
We have f (e1)∩ f (e2) = f (e1)∩ f (e3) = f (e2)∩

f (e3) = f (e2),
f (e1)∪ f (e3) = 1̃ 6= f (e)(∀ e ∈ E).
Thus fE is intersection complete. But fE is not

union complete.

Example 2.14 Let U = {x1,x2,x3,x4} and E =
{e1,e2,e3}. Let fE be a fuzzy soft set over U, de-
fined as follows

f (e1) = {(x1,0),(x2,1),(x3,0),(x4,1)}, f (e2) = 1̃,

f (e3) = {(x1,1),(x2,0),(x3,1),(x4,0)}.

Obviously, fE is full.
We have

f (e1)∪ f (e2)= f (e1)∪ f (e3)= f (e2)∪ f (e3)= f (e2),

f (e1)∩ f (e3) = 0̃ 6= f (e)(∀ e ∈ E).

Thus fE is union complete. But fE is not inter-
section complete.

Example 2.15 Let U = {x1,x2,x3,x4} and E =
{e1,e2,e3}. Let fE be a fuzzy soft set over U, de-
fined as follows

f (e1) = {(x1,0.1),(x2,0.2),(x3,0.3),(x4,0.5)},

f (e2) = {(x1,0.2),(x2,0.8),(x3,0.4),(x4,0.7)},

f (e3) = {(x1,0.5),(x2,0.9),(x3,0.5),(x4,1)}.

We have
f (e1) ⊂ f (e2) ⊂ f (e3), f (e1) ∪ f (e2) ∪ f (e3) =
{(x1,0.5),(x2,0.9),(x3,0.5),(x4,1)} 6= 1̃.
Then fE is intersection complete and union com-
plete. But fE is not full.

From Example 2.13, 2.14 and 2.15, we have the
following relationships:

fE is full

fE is intersection complete

fE is union complete

3. Fuzzy soft rough approximations

In 8, Feng et al. introduced the concepts of soft
rough sets and soft approximation spaces. Soft
rough sets, which could provide a better approxima-
tion than rough sets do, can be seen as a generalized
rough set model based on soft sets (see Example 4.6
in 8). The standard soft set model is used to form
the granulation structure of the universe, namely the
soft approximation space. Based on this granulation
structure, soft rough approximations and soft rough
sets are defined.

We can follow the same research ideas when
we consider fuzzy soft sets. Firstly, we introduce
fuzzy soft approximation spaces. Secondly, based
on the fuzzy soft approximation space P, we pro-
pose fuzzy soft rough approximations. Finally, we
present fuzzy soft rough sets (see Definition 5.1).

In this section, we consider a pair of fuzzy soft
rough approximations based on fuzzy soft approxi-
mation spaces and give their properties.

Let fE be a fuzzy soft set over U , x ∈U , e ∈ E
and A ∈ IU . Denote

Ax = {λ ∈ I : ∃ e ∈ E s.t. xλ ∈ f (e)⊆ A},

Ax = {λ ∈ I : ∃ e ∈ E s.t. xλ ∈ f (e), f (e)∩A 6= 0̃};

Ae
x = {λ ∈ I : xλ ∈ f (e)⊆ A},

Ae
x = {λ ∈ I : xλ ∈ f (e), f (e)∩A 6= 0̃};

Ae(x) = sup Ae
x, Ae(x) = sup Ae

x.
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Definition 3.1 Let fE be a fuzzy soft set over U.
Then the pair P = (U, fE) is called a fuzzy soft ap-
proximation space. Based on the fuzzy soft approxi-
mation space P, we define the following two opera-
tions: for A ∈ IU ,

apr
P
(A)(x) = sup Ax, x ∈U,

aprP(A)(x) = sup Ax, x ∈U.

apr
P
(A) and aprP(A) are called the fuzzy soft P-

lower approximation and the fuzzy soft P-upper ap-
proximation of U, respectively. In general, we refer
to apr

P
(A) and aprP(A) as fuzzy soft rough approx-

imations of U with respect to P.
In this paper, we denote

τP = {A ∈ IU : A = apr
P
(A)},

σP = {A ∈ IU : A = aprP(A)}.
Lemma 3.2 Let fE be a fuzzy soft set over U, x ∈U
and A,B ∈ IU . Then the following properties hold.

(1) Ax ⊆ Ax.
(2) a) Ax =

⋃
e∈E

Ae
x; b) Ax =

⋃
e∈E

Ae
x.

(3) a) A⊆ B⇒ Ax ⊆ Bx; b) A⊆ B⇒ Ax ⊆ Bx.

(4) If fE is intersection complete, then
(A∩B)

x
= Ax∩Bx.

(5) (A∪B)x = Ax∪Bx.

Proof. The proofs of (1) and (2) are obvious.
(3) a) If Ax = /0. Obviously, Ax ⊆ Bx.
If Ax 6= /0. Let λ ∈ Ax. Then xλ ∈ IU and

xλ ∈ f (e) ⊆ A for some e ∈ E. Since f (e) ⊆ A and
A ⊆ B, f (e) ⊆ B. This implies that xλ ∈ f (e) ⊆ B.
Thus λ ∈ Bx.

Hence
Ax ⊆ Bx.

b) We can suppose that Ax 6= /0. Let λ ∈ Ax. Then
xλ ∈ IU and xλ ∈ f (e), f (e)∩A 6= 0̃ for some e ∈ E.
f (e)∩A 6= 0̃ implies

f (e)(y)∧A(y) = ( f (e)∩A)(y) > 0 f or some y ∈U.

Since A⊆ B, A(y) 6 B(y). Then

( f (e)∩B)(y) = f (e)(y)∧B(y) > f (e)(y)∧A(y) > 0.

Thus f (e)∩B 6= 0̃. This implies that λ ∈ Bx.
Hence Ax ⊆ Bx.
(4) By (3), (A∩B)

x
⊆ Ax∩Bx.

Conversely. We can suppose that Ax ∩ Bx 6= /0.
Let λ ∈ Ax ∩Bx. Then there exist e1,e2 ∈ E such
that

xλ ∈ IU , xλ ∈ f (e1) ⊆ A and xλ ∈ f (e2) ⊆ B.
Thus

λ 6 f (e1)(x) and λ 6 f (e2)(x).

This implies that

λ 6 f (e1)(x)∧ f (e2)(x) = ( f (e1)∩ f (e2))(x)

Since fE is intersection complete, f (e1) ∩
f (e2) = f (e) for some e ∈ E. Now λ 6 f (e)(x). So
xλ ∈ f (e). Since f (e1) ⊆ A and f (e2) ⊆ B, f (e) ⊆
A∩B. Thus λ ∈ (A∩B)

x
. So (A∩B)

x
⊇ Ax∩Bx.

Hence
(A∩B)

x
= Ax∩Bx.

(5) By (3), (A∪B)x ⊇ Ax∪Bx.
Conversely. We can suppose that (A∪B)x 6= /0.

Let λ ∈ (A∪B)x. Then xλ ∈ IU and there exists
e ∈ E such that xλ ∈ f (e), f (e)∩ (A∪B) 6= 0̃. Now

f (e)∩ (A∪B) = ( f (e)∩A)∪ f (e)∩B) 6= 0̃.

Thus f (e)∩A 6= 0̃ or f (e)∩B) 6= 0̃. This implies
that λ ∈ Ax∪Bx. So (A∪B)x ⊆ Ax∪Bx.

Hence
(A∪B)x = Ax∪Bx.

Theorem 3.3 Let fE be a fuzzy soft set over U, let
P = (U, fE) be a fuzzy soft approximation space and
A,B ∈ IU . Then the following properties hold.

(1)

apr
P
(A) =

⋃

e∈E

Ae =
⋃
{ f (e) : e ∈ E and f (e)⊆ A}.

(2)

aprP(A)=
⋃

e∈E

Ae =
⋃
{ f (e) : e∈E and f (e)∩A 6= 0̃}.

(3) apr
P
(A)⊆ aprP(A); apr

P
(A)⊆ A.
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(4) apr
P
(0̃) = aprP(0̃) = 0̃; apr

P
(1̃) =

aprP(1̃).

(5) A ⊆ B ⇒ apr
P
(A) ⊆ apr

P
(B); A ⊆ B ⇒

aprP(A)⊆ aprP(B).

(6) aprP(A∪B) = aprP(A)∪aprP(B).

Proof. (1) and (2) can easily be obtained by de-
composition of fuzzy sets.

(3) By Lemma 3.2, we can easily prove that
apr

P
(A)⊆ aprP(A).

Let x ∈ U . If Ax = /0, then apr
P
(A)(x) = 0 6

A(x).
If Ax 6= /0. For each λ ∈ Ax, xλ ∈ IU and xλ ∈

f (eλ ) ⊆ A for some eλ ∈ E. So λ 6 f (eλ )(x) 6
A(x). This implies that apr

P
(A)(x) = sup Ax 6 A(x).

Thus
apr

P
(A)⊆ A.

(4) The proofs are obvious.
(5) Suppose that A⊆ B. Let x ∈U . We can sup-

pose that Ax 6= /0. For each λ ∈ Ax, by Lemma 3.2,
λ ∈ Bx. Then λ 6 sup Bx = apr

P
(B)(x). This im-

plies that apr
P
(A)(x) = sup Ax 6 apr

P
(B)(x), Thus

apr
P
(A)⊆ apr

P
(B).

Similarly, we can prove that

A⊆ B⇒ aprP(A)⊆ aprP(B).

(6) By (5),

aprP(A∪B)⊇ aprP(A)∪aprP(B).

Conversely. Let x ∈ U . We can suppose that
(A∪B)x 6= /0. For each λ ∈ (A∪B)x, λ ∈ Ax ∪Bx
by Lemma 3.2. Then λ ∈ Ax or λ ∈ Bx. Thus

λ 6 sup Ax = aprP(A)(x) or λ 6 sup Bx = aprP(B)(x).

So

λ 6 aprP(A)(x)∨aprP(B)(x)= (aprP(A)∪aprP(B))(x).

This implies that

aprP(A∪B)(x)= sup (A∪B)x 6 (aprP(A)∪aprP(B))(x).

Thus

aprP(A∪B)⊆ aprP(A)∪aprP(B).

Hence

aprP(A∪B) = aprP(A)∪aprP(B).

To illustrate Theorem 3.3, we give the following
examples.
Example 3.4 Let U = {x1,x2,x3,x4}, E = {e1,e2}
and let fE be a fuzzy soft set over U, defined as fol-
lows

f (e1) = {(x1,0),(x2,0.2),(x3,0.3),(x4,0)},
f (e2) = {(x1,0.2),(x2,0.8),(x3,0.1),(x4,0.7)}.
(1) Let

A = {(x1,0.5),(x2,0),(x3,0),(x4,0.7)}.
We have

f (e1)∩A = 0̃, f (e2)∩A 6= 0̃.

Then Ax1 = Ae2
x1

= {λ ∈ (0,1] : λ 6 f (e2)(x1)}=
(0,0.2]. So

aprP(A)(x1) = sup Ax1 = 0.2 < 0.5 = A(x1).

Thus
A 6⊆ aprP(A).

(2) Since f (e1)⊆ 1̃, f (e2)⊆ 1̃,

1̃x2
= {λ ∈ (0,1] : λ 6 f (e1)(x2)}∪{λ ∈ (0,1] : λ 6

f (e2)(x2) = (0,0.2]∪ (0,0.8] = (0,0.8].
So

apr
P
(1̃)(x2) = sup 1̃x2

= 0.8 < 1 = 1̃(x2).

Thus
apr

P
(1̃) 6= 1̃.

(3) Let

B = {(x1,0.1),(x2,0.8),(x3,0.4),(x4,0.6)}.
Then

A∪B = {(x1,0.5),(x2,0.8),(x3,0.4),(x4,0.7)}.
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We have

f (e1) 6⊆ A, f (e2) 6⊆ A; f (e1)⊆ B, f (e2) 6⊆ B;

f (e1)⊆ A∪B, f (e2)⊆ A∪B.

Ax2
= /0 implies

apr
P
(A)(x2) = 0.

Bx2
= Be1

x2
= {λ ∈ (0,1] : λ 6 f (e1)(x2)} =

(0,0.2] implies

apr
P
(B)(x2) = sup Bx2

= 0.2.

(A∪B)
x2

=(A∪B)e1

x2
∪(A∪B)e2

x2
=(0, f (e1)(x2)]∪

(0, f (e2)(x2)] = (0,0.2]∪ (0,0.8] = (0,0.8] implies

apr
P
(A∪B)(x2) = sup (A∪B)

x2
= 0.8.

Note that

(apr
P
(A)∪apr

P
(B))(x2)= 0.2 6= apr

P
(A∪B)(x2)= 0.8

Thus

apr
P
(A)∪apr

P
(B) 6= apr

P
(A∪B).

(4) Let
C = {(x1,0.2),(x2,0),(x3,0.4),(x4,0.7)},
D = {(x1,0.4),(x2,0.6),(x3,0),(x4,0.5)}.
Then
C∩D = {(x1,0.2),(x2,0),(x3,0),(x4,0.5)}.
We have
f (e1) ∩ C 6= 0̃, f (e2) ∩ C 6= 0̃; f (e1) ∩ D 6=

0̃, f (e2)∩D 6= 0̃;
f (e1)∩ (C∩D) = 0̃, f (e2)∩ (C∩D) 6= 0̃.
Cx3 = Dx3 = (0,0.3] implies

aprP(C)(x3) = aprP(D)(x3) = 0.3.

(C∩D)x3
= (C∩D)

e2

x3
= (0,0.1] implies

aprP(C∩D)(x3) = 0.1.
Note that

(aprP(C)∩aprP(D))(x3)= 0.3 6= aprP(C∩D)(x3)= 0.1

Thus

aprP(C)∩aprP(D) 6= aprP(C∩D).

Example 3.5 Let U = {x1,x2,x3,x4}, E = {e1,e2}
and let fE be a fuzzy soft set over U, defined as fol-
lows

f (e1) = {(x1,0.1),(x2,0.2),(x3,0.3),(x4,0.5)},
f (e2) = {(x1,0.2),(x2,0.8),(x3,0.1),(x4,0.7)}.
Let
A = {(x1,0.1),(x2,0.8),(x3,0.4),(x4,0.7)},
B = {(x1,0.3),(x2,0.8),(x3,0.1),(x4,1)}.
Then
A∩B = {(x1,0.1),(x2,0.8),(x3,0.1),(x4,0.7)}.
We have
f (e1)⊆ A, f (e2) 6⊆ A; f (e1) 6⊆ B, f (e2)⊆ B;

f (e1) 6⊆ A∩B, f (e2) 6⊆ A∩B.
Ax2

= Ae1
x2

= {λ ∈ (0,1] : λ 6 f (e1)(x2)} =
(0,0.2] implies

apr
P
(A)(x2) = sup Ax2

= 0.2.

Bx2
= Be2

x2
= {λ ∈ (0,1] : λ 6 f (e2)(x2)} =

(0,0.8] implies

apr
P
(B)(x2) = sup Bx2

= 0.8.

(A∩B)
x2

= /0 implies
apr

P
(A∩B)(x2) = 0.

Note that (apr
P
(A) ∩ apr

P
(B))(x2) = 0.2 6=

apr
P
(A∩B)(x2) = 0.

Then
apr

P
(A)∩apr

P
(B) 6= apr

P
(A∩B).

Lemma 3.6 Let fE be a fuzzy soft set over U and
A ∈ IU . Then the following properties hold.

(1) If apr
P
(A) = B, then for each x ∈U,

Ax = Bx ⊆ Bx ⊆ Ax.

(2) If aprP(A) = B, then for each x ∈U,

Ax ⊆ Ax ⊆ Bx ⊆ Bx.

Proof. (1) By Theorem 3.3, apr
P
(A) ⊆ A. Then

B⊆ A.
By Lemma 3.2, Ax ⊇ Bx ⊆ Bx ⊆ Ax.
It suffices to show Ax ⊆ Bx.
We can suppose that Ax 6= /0. For each λ ∈ Ax,

xλ ∈ IU and xλ ∈ f (eλ )⊆ A for some eλ ∈ E.
By Theorem 3.3, B =

⋃{ f (e) : e∈ E and f (e)⊆
A}. Then f (eλ )⊆ B. This implies that λ ∈ Bx. Thus
Ax ⊆ Bx.
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(2) By Lemma 3.2,
Ax ⊆ Ax and Bx ⊆ Bx.
It suffices to show

Ax ⊆ Bx.

We can suppose that Ax 6= /0. For each λ ∈ Ax,
xλ ∈ IU and xλ ∈ f (eλ ), f (eλ )∩A 6= 0̃ for some
eλ ∈ E.

By Theorem 3.3, B =
⋃{ f (e) : e ∈ E and f (e)∩

A 6= 0̃}. Then f (eλ )⊆ B. This implies λ ∈ Bx.
Thus Ax ⊆ Bx.

Theorem 3.7 Let fE be a fuzzy soft set over U, let
P = (U, fE) be a fuzzy soft approximation space and
A,B ∈ IU . Then the following properties hold.

(1) apr
P
(apr

P
(A)) = apr

P
(A).

(2) apr
P
(aprP(A)) = aprP(A).

(3) aprP(apr
P
(A))⊇ apr

P
(A).

(4) aprP(aprP(A))⊇ aprP(A).

Proof. (1) By Theorem 3.3, it suffices to show that

apr
P
(B)(x)> B(x) f or each x∈U, where B = apr

P
(A).

We can suppose that Ax 6= /0. For each λ ∈
Ax, by Lemma 3.6, Ax = Bx, then λ ∈ Bx. Thus
λ 6 sup Bx = apr

P
(B)(x). Hence B(x) = sup Ax 6

apr
P
(B)(x).

(2) By Theorem 3.3, it suffices to show that

apr
P
(B)(x)> B(x) f or each x∈U, where B = aprP(A).

We can suppose that Ax 6= /0. For each λ ∈ Ax, by
Lemma 3.6, Ax ⊆ Bx, λ ∈ Bx. Thus λ 6 sup Bx =
apr

P
(B)(x). Hence B(x) = sup Ax 6 apr

P
(B)(x).

(3) It suffices to show that

aprP(B)(x)> B(x) f or each x∈U, where B = apr
P
(A).

We can suppose that Ax 6= /0. For each λ ∈ Ax,
by Lemma 3.6, Ax = Bx, λ ∈ Bx. By Lemma 3.2,
λ ∈ Bx. Thus λ 6 sup Bx = aprP(B)(x). Hence
B(x) = sup Ax 6 aprP(B)(x).

(4) It suffices to show that

aprP(B)(x)> B(x) f or each x∈U, where B = aprP(A).

We can suppose that Ax 6= /0. For each λ ∈ Ax,
by Lemma 3.6, Ax ⊆ Bx, λ ∈ Bx. By Lemma 3.2,
λ ∈ Bx. Thus λ 6 sup Bx = aprP(B)(x). Hence
B(x) = sup Ax 6 aprP(B)(x).

Theorem 3.8 Let fE be a fuzzy soft set over U and
let P = (U, fE) be a fuzzy soft approximation space.
Then the following are equivalent:

(1) fE is full;
(2) A⊆ aprP(A) for any A ∈ IU ;
(3) aprP(1̃) = 1̃;
(4) apr

P
(1̃) = 1̃.

Proof. (1)⇒ (2). By Theorem 3.3, apr
P
(A) ⊆ A.

It suffices to show that

A(x) 6 aprP(A)(x) f or each x ∈U.

If A(x) = 0, then A(x) 6 aprP(A)(x).
If A(x) 6= 0, by fE is full, 1̃ =

⋃
e∈E

f (e),

A(x) 6 1 = 1̃(x) = ∨{ f (e)(x) : e ∈ E}.
Thus A(x) 6 f (e)(x) for some e ∈ E. Put λ =

A(x). Then

xλ ∈ IU and xλ ∈ f (e).

Note that ( f (e)∩A)(x) = f (e)(x)∧A(x) = A(x).
So ( f (e)∩A 6= 0̃. This implies that λ ∈ Ax. Thus

A(x) = λ 6 aprP(A)(x).

(2)⇒ (3) This is obvious.
(3)⇒ (4) The proof follows from Theorem 3.3.
(4)⇒ (1). Suppose that apr

P
(1̃) = 1̃. By Theo-

rem 3.3,

apr
P
(1̃)=

⋃
{ f (e) : e∈E and f (e)⊆ 1̃}=

⋃
{ f (e) : e∈E}.

Then 1̃ =
⋃{ f (e) : e ∈ E}. Thus fE is full.

Theorem 3.9 Let fE be a fuzzy soft set over U and
let P = (U, fE) be a fuzzy soft approximation space.
Then the following properties hold.

(1) If fE is intersection complete, then apr
P
(A∩

B) = apr
P
(A)∩apr

P
(B) for any A,B ∈ IU .

(2) If fE is full and union complete, then
aprP(A) = 1̃ for any A ∈ IU \{0̃}.
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Proof. (1) By Theorem 3.3,

apr
P
(A∩B)⊆ apr

P
(A)∩apr

P
(B).

It suffices to show that

apr
P
(A∩B)(x)> (apr

P
(A)∩apr

P
(B))(x) f or each x∈U.

Suppose that

apr
P
(A∩B)(x)< (apr

P
(A)∩apr

P
(B))(x) f or some x∈U.

Put

c = apr
P
(A∩B)(x), a = apr

P
(A)(x) and b = apr

P
(B)(x).

Then c < min {a, b}. Since c < a and a = sup Ax,
λ1 > c for some λ1 ∈ Ax.

Since c < b and b = sup Bx, λ2 > c for some
λ2 ∈ Bx.

λ1 ∈ Ax implies xλ1 ∈ IU and xλ1 ∈ f (e1)⊆ A for
some e1 ∈ E.

λ2 ∈ Bx implies xλ2 ∈ IU and xλ2 ∈ f (e2)⊆ B for
some e2 ∈ E.

Since fE is intersection complete, f (e1) ∩
f (e2) = f (e) for some e ∈ E. This implies that
f (e)⊆ A∩B.

Put
λ = min {λ1,λ1}.

Then λ > c and xλ ∈ IU . Note that λ 6 f (e)(x).
So xλ ∈ f (e). This implies that λ ∈ (A∩B)

x
. Thus

λ 6 c, contradiction.
(2) Since fE is full and union complete, f (e∗) =⋃

e∈E
f (e) = 1̃ for some e∗ ∈ E. Thus, for each A ∈

IU \{0̃} and each x∈U , pick λ = 1, then xλ ∈ f (e∗)
and f (e∗)∩ A = A 6= 0̃. So λ ∈ Ax. This implies
apr

P
(A)(x) = 1. Hence aprP(A) = 1̃.

Example 3.10 Let U = {x1,x2,x3,x4} and E =
{e1,e2,e3}. Let fE be a fuzzy soft set over U, de-
fined as follows

f (e1) = {(x1,0),(x2,1),(x3,0),(x4,1)}, f (e2) = 1̃,

f (e3) = {(x1,1),(x2,0),(x3,1),(x4,0)}.
By Example 2.14, fE is full and union complete.
For any A∈ IU \{0̃}, f (e2)∩A 6= 0̃. By Theorem

3.3, aprP(A)⊇ f (e2) = 1̃. Thus aprP(A) = 1̃.

4. Fuzzy soft sets versus fuzzy topologies

In this section we investigate the relationship be-
tween fuzzy soft sets and fuzzy topologies.

4.1. Fuzzy topologies induced by fuzzy soft sets

Theorem 4.1 Let fE be a fuzzy soft set over U and
let P = (U, fE) be a fuzzy soft approximation space.
Then the following properties hold.

(1) τP is a generalized fuzzy topology on U.
(2) If fE is full, intersection complete, then τP is

a fuzzy topology on U.
(3) If fE is full and union complete, then σP is

the indiscrete fuzzy topology on U.

Proof. (1) By Theorem 3.3, 0̃ ∈ τP.
Let Aα ∈ τP for each α ∈ Γ. Denote A = ∪{Aα :

α ∈ Γ}. Since Aα ⊆ A for each α ∈ Γ, by Theo-
rem 3.3, we have Aα = apr

P
(Aα) ⊆ apr

P
(A). So

A = ∪{Aα : α ∈ Γ} ⊆ apr
P
(A). By Theorem 3.3,

apr
P
(A) ⊆ A. Thus apr

P
(A) = A. This implies that

∪{Aα : α ∈Γ} ∈ τP. Hence τP is a generalized fuzzy
topology on U .

(2) By Theorem 3.8 and 3.9, we have 1̃ ∈ τ and
A∩B∈ τP whenever A,B∈ τP. By (1), τP is a gener-
alized fuzzy topology on U . Thus τ is a fuzzy topol-
ogy on U .

(3) This holds by Theorem 3.3, 3.8 and 3.9.

Definition 4.2 Let fE be a full and intersection
complete fuzzy soft set over U and let P = (U, fE) be
a fuzzy soft approximation space. Then τP is called
the fuzzy topology induced by fE on U.

Example 4.3 In Example 2.13, we obtain that

{A∈ IU : f (e)⊆A f or some e∈E}= {Ai : 1 6 i 6 8},

where
A1 = f (e1) = {(x1,0),(x2,1),(x3,0),(x4,1)},
A2 = f (e2) = 0̃,
A3 = f (e3) = {(x1,1),(x2,0),(x3,1),(x4,0)},
A4 = {(x1,1),(x2,1),(x3,0),(x4,1)},
A5 = {(x1,0),(x2,1),(x3,1),(x4,1)},
A6 = {(x1,1),(x2,1),(x3,1),(x4,0)},
A7 = {(x1,1),(x2,0),(x3,1),(x4,1)},
A8 = 1̃.
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By Theorem 3.3, apr
P
(A1) = f (e1)∪ f (e2) = A1.

Then A1 ∈ τP.
Similarly, we can prove that A2,A3,A8 ∈ τP and

A4,A5,A6,A7 6∈ τP.
Hence

τP = {A1,A2,A3,A8}.
The following theorem gives the structure of

fuzzy topologies induced by fuzzy soft sets.
Theorem 4.4 Let τP be the fuzzy topology induced
by a full and intersection complete fuzzy soft set fE
on U. Then the following properties hold.

(1)

{aprP(A) : A ∈ IU} ⊆ τP = {apr
P
(A) : A ∈ IU}.

(2)
τP ⊇ { f (e) : e ∈ E}.

(3) If fE is topological, then

τP = { f (e) : e ∈ E}.
(4) apr

P
is an interior operator of τP.

Proof. (1) By Theorem 3.7, we have

{aprP(A) : A ∈ IU} ⊆ τP.

Obviously,

τP ⊆ {apr
P
(A) : A ∈ IU}.

Let B ∈ {apr
P
(A) : A ∈ IU}. Then B =

apr
P
(A) for some A ∈ IU . By Theorem 3.7,

apr
P
(apr

P
(A)) = apr

P
(A). This implies that B∈ τP.

Thus
τP ⊇ {apr

P
(A) : A ∈ IU}.

Hence

{aprP(A) : A ∈ IU} ⊆ τP = {apr
P
(A) : A ∈ IU}.

(2) For each e ∈ E, by Theorem 3.3,

apr
P
( f (e))=

⋃
{ f (e′) : e′ ∈E and f (e′)⊆ f (e)}⊆ f (e).

Then f (e) = apr
P
( f (e)). So f (e) ∈ τP. Thus

{ f (e) : e ∈ E} ⊆ τP.

(3) By (2), τP ⊇ { f (e) : e ∈ E}.
Let A ∈ τP. If A = 0̃, by fE is topological, then

A ∈ { f (e) : e ∈ E}.
If A 6= 0̃, then A = apr

P
(A). Put E1 = {e ∈ E :

f (e) ⊆ A}, by Theorem 3.3, A = ∪{ f (e) : e ∈ E1}.
We claim that E1 6= /0. Otherwise, E1 = /0. Then
for each x ∈ U , A(x) = sup { f (e)(x) : e ∈ E1} =
sup /0 = 0. So A = 0̃, a contradiction. Since fE
is union complete, there exists e′ ∈ E such that
∪{ f (e) : e ∈ E1} = f (e′). That is, A = f (e′). This
implies that τP ⊆ { f (e) : e ∈ E}.

Hence
τP = { f (e) : e ∈ E}.

(4) It suffices to show that

apr
P
(A) = int(A) f or each A ∈ IU .

By (1), apr
P
(A) ∈ τP. By Theorem 3.3,

apr
P
(A)⊆ A. Thus

apr
P
(A)⊆ int(A).

Conversely. For each B∈ τP with B⊆A, we have
B = apr

P
(B)⊆ apr

P
(A) by Theorem 3.3. Thus

int(A) =
⋃
{B : B ∈ τP and B⊆ A} ⊆ apr

P
(A).

Hence
apr

P
(A) = int(A).

4.2. Fuzzy soft sets induced by fuzzy topologies

We recall that a fuzzy topology is finite if this fuzzy
topology has only finite elements.
Definition 4.5 Let τ be a finite fuzzy topology on U.
Denote τ = {Ue : e ∈ E}, where E is the set of in-
dexes. Define a mapping fτ : E → IU by fτ(e) = Ue
for each e ∈ E. Then the fuzzy soft set ( fτ)E over U
is called the fuzzy soft set induced by τ on U.
Example 4.6 Let U = {x1,x2,x3,x4} and let τ =
{Ue1 ,Ue2 ,Ue3 ,Ue4} be a finite fuzzy topology on U
where

Ue1 = {(x1,0),(x2,1),(x3,0),(x4,1)}, Ue2 = 0̃,
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Ue3 = {(x1,1),(x2,0),(x3,1),(x4,0)}, Ue4 = 1̃.

Now we define a mapping fτ : E → IU by fτ(e) =
Ue for each e ∈ E = {e1,e2,e3,e4}.

Thus, ( fτ)E is the fuzzy soft set induced by τ on
U.

Definition 4.7 Let (U,µ) be a finite fuzzy topologi-
cal space. If there exists a full and intersection com-
plete fuzzy soft set fE over U such that τP = µ , then
(U,µ) is called a fuzzy soft approximating space.

Example 4.8 Let (U,τ) be a fuzzy topological
space in Example 4.6 and let fE be a soft set over
U in Example 2.13. Then fE is full and intersection
complete.

By Example 4.3, τP = τ .
Thus (U,τ) is a fuzzy soft approximating space.

The following Proposition 4.9 can easily be
proved.

Proposition 4.9 (1) Let τ be a finite fuzzy topology
on U and let ( fτ)E be the fuzzy soft set induced by τ
on U. Then ( fτ)E is topological.

(2) Let τ1 and τ2 be two finite fuzzy topologies on
U and let ( fτ1)E1 and ( fτ1)E2 be two fuzzy soft sets
induced respectively by τ1 and τ2 on U. If τ1 ⊆ τ2,
then

( fτ1)E1 ⊆̃ ( fτ2)E2 .

Theorem 4.10 Let τ be a finite fuzzy topology on U,
let ( fτ)E be the fuzzy soft set induced by τ on U and
let τ fτ be the fuzzy topology induced by ( fτ)E on U.
Then τ = τ fτ .

Proof. Put τ = {Ue : e ∈ E}, then fτ : E → IU is
a mapping, where fτ(e) = Ue for each e ∈ E. By
Proposition 4.9, ( fτ)E is topological.

By Theorem 4.4,

τ fτ = { fτ(e) : e ∈ E}.

Hence
τ fτ = τ.

Corollary 4.11 Every finite fuzzy topological space
is a fuzzy soft approximating space.

Theorem 4.12 Let (U,τ) be a finite fuzzy topologi-
cal space. Then there exists a topological fuzzy soft
set fE over U such that

apr
P
(A) = int(A) f or each A ∈ IU ,

where P = (U, fE) is a soft approximation space.

Proof. Put τ = {Ue : e ∈ E}, where E is the set of
indexes. Define a mapping f : E → IU by

f (e) = Ue f or each e ∈ E.

By Proposition 4.9, fE is topological.
Let A ∈ IU . It suffices to show that

apr
P
(A)(x) = int(A)(x) f or each x ∈U.

Let λ ∈ Ax. Then xλ ∈ IU and xλ ∈ f (e)⊆ A for
some e ∈ E. Then λ 6 f (e)(x) = Ue(x).

Note that

int(A) =
⋃
{B : B ∈ τ and B⊆ A}.

Thus

λ 6
∨
{B(x) : B ∈ τ and B⊆ A}= int(A)(x).

This implies that

apr
P
(A)(x) = sup Ax 6 int(A)(x).

On the other hand. Put

Cx = {B(x) : B(x) 6= 0,B ∈ τ and B⊆ A}.
Let B(x) ∈ Cx. Then B = f (e) for some e ∈ E.

Pick λ = B(x). Thus

xλ ∈ IU and xλ ∈ f (e)⊆ A.

This implies that λ ∈ Ax. So B(x) = λ 6
sup Ax = apr

P
(A)(x). Thus

int(A)(x)=
∨
{B(x) : B∈ τ and B⊆A}= sup Cx 6 apr

P
(A)(x).

Hence

apr
P
(A)(x) = int(A)(x).
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Theorem 4.13 Let fE be a full and intersection
complete fuzzy soft set over U, let τP be the fuzzy
topology induced by fE on U and let ( fτP)E ′ be the
fuzzy soft set induced by τP on U. Then the following
properties hold.

(1)
fE ⊆̃ ( fτP)E ′ .

(2) If fE is topological, then

fE = ( fτP)E ′ .

Proof. (1) By Theorem 4.4, τP ⊇ { f (e) : e ∈ E}.
Denote

τP = {Ue : e∈E ′}, where E ⊆E ′ and Ue = f (e) f or each e∈E.

Thus fτP is a mapping given by

fτP : E ′→ IU , where fτP(e) = Ue f or each e ∈ E ′.

Hence fE ⊆̃ ( fτP)E ′ .
(2) Since fE is topological, By Theorem 4.4,

E = E ′.
Hence fE = ( fτP)E ′ .

5. The related properties of fuzzy soft rough
sets

In this section we introduce the concept of fuzzy soft
rough sets and give the related properties of fuzzy
soft rough sets.
Definition 5.1 Let fE be a fuzzy soft set over U and
let P = (U, fE) be a fuzzy soft approximation space.
Then for each A ∈ IU , A is called a fuzzy soft P-
definable set, if apr

P
(A) = aprP(A); A is called a

fuzzy soft P-rough set, if apr
P
(A) 6= aprP(A).

Moreover, the sets

PosP(A) = apr
P
(A),

NegP(A) = 1̃−aprP(A),

BndP(A) = aprP(A)−apr
P
(A)

are called the soft P-positive region, the soft P-
negative region and the soft P-boundary region of
A, respectively.

Example 5.2 Let U = {x1,x2,x3,x4} and E =
{e1,e2,e3}. Let fE be a fuzzy soft set over U, de-
fined as follows

f (e1) = {(x1,0.3),(x2,0),(x3,0),(x4,0.4)},

f (e2) = {(x1,0.2),(x2,0.4),(x3,0.6),(x4,0.3)},
f (e3) = {(x1,0.9),(x2,0.2),(x3,0.5),(x4,0.3)}.
Let

A = {(x1,0.4),(x2,0.1),(x3,0),(x4,0.7)}.

Since f (e1) ⊂̃ A, f (e2) ˜6⊂ A and f (e3) ˜6⊂ A, by
Theorem 3.3, we have apr

P
(A) = f (e1).

Since f (ei)∩A 6= 0̃ (i = 1,2,3), by Theorem 3.3,
we have aprP(A) = f (e1)∪ f (e2)∪ f (e3).

Thus apr
P
(A) 6= aprP(A). This show that A is a

fuzzy soft rough set.
Denote

R = {A ∈ IU : A is a fuzzy soft P-rough set
},

D = {A ∈ IU : A is a fuzzy soft P-definable
set }.
Theorem 5.3 Let fE be a fuzzy soft set over U and
let P = (U, fE) be a fuzzy soft approximation space.
Then for each A ∈ IU ,

A ∈D ⇐⇒ aprP(A)⊆ A.

Proof. Note that if A is fuzzy soft P-definable, then
apr

P
(A) = aprP(A). By Theorem 3.3, apr

P
(A)⊆ A.

Thus aprP(A)⊆ A.
Conversely. Suppose that aprP(A)⊆A. To prove

that A is fuzzy soft P-definable, we only need to
show that

aprP(A)(x) = apr
P
(A)(x) f or each x ∈U.

Put B = aprP(A). By Lemma 3.6, Ax ⊆Bx. Since
B ⊆ A, by Lemma 3.2, we have Bx ⊆ Ax. This im-
plies that Ax = Ax. Hence

aprP(A)(x) = sup Ax = sup Ax = apr
P
(A)(x).
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Corollary 5.4 Let fE be a fuzzy soft set over U, let
P = (U, fE) be a fuzzy soft approximation space.
Then for each A ∈ IU ,

A ∈R ⇐⇒ aprP(A) 6⊆ A.

For P,Q ⊆ IU , denote

P \Q = {A ∈ IU : A ∈P and A 6∈Q}.

The following Theorem 5.6 gives the structure of
fuzzy soft rough sets.

Theorem 5.5 Let fE be a fuzzy soft set over U and
let P = (U, fE) be a soft approximation space.

(1) R ∪D = IU , R ∩D = /0 and σP ⊆D .
(2) If fE is full, then

R = IU \σP and D = σP ⊆ τP.

(2) If fE is full and union complete, then

R = IU \{0̃, 1̃} and D = {0̃, 1̃}= σP ⊆ τP.

Proof. This holds by Theorem 3.3, 3.8, 3.9 and 5.3.

By Theorem 3.9, we have the following Theorem
5.6.

Theorem 5.6 Let fE be a full and union complete
fuzzy soft set over U. Then for A ∈ IU \{0̃},

NegP(A) = 0̃, BndP(A) = 1̃−PosP(A),

where P = (U, fE) is a fuzzy soft approximation
space.

6. Fuzzy soft rough relations

In this section we discuss fuzzy soft rough equal re-
lations and fuzzy soft rough belonging relations.

6.1. Fuzzy soft rough equal relations

Definition 6.1 Let fE be a fuzzy soft set over U and
let P = (U, fE) be a fuzzy soft approximation space.
For A,B ∈ IU , we define

A ∼P B ⇐⇒ aprP(A) = aprP(B),

and

A ∼P B ⇐⇒ apr
P
(A) = apr

P
(B).

These binary relations are called the upper fuzzy
soft rough equal relation and the lower fuzzy soft
rough equal relation, respectively.

It is easy to verify that the relations defined above
are all equivalence relations on IU .
Proposition 6.2 Let fE be a fuzzy soft set over U
and let P = (U, fE) be a fuzzy soft approximation
space. Let A,A′,B,B′ ∈ IU . Then the following prop-
erties hold.

(1) A ∼P B ⇐⇒ A∪B ∼P A and A∪B ∼P B;
(2) A ∼P B and A′ ∼P B′ =⇒ A∪A′ ∼P B∪B′;
(3) A ∼P B =⇒ A∪ (1̃−B) ∼P 1̃;
(4) A⊆ B and B ∼P 0̃ =⇒ A ∼P 0̃;
(5) A⊆ B and A ∼P 1̃ =⇒ B ∼P 1̃.
(6) If fE is full and union complete, then A ∼P B

for any A,B ∈ 2U \{0̃}.

Proof. (1) If A ∼P B, then aprP(A) =
aprP(B). By Theorem 3.3, aprP(A ∪ B) =
aprP(A)∪aprP(B). This implies that aprP(A∪B) =
aprP(A) = aprP(B). Thus A ∪ B ∼P A and A ∪
B ∼P B.

Conversely. If A∪B ∼P A and A∪B ∼P B, then
A ∼P B because ∼P is a equivalence relation.

(2) Let A ∼P B and A′ ∼P B′. Then aprP(A) =
aprP(B), aprP(A′) = aprP(B′). By Theorem 3.3,
aprP(A∪A′) = aprP(A)∪aprP(A′), aprP(B∪B′) =
aprP(B) ∪ aprP(B′). This implies that aprP(A ∪
A′) = aprP(B∪B′). Thus A∪A′ ∼P B∪B′.

(3) Suppose that A ∼P B. Then aprP(A) =
aprP(B). By Theorem 3.3, aprP(A ∪ (1̃− B)) =
aprP(A)∪aprP(1̃−B). This implies that aprP(A∪
(1̃−B)) = aprP(B)∪aprP(1̃−B) = aprP(1̃). Thus
A∪ (1̃−B) ∼P 1̃.

(4) Assume A ⊆ B and B ∼P 0̃. By Theo-
rem 3.3, aprP(A) ⊆ aprP(B) = aprP(0̃) = 0̃. Then
aprP(A) = 0̃ = aprP(0̃). Thus A ∼P 0̃.

(5) Suppose that A⊆B and A∼P 1̃. By Theorem
3.3, aprP(B) ⊇ aprP(A) = aprP(1̃). Since B ⊆ 1̃,
aprP(B) ⊆ aprP(1̃). This implies that aprP(B) =
aprP(1̃). Thus B ∼P 1̃.

(6) This holds by Theorem 3.9.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

291



Roughness of fuzzy soft sets and related results

By Theorem 3.3 and 3.9, we can prove the fol-
lowing Proposition 6.3.
Proposition 6.3 Let fE be a fuzzy soft set over U
and let P = (U, fE) be a fuzzy soft approximation
space. Let A,A′,B,B′ ∈ 2U . Then the following prop-
erties hold.

(1) If fE is intersection complete, then
A ∼P B ⇐⇒ A∩B ∼P A and A∩B ∼P B;

(2) If fE is intersection complete, then
A ∼P B and A′ ∼P B′ =⇒ A∩A′ ∼P B∩B′;

(3) A⊆ B and B ∼P 0̃ =⇒ A ∼P 0̃;
(4) A⊆ B and A ∼P 1̃ =⇒ B ∼P 1̃.

Theorem 6.4 Let fE be a fuzzy soft set over U and
let P = (U, fE) be a fuzzy soft approximation space.
Let A,B ∈ IU . Then the following properties hold.

(1)

apr
P
(A) = ∩{B ∈ IU : A ∼P B}.

(2) If fE is full, then

aprP(A)⊇ ∪{B ∈ IU : A ∼P B}.

Proof. (1) For any B ∈ {B ∈ IU : A ∼P B},
A ∼P B, then apr

P
(A) = apr

P
(B). By Theorem 3.3,

apr
P
(B)⊆ B. This implies that apr

P
(A)⊆ B. Thus

apr
P
(A)⊆ ∩{B ∈ IU : A ∼P B}.

Conversely. By Theorem 3.7, apr
P
(apr

P
(A)) =

apr
P
(A). That is, A ∼P apr

P
(A). Then apr

P
(A) ∈

{B ∈ IU : A ∼P B}. Thus

apr
P
(A)⊇ ∩{B ∈ IU : A ∼P B}.

Hence

apr
P
(A) = ∩{B ∈ IU : A ∼P B}.

(2) For any B ∈ {B ∈ IU : A ∼P B}, A ∼P B,
then aprP(A) = aprP(B). Since fE is full, by The-
orem 3.8, we have B ⊆ aprP(B). This implies that
B⊆ aprP(A). Thus

aprP(A)⊇ ∪{B ∈ IU : A ∼P B}.

6.2. Fuzzy soft rough belonging relations

Definition 6.5 Let fE be a fuzzy soft set over U and
let P = (U, fE) be a fuzzy soft approximation space.
For any xλ ∈ P(U) and A ∈ IU , we define

xλ ∈P A ⇐⇒ xλ ∈ apr
P
(A) and xλ ∈P A ⇐⇒

xλ ∈ aprP(A),
where P(U) is the set of all fuzzy points in U.

These binary relations are called the lower fuzzy
soft rough belonging relation and the upper fuzzy
soft rough belonging relation, respectively.

Example 6.6 Let U = {x1,x2,x3,x4}, E = {e1,e2}
and let fE be a fuzzy soft set over U, defined as fol-
lows

f (e1) = {(x1,0.4),(x2,0.3),(x3,0),(x4,0.6)},

f (e2) = {(x1,0.2),(x2,0.8),(x3,0.1),(x4,0.7)}.
Let

A = {(x1,0.5),(x2,0.6),(x3,0),(x4,0.7)}.

Then (x2)0.2 ∈P A and (x2)0.7 ∈P A

By Theorem 3.3, 3.7, 3.8 and 3.9, we can prove
the following three Propositions.

Proposition 6.7 Let fE be a fuzzy soft set over U
and let P = (U, fE) be a fuzzy soft approximation
space. Let A,A′,B,B′ ∈ 2U . Then the following prop-
erties hold.

(1) xλ ∈P A ⇐⇒ there exists e ∈ E such that
xλ ∈ f (e)⊆ A.

(2) xλ ∈P A =⇒ xλ ∈ A.
(3) xλ ∈P A and A⊆ B =⇒ xλ ∈P B .
(4) xλ ∈P A ⇐⇒ xλ ∈P apr

P
(A).

(5) If fE is intersection complete, then xλ ∈P A∩
B ⇐⇒ xλ ∈P A and xλ ∈P B.

Proposition 6.8 Let fE be a fuzzy soft set over U
and let P = (U, fE) be a fuzzy soft approximation
space. Let A,A′,B,B′ ∈ 2U . Then the following prop-
erties hold.

(1) xλ ∈P A ⇐⇒ there exists e ∈ E such that
xλ ∈ f (e) and f (e)∩A 6= 0̃.

(2) If fE is full, then xλ ∈ A =⇒ xλ ∈P A.
(3) xλ ∈P A and A⊆ B =⇒ xλ ∈P B .
(4) xλ ∈P A∪B ⇐⇒ xλ ∈P A or xλ ∈P B.
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Proposition 6.9 Let fE be a fuzzy soft set over U
and let P = (U, fE) be a fuzzy soft approximation
space. Let A,A′,B,B′ ∈ 2U . Then the following prop-
erties hold.

(1) xλ ∈P A =⇒ xλ ∈P A.
(2) xλ ∈P A ⇐⇒ xλ ∈P aprP(A).
(3) xλ ∈P A =⇒ xλ ∈P apr

P
(A).

(4) xλ ∈P A =⇒ xλ ∈P aprP(A).

7. Some correspondence relationships
associated with fuzzy soft sets

Feng et al. 7 researched the relationships among soft
sets, fuzzy sets and rough sets, and obtained some
good results. Inspired by their work, we investigate
some correspondence relationships associated with
fuzzy soft sets in this section.

Definition 7.1 Let fE be a fuzzy soft set over U. De-
fine a fuzzy relation R f from E to U by

R f (e,x) = f (e)(x)

for each (e,x) ∈ E×U. Then R f is called the fuzzy
relation from E to U induced by fE .

Definition 7.2 Let R be a fuzzy relation from E to
U. Define a mapping fR : E → IU by

fR(e)(x) = R(e,x) (x ∈U)

for each e ∈ E. Then ( fR)E is called the fuzzy soft
set induced by R.

Lemma 7.3 Let R be a fuzzy relation from E to U,
let ( fR)E be the fuzzy soft set induced by R and let
R fR be the fuzzy relation from E to U induced by
( fR)E . Then R = R fR .

Proof. For each (e,x) ∈ E×U ,

R fR(e,x) = fR(e)(x).

Note that fR(e)(x) = R(e,x). Then R fR(e,x) =
R(e,x).

Thus
R = R fR .

Lemma 7.4 Let fE be a fuzzy soft set over U, let R f
be the fuzzy relation from E to U induced by fE and
let ( fR f )E be the fuzzy soft set induced by R f . Then

fE = ( fR f )E .

Proof. Since fR f is a mapping given by

fR f : E → IU ,

where
fR f (e)(x) = R f (e,x) (x ∈U)

for each e ∈ E, we have

fR f (e)(x) = f (e)(x) f or each x ∈U.

Then fR f (e) = fR(e) for each e ∈ E
Thus

fE = ( fR f )E .

Theorem 7.5 Let

Σ = { fE : fE is a f uzzy so f t set over U}
and

Γ = {R : R is a f uzzy relation f rom E to U}.
Then there exists a one-to-one correspondence

between Σ and Γ.

Proof. Two mapping ρ : Σ→ Γ and λ : Γ→ Σ are
defined as follows:

ρ( fE) = R f , f or any fE ∈ Σ,

λ (R) = ( fR)E , f or any R ∈ Γ.

By Lemma 7.3,

ρ ◦λ = iΓ,

where ρ ◦λ is the composition of λ and ρ , and iΓ is
the identity mapping on Σ.

By Lemma 7.4,

λ ◦ρ = iΣ,

where λ ◦ρ is the composition of ρ and λ , and iΣ is
the identity mapping on Γ.

Hence ρ and λ are two one-to-one correspon-
dences. This prove that there exists a one-to-one
correspondence between Σ and Γ.
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Definition 7.6 (28) Let U be a finite set of objects
and let E be a finite set of attributes. The pair
(U,E,V,g) is called an information system, if g is
an information function specifying the attributes-
value for each object and given by g : U ×E → V ,
and V =

⋃
e∈E

Ve is the value domain of E, where

Ve = {g(x,e) : x ∈U} is the value domain of the at-
tribute e.

Definition 7.7 Let (U,A,V,g) be an information
system.

(1) (U,A,V,g) is called a 2-valued information
system, if V = {0,1}.

(2) (U,A,V,g) is called a [0,1]-valued informa-
tion system, if V = [0,1].

Example 7.8 Let U = {h1,h2,h3,h4,h5,h6} be a
universe consisting of six patients, and let A =
{a1,a2,a3} be a set of attributes where a1, a2 and a3
represent respectively the attributes “ headache”, “
muscle pain” and “ fever”.

Now, we consider an information system
(U,A,V,g), which describes the “ symptoms of pa-
tients”. For instance, “g(h1,a1) = yes” means “h1
suffers from headache” and its functional value is
yes; “g(h3,a2) = no ”means “h3 has no muscle
pain” and its functional value is no; “g(h3,a3) =
no” means “h3 doesn’t have a fever” and its func-
tional value is no.

We define

g(h1,a1) =yes, g(h1,a2) =yes, g(h1,a3) =no,

g(h2,a1) =yes, g(h2,a2) =yes, g(h2,a3) =yes,

g(h3,a1) =yes, g(h3,a2) =yes, g(h3,a3) =no,

g(h3,a1) =no, g(h3,a2) =yes, g(h3,a3) =no,

g(h3,a1) =no, g(h3,a2) =no, g(h3,a3) =yes,

g(h3,a1) =no, g(h3,a2) =yes, g(h3,a3) =yes.

Let hi j be the entries. If g(hi,a j) =yes, then
hi j = 1; if g(hi,a j) =no, then hi j = 0. A 2-value
information system (U,A,V,g) can be described by
the following Table 3.

Table 3. The 2-value information system (U,A,V,g)

a1 a2 a3
h1 1 1 0
h2 1 1 1
h3 1 1 0
h4 0 1 0
h5 0 0 1
h6 0 1 1

In Table 3,

Va1 = {0,1}, Va2 = {0,1}, Va3 = {0,1}.

V =
⋃

a∈A

Va = {0,1}.

Similarly, we may give an example of [0, 1]-
valued information system.

Proposition 7.9 (30) Every soft set may be consid-
ered a 2-valued information system.

Proposition 7.10 Every fuzzy soft set may be con-
sidered a [0,1]-valued information system.

Proof. Let ( f ,E ′) be a fuzzy soft set over U ′ and
let (U,E, [0,1],g) be a [0,1]-valued information sys-
tem. Obviously, the universe U ′ in ( f ,E ′) may be
considered the set U of objects in (U,E, [0,1],g), the
set E ′ of parameters may be considered the set E of
attributes. The information function g is defined by

g(x,e) = f (e)(x)

for each (e,x) ∈ E×U .
That is, V =

⋃
e∈E

Ve is the value domain of E,

where Ve = { f (e)(x) : x ∈ U} is the value domain
of the attribute e. Obviously, V ⊆ [0,1].

Therefore, a fuzzy soft set ( f ,E ′) may
be considered a [0,1]-valued information system
(U,E, [0,1],g).

Definition 7.11 Let S = ( f ,E) be a fuzzy soft set
over U. Define a function gS : X×E →V by

gS(x,e) = f (e)(x)

for each (e,x) ∈ E ×U. Then (U,E, [0,1],gS) is
called a [0,1]-valued information system induced by
S. We denote it by ISS.
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Definition 7.12 Let IS = (U,E, [0,1],g) be a [0,1]-
valued information system. Define a mapping fIS :
E → IU by

fIS(e)(x) = g(x,e)

(x ∈ U) for each e ∈ E, then ( fIS)E = ( fIS,E) is
called a fuzzy soft set over E induced by IS. We de-
note it by SIS.

Lemma 7.13 Let S = ( f ,E) be a fuzzy soft set over
E, let ISS = (U,E, [0,1],gS) be a [0,1]-valued infor-
mation system induced by S over U and let SISS be a
fuzzy soft set over U induced by ISS. Then S = SISS .

Proof. This is obvious.

Lemma 7.14 Let IS = (U,E, [0,1],g) be a [0,1]-
valued information system, let SIS be a fuzzy
soft set over U induced by IS and let ISSIS =
(U,E, [0,1],gSIS) be a [0,1]-valued information sys-
tem induced by SIS. Then IS = ISSIS .

Proof. This is obvious.

Theorem 7.15 Let
Σ = {S : S = fE is a f uzzy so f t set over U}

and
Γ = {IS : IS = (U,E, [0,1],g) is a

[0,1]−values in f ormationsystem}.
Then there exists a one-to-one correspondence be-
tween Σ and Γ.

Proof. This holds by Lemma 7.13 and 7.14.

8. Conclusions

In this paper, we considered a pair of fuzzy soft
rough approximations, gave their properties, ob-
tained the structure of fuzzy soft rough sets and the
structure of fuzzy topologies induced by fuzzy soft
sets, and revealed the fact that every fuzzy topo-
logical space is a fuzzy soft approximating space.
Moreover, we proved that there exists a one-to-one
correspondence between the set of all fuzzy soft
sets and the set of all [0,1]-valued information sys-
tems, which illustrates that we can research [0,1]-
information systems by means of fuzzy soft sets. In
addition, we also proved that there exists a one-to-
one correspondence between the set of all fuzzy soft

sets and the set of all fuzzy relations from the set of
parameters to the initial universe. We may mention
that these correspondences are of theoretical signif-
icance for the study of soft set theory. We can con-
sider some concrete applications of our proposed no-
tions and theories such as dealing with knowledge
acquisition in information systems with fuzzy deci-
sions. In future work, we will study these problems
and generalize the results of this paper to t-norms or
some non-associative functions such as overlap and
grouping functions.
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