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Abstract

In this paper we discuss and analyze some of the intelligent classifiers which allows for automatic detection and 
classification of networks attacks for any intrusion detection system. We will proceed initially with their analysis 
using the WEKA software to work with the classifiers on a well-known IDS (Intrusion Detection Systems) dataset 
like NSL-KDD dataset. The NSL-KDD dataset of network attacks was created in a military network by MIT 
Lincoln Labs. Then we will discuss and experiment some of the hybrid AI (Artificial Intelligence) classifiers that 
can be used for IDS, and finally we developed a Java software with three most efficient classifiers and compared it
with other options. The outputs would show the detection accuracy and efficiency of the single and combined 
classifiers used.
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1. Introduction

The computer networks expand on a daily basis and the 
users of Internet are increasing. The sharing of 
information is turning the world into a small village. 
The technology of exchanging information across 
networks had improved the efficiency of data transfer,
but it also has made more opportunity for cyber-attacks. 
All of these possible network attacks make users, 
organizations and government agencies to want to 
protect their systems from intrusions. The intrusion can 
be defined as the ability to break through a system and 
trying to compromise its integrity, availability, 
confidentiality or quality of service (Abraham and Patra, 
2012). There are different defense measures employed 
by most organizations to prevent the computer networks 

and sensitive data from intrusion or attacks like 
authentication, firewalls and physical security. All of 
these measures are good but they do not protect against 
sophisticated attacks - say like buffer overflow attacks 
which makes use of the weakness in an application and 
cause
for an intrusion detection system (IDS) began to appear. 
They are like a second line of security defense. 
According to (Abraham and Patra, 2012) the IDS can be 
defined as a system of observing suspicious actions that 
happens on computer networks to detect users who are 
not permitted access, trying to breach network devices. 
There are two typical methods of IDS that can be 
implemented on computer networks, namely - Signature 
based and Anomaly based (Benferhat and Tabia, 2004), 
and there are some that is a mix between those two 
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(Elvis, 2004). Signature based detection uses a signature 
database to detect suspicious activity, where each 
signature represent a print of known attack. These 
systems are only as good as their database. Therefore 
the database need to be updated continuously to ensure 
there is information about the new intrusions. Anomaly 
based intrusion detection system builds a profile of 
normal system behaviour and detects any deviation 
from the profile to identify possible attacks. The profile 
can be constructed using machine learning techniques 
and data mining and should be upgraded regularly. The 
advantage of anomaly based over signature based is that 
it can identify non-trivial attacks but it has a high
tendency for generating false alarms (Aydin, 2009). The 
main problems with current IDS are efficiency and 
accuracy in detecting intrusions (Hofmann and Sick, 
2011). In this paper we are planning to study and 
analyse the different intelligence classifiers of IDS, test 
some of the hybrid approaches, and design a hybrid 
software system that can be accurate and efficient at the 
same time.

This paper is organised as follows.  Section 2 is the 
related works on intrusion detection done, section 3 is 
introduction to IDS, section 4 is the discussion on 
dataset used, section 5 is the analysis of IDS classifiers, 
section 6 is on the developed software system, section 7 
is the discussion and limitation of our work and section 
8 is the conclusion.

2. Related Works

The first concept of intrusion detection was introduced 
through a paper by (James P. Anderson, 1980) where 
the authors introduced a model that develops a security 
monitoring surveillance to detect anomalies in user 
behaviour. 

(Lee and Stolfo, 1998) proposed a systematic 
framework that employs data mining techniques to 
detect intrusions. (Schultz, Zadok, Stolfo, 2001) 
proposed a framework which uses data mining 
classifiers to train multiple classifiers on a set of 
malicious and benign executables to detect new 
examples. (Nadiammai and Hemalatha, 2012) presented 
a study of all ruled based classifiers to predict their 
effectiveness based on accuracy, time, specificity, 
sensitivity and error. 

(Hwang, Lee, and Lee, 2007) proposed a three-tier 
architecture of IDS which consist of three lists - black 
list, white list and multi-class. The black list contain any 
known attacks from the traffic, the white list contain the 
rest of the normal traffic, and the third list called multi-
class contains anomalies that are detected in the normal 
traffic. (Tavallaee, Bagheri, Wei, and Ghorbani, 2009) 

detection dataset. (Subramanian, Srinivasan, and 
Ramasa, 2012) aimed to classify NSL-KDD dataset
using Random Tree classifier with respect to their 
metric data and study their performance. 

(Lippmann, Haines, Fried, J. Korba, and Das, 2000) 
presented a comparison study to the various data mining 
classification techniques for intrusion detection. 
(Srinivasulu, Nagaraju, Kumar, and Rao, 2009) 
presented different data mining techniques named 
CART, Naive Bayesian, and artificial neural network 
and evaluated the performance of each techniques using 
a confusion matrix. (Kalyani and Lakshmi, 2012) 
presented a comparison study between the techniques 
such as Naive Bayes, J48, OneR, PART, and RBF 
network classifier using NSL-KDD dataset; They also 
discussed the advantages of using NSL-KDD dataset

Rajulu, 2011) presented a survey of various techniques 
and the enhancement of IDS. (Neethu, 2012) explained 
about the IDS framework that is a combination of Naïve 
Bayes and Principal Component Analysis classifier that 
helped to increase the speed of performance.

3. Introduction to IDS

Intrusion detection systems or IDS became very 
important to office security now-a-days. However many 
experts are still unsure about the function of these 
systems, as to why we use them and how they perform. 
The good number of security threats come from inside 
the organization networks because of authorized 
indignant employees. Or sometimes the attacks can be 
through someone with stolen credentials of a valid 
employee, which can be very difficult to trace. The 
other attacks could come from outside users through 
denial of service attacks or through hack attempts to 
penetrate the network. Intrusion detection systems are 
the only means to detect those attacks and respond to 
threats that occur from both inside and outside the 
organizational network.
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Intrusion detection systems are necessary for a complete 
security infrastructure.  (BAC, 1999) said that using IDS 
allows you to completely supervise a network, 
regardless of the action being taken, and that 
information will always exist to determine the nature of 
the security threat and its source. Today most medium 
size organizations have installed some form of intrusion 
detection or something similar. Network attacks and 
intrusion is motivated by financial, political, military or 
personal reasons and every network is a potential target. 
So owners of any official network should consider some 
form of IDS, the networks are always at risk of attacks. 

In early 2014 the cyber-attacks had caused security 
breach of eBay employee log-ins, allowing access to the 
contact and log-in information of around 233 million 
eBay users.  The Yahoo e-mail service for 273 million 
users was hacked in early 2014, although the exact 
number of accounts affected was not disclosed. In 2013 
the Facebook was attacked by hackers who exploited a 
previously unknown loophole in its computer system. In 
the same year the Facebook hackers attacked Apple 
computers, though no data appeared to have been stolen 
and Burger King's twitter account became victim to 
hackers as well as it began sending out pro-McDonald's 
message. In 2011 Sony was attacked and hackers stole 
private details of more than a million users. In 2007, 
TJX, the parent company of discount stores T.J. Maxx 
and Marshalls, disclosed that thieves had stolen data of 
tens of millions of credit and debit cards. There was a 
reported denial of service attacks in 2000 against 
Amazon and E-bay. These consistent and recent attacks 
shows the need to have an intrusion detection system 
especially for commercial network and websites.

Intrusion detection is the process of monitoring 
networks and computers for unauthorized access, 
suspicious activity or file modification. IDS can also 
monitor network traffic to detect if the system is being 
targeted by network attacks like the different types of 
denial of service attacks. The two types of intrusion 
detection are Host-Based (HIDS) and Network-Based 
(NIDS) approaches. Each of these attacks has different 
ways to monitor. HIDS examine the personal data held 
on computers, while NIDS looks at the exchange of data 
between computers.

3.1. IDS Approaches and Techniques

For each of the two types of intrusion techniques -
HIDS and NIDS, there are four basic techniques to 
detect the attacks - Anomaly detection, Misuse 
detection, Target monitoring and Stealth probes.

3.1.1. Anomaly Detection

Like the name suggest, anomaly detection is searching 

perform. Example of suspicious behaviour can be as 
follows:  the user log in more than 20 times a day, or 
accessing e-mail that they are not allowed to, or log in at 
2 am or out of the office hours etc. This will be 
considered as an unusual behaviour and will alert the 
system administrator.

3.1.2. Misuse Detection

Misuse detection or signature detection is used to 
identify a specific known pattern of unauthorized 
behaviour to predict similar attempts. These patterns are 
called signatures. For example an improper FTP, 
depending on the seriousness of the signature and alarm 
could be triggered or a notification could be sent to the 
admin to handle it.

3.1.3. Target Monitoring

These systems do not monitor behaviour or look for 
signatures; they only look for modification in specific 
files and they are designed to undercover the 
unauthorized modification after it occurs. They can be 
checked by computer through cryptographic hash on 
files beforehand and compare the old files with new 
files. These systems can be easy implemented and 

administrator.

3.1.4. Stealth probes

This approach attempts to detect any attacks that is 
carried out for prolonged periods of time. For example
the attacks will check for system vulnerabilities and 
open ports and collect data and information about the 
system and then launch the attack say, after two months 
of the original system infection. This method combines
anomaly detection and misuse detection to discover 
suspicious behaviour.
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4. Discussion on Dataset Used

We wanted to discuss on the details of dataset used for 
our experiments. This would help to see what kind of 
network attacks are addressed in our work.

4.1. NSS-KDD Dataset

The DARPA Intrusion Detection Evaluation Program 
by MIT Lincoln Labs in 1998 wanted to research into 
intrusion detection.  A wide variety of intrusions 
simulated in a military network was generated and that 
became the 1999 KDD intrusion detection dataset. This 
data contained nine weeks of raw TCP dump data for a 
simulated U.S. Air Force LAN with a number of 
network attacks. The attacks fall into four main 
categories: (1) DoS Denial of service (2) U2R -
Unauthorized access from a remote machine (3) R2L -
Unauthorized access to local super-user privileges (4) 
Probe - Surveillance and other probing. DoS attack are 
designed to consume all network bandwidth and will 
look like normal traffic. The user to root (U2R) attack 
happens on a local machine to elevate the user 
privileges to that of the super user. Remote to local 
(R2L) activity are attempts to login to a computer or 
device from outside. Probe activity is done over the 
network to collect the details of devices on the network. 

The KDD training dataset consisted of 494,019 records 
where 97,277 (19.69%) were classified as 'normal', 
391,458 (79.24%) as DoS, 4,107 (0.83%) as Probe, 
1,126 (0.23%) as R2L and 52 (0.01%) as U2R attacks. 
Each record has 41 attributes described different 
features and a label was assigned to each either as an 
'attack' type or as 'normal' type. (Siddiqui and Naahid, 
2013), (KDD Cup 1999 Data, 2014). Because of this 
labelling we did not need to do any tuning to the dataset.

The basic features of individual TCP connections
contained the following features: length (number of 
seconds) of the connection, type of the protocol like tcp 
or udp, network service on the destination like http or 
telnet, number of data bytes from source to destination, 
number of data bytes from destination to source, normal 
or error status of the connection, 1 if connection is 
from/to the same host/port; 0 otherwise, number of 
wrong fragments and number of urgent packets. The 
content features within a connection suggested by 
domain knowledge contained the following features: 
number of 'hot' indicators, number of failed login 

attempts, 1 if successfully logged in; 0 otherwise, 
number of 'compromised' conditions, 1 if root shell is 
obtained and 0 otherwise, 1 if 'su root' command 
attempted and 0 otherwise, number of 'root' accesses, 
number of file creation operations, number of shell 
prompts, number of operations on access control files, 
number of outbound commands in an ftp session, 1 if 
the login belongs to the 'hot' list and 0 otherwise, 1 if the 
login is a 'guest' login and 0 otherwise (KDD Cup 1999 
Data, 2014). Table 1 shows the attack dataset showing 
the type of attacks grouped as four categories.

Table 1. Type of attacks grouped as four categories.

Attacks in
Dataset

Attack Type

DoS apache2, smurf, neptune, dosnuke, land, pod, 
back, teardrop, tcpreset, syslogd, crashiis, 
arppoison, mailbomb, selfping, processtable, 
udpstorm, warezclient

Probe portsweep, ipsweep, queso, satan, msscan, 
ntinfoscan, lsdomain, illegal-sniffer 

R2L dict, netcat, sendmail, imap, ncftp, xlock, 
xsnoop, sshtrojan, framespoof, ppmacro, guest, 
netbus, snmpget, ftpwrite, httptunnel, phf, 
named

U2R sechole, xterm, eject, ps, nukepw, secret, perl, 
yaga, fdformat, ffbconfig, casesen, ntfsdos, 
ppmacro, loadmodule, sqlattack

The NSL-KDD is a dataset for intrusion detections 
dataset but it 

fixes some of the inheritance problems that are 
mentioned in (Tavallaee, Bagheri, Lu, and Ghorbani, 
2009). Although the NSL-KDD dataset still have some 
problems, it is still good for training the IDS and it has a 
reasonable amount of records. This advantage will make 
it perfect for running experiments and the evaluation of 
records will be consistent and comparable.

The NSL-KDD dataset has the following advantages 
over the original KDD dataset. As it avoids the 
duplicate records in the training set and in test sets, 
there will be no bias in the classifiers towards records 
that are more frequent during training and the 
performance of the learners are not biased by the 
classifiers that have better detection rates on the 
frequent records during testing. The number of selected 
records from each difficulty level group is inversely 
proportional to the percentage of records in the original 
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KDD dataset. Thus there is a wiser range in the 
classification rates of distinct machine learning 
methods, which allows an accurate evaluation of 
different learning classifiers (NSL-KDD, 2014).

4.2. WEKA Software Study

The WEKA (2003) software is a program written in 
Java to test out the different available artificial 
intelligence (AI) classifiers. After studying the software, 
we started to test the different classifiers. This software 
is a really helpful tool to decide which classifiers gives 
the best results, after testing it on WEKA software using 
NSL-KDD dataset. Like mentioned previously, the 
NSL-KDD is a dataset which is better than the original 
KDD'99 dataset and is a good baseline dataset to 
compare different intrusion detection methods. The best 
results given was for Random Forest (RF) with 99.89% 
accuracy, followed by Random Tree (RT) with 99.77% 
accuracy and Naïve Bayes (NB) with 90.38% accuracy.

4.3. Arguments for and against NSL-KDD dataset

Thomas and Sharma et al. (2008) states the usefulness 
of DARPA dataset for IDS evaluation. The DARPA 
evaluation dataset has been found to have the required 
potential in modelling the attacks that appear commonly 
on the network traffic. They affirm that the dataset can 
be considered as the base line of any research. The 
paper concludes that it can be used to evaluate the IDSs 
in the present scenario, against the notion that it is a 
very outdated dataset, unable to accommodate the latest 
trend in attacks. Tavallaee and Bagheri et al. (2009) 
argue that although the KDD
from various problems, they are still an effective 
benchmark to compare different intrusion detection 
methods. To address some of the known issues a revised 
version of the datasets called NSL-KDD was created. 
We felt that the analysis of NSL-KDD will yield a 
predictable performance results for the intrusion 
detection algorithms we are using.

There are some arguments against using this dataset. 
McHugh (2000) wrote a detailed critique identifying 
shortcomings of KDD dataset evaluations where he 
claimed that the evaluation failed to verify that the 
network realistically simulated a real-world network. 
Mahoney and Chan (2003) also found problems as they 
looked at the content of the 1999 DARPA evaluation 
tcpdump data. They found that the simulated traffic 

contains irregularities where many of the network 
attributes with large range in real-world traffic, have a 
small and fixed range in the simulation.

5. Analysis of Intrusion Detection System 
Classifiers

In this section we explain the details of experiments 
done with different classifiers and the results achieved.

5.1. Experiments Performed

Several experiments were performed to test out the best 
performance of each of the three selected classifiers 
Naïve Bayes, Random Tree and Random Forest. All
experiments were conducted on VAIO Laptop with 
Intel(R) Core I (3), 2.53 GHz CPU and 4.00GB RAM 
with 250GB HDD. There were a total of 10 experiments 
for each of these classifiers as listed below.

5.1.1. Naive Bayes

Naive Bayes classifier is group of simple classifiers 
using Bayes' probability theorem with strong 
independence assumptions between the features of what 
is being binary classified (with two states yes or no). 
This experiment was performed using WEKA software 
on NSL-KDD dataset, the classifier used was Naïve 
Bayes and the test option used was - cross validation of 
10 cross folds. From table 1 it is evident that the 
intrusion detection rate is 90.38% with alarm rate of 
9.62%. It is error prone with root mean square value of 
0.3058 which means it performs poorly compared to 
other classifiers.

5.1.2. Applying Discretize filter to Naïve Bayes

We tried applying discretize filter to Naïve Bayes. 
Discretization uses a set of predefined intervals and 
grouping the featured values according to those interval 
values. Or in other words, discretization involves 

so that each interval can be treated as one value of a 
discrete attribute. Thus the learning complexity of the
Naïve Bayes classifier can be reduced. The experiment 
was done as before.  As in table 1, you can notice the 
change in accuracy after applying the filter have gone 
significantly up from 90% to over 97%, and the build 
time took only 0.12 seconds while before it was 1.57 
seconds. You can also notice a lower false detection rate 
of 2.87% while it was 9.62% before, and that shows the 
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filter is getting much higher results than the normal 
Naive Bayes classifier.

5.1.3. Random Tree

The experiment was done as before, but with 
Random Tree (RT). RT used a certain number of 
randomly chosen attributes at each node of a 
decision tree. It is a predictive model that uses a set 
of binary rules and can be used for classification or 
regression applications. It is quite easy to interpret 
the decision rules. The classification is quick once 
the rules are designed. From table 1 we can infer 
that Random Tree intrusion detection is quite high 
with 99.77% accuracy with extremely low false 
alarm rate of 0.11%, which is an excellent 
performance. It is slower than Naïve Bayes where 
the model build took 2.59 seconds. A high F-
Measure of 99% can also be observed.

5.1.4. Random Forest

Again the experiment was done as before, but with 
Random Forest (RF). RF is an ensemble classifier that 
combines the results from different models using many 
Random Tree models. Here there is no need to prune 
trees and overfitting is not a problem. As seen from 
table 1, it is evident that Random Forest intrusion 
detection rate is high with 99.89% accuracy with 
extremely low false alarm rate of 0.11%, which is a very 
high performance. It is slower than Naïve Bayes with 
model build that took 22.33 seconds. But a high F-
Measure of 99% can be noted.

Table 1. Performance of AI classifiers (Cross Validation
of 10 Cross Folds)

Parameters Naïve 
Bayes

Naïve 
Bayes with 
Discretize 
filter

Random 
Forest

Random 
Tree

Correctly 
Classified 
Instances

113858 
(90.38%)

122353 
(97.13%)

125835 
(99.89%)

125678 
(99.77%)

Incorrectly 
Classified 
Instances

12115 
(9.62%)

3620
(2.87%)

138
(0.11%)

295
(0.11%)

Total Number 
of Instances

125973 125973 125973 125973

Root mean 
squared error

0.3058 0.1612 0.0313 0.0479

Model 
Building Time

1.57
seconds

0.12 
seconds

22.33 
seconds

2.59 
seconds

TP Rate 0.904 0.971 0.999 0.998

FP Rate 0.101 0.032 0.001 0.002

Recall 0.904 0.971 0.999 0.998

F-Measure 0.966 0.997 0.999 0.998

5.1.5. Comparing the classifiers performance using 
ROC curve

an alternative to accuracy for the evaluation of learning 
classifiers on natural datasets.  The curve is plotted by 
using the true positive rate against the false positive rate 
at various threshold settings. We tried to compare the 

-
Naïve Bayes, Random Tree and Random Forest. The 
smaller the ROC curve and the more close it is to value 
1 on y-axis the better the performance of the classifier. 
Refer to Figure 1. Naïve Bayes performance was 
slightly less good than Random Tree and Random 
Forest as we can see there is some curve on the thick 
line. Random Tree and Random Forest performance was 
excellent with the lack of curve that indicates a high 
performance of the classifiers.

Fig. 1. ROC for - Naïve Bayes, Random Tree and 
Random Forest (Singular versions)

5.1.6. Filter Method Naïve Bayes and Wrapper 
Method Naïve Bayes

To explore some more options under Naïve Bayes as it 
has lower model building times, we worked on the filter 
and the wrapper methods. The Filter Method Naïve 
Bayes uses an attribute evaluator and a ranker to rank 
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the entire features in the dataset. The number of features 
we want to select from the vector can be defined. Then 
we can omit the features one at a time that have the 
lower rank and we can see a predictive accuracy of the 
classifier. We can only omit a certain number of 
features until we reach the global minimum 

the number of global minimum the dataset will start 
overfeeding and we will get an increased number of 
incorrectly classified instances. We ran the ranker with 
the global minimum of 41, which means we can omit 
the entire feature from bottom until we reach 41. While 
omitting and retesting we noticed an increase of 
accuracy each time as in table 3. The Naïve Bayes
accuracy was initially 90.38%, but with the filter the 
accuracy has gone up to 90.72%.

In the wrapper method we used a subset evaluator and 
this created all possible subsets from the featured 
vector. After using the classifier like Naïve Bayes to 
induce classifiers from the features in each subset, it 
will then consider the subset of features with which the 
classification classifier perform the best. We ran the test 
and the best featured subset was number (3, 4, 17). 
After elimination of all except for these three, the results 
were 96.22 % accurate as in table 3. We observed that 
the detection accuracy was still lower than the best ones 
so far.

Table 3. Performance of Filter Method Naïve Bayes and 
Wrapper Method Naïve Bayes (Cross Validation of 10 

Cross Folds)

Parameters Naïve Bayes 
Filter Method

Naïve Bayes 
Wrapper Method

Correctly Classified 
Instances

114283 (90.72%) 121216 (96.22%)

Incorrectly Classified 
Instances

11690 (9.28%) 4757(3.78%)

Total Number of 
Instances

125973 125973

Root mean squared error 0.3007 0.193

Model Building Time 2.19 seconds 1.62 seconds

TP Rate 0.907 0.962

FP Rate 0.1 0.038

Recall 0.907 0.962

F-Measure 0.968 0.984

5.1.7. Combining Three Classifiers The Best 
Accuracy

After performing all of previous experiments we 
combined the three classification classifiers - Naïve 
Bayes (discretized), Random Tree, Random Forest on 
Weka, and we compared their performance in ROC 
curve. The result was high performance with 99.9% 
accuracy. So we decided to use these three classifiers to 
build a software system to detect intrusions. Refer to 
figure 2 for ROC curve in comparison to figure 1. There 
is no curve at all on the thick line. As stated before the 
smaller the ROC curve and the more close it is to value 
1 on y-axis the better the performance of the classifier.

Fig. 2. ROC for - Naïve Bayes, Random Tree and 
Random Forest (Combined version)

6. Developed Software System

In order to test these classifiers and their performance 
we developed a software in Java to detect intrusions on 
a network or on a dataset. Using software libraries and 
Java compiler, this system will function by first training 
discretized Naïve Bayes classifier separately using K2 
learning process. The reason we choose K2 is because it 
shows high performance, and it can improve the 
intrusion detection of Naïve Bayes classifier. After 
training the Naïve Bayes the dataset will go through two 
other training sessions using Random Tree and Random 
Forest. These two classifiers will maximize the chance 
of detecting more intrusions that can pass through Naïve 
Bayes classifier. After that we will create a method 
called Junction Tree inference. The idea of this 
procedure is to construct a data structure called a 
junction tree which can be used to calculate any query 
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through the message passing on the tree (Jemili, 
Zaghdoud and Ben Ahmed, 2007).

6.1. K2 Learning Process

K2 classifier works by finding the best structure 
amounts to pick the best parents for each node 
supposing we already know a total ordering on the 
nodes (Cooper, Herskovits, 1992). K2 is a greedy search 
classifier and it works as follows. Suppose we already 
know the ordering of each node, the classifier will 
incrementally add a set of parents and that addition 
increases the score of the resulting structure. When no 
addition of a single parent can increase the score, the 
classifier will stop adding parents to that node. Based on 
the assumption that we can add a parent to each node 
independently, in our system we used this classifier to 
train our classifier using Bayesian Network which uses 
Naïve Bayes classifier.

6.2. Naive Bayes

A Naive Bayes classifier works on the principle that the 
presence or absence of a specific feature of a class is 
independent or unrelated to the presence or absence of 
any other feature.

As per (Statsoft, 2014), be it continuous or categorical -
Naive Bayes classifiers can handle a random number of 
independent variables. Given a set of variables, X = 
{x1, x2, x..., xn}, we want to construct the posterior 
probability for the event Cj among a set of possible 
outcomes C = {c1, c2, c..., cn}. Thus X is the predictors 
and C is the set of categorical levels present in the 
dependent variable. As we use the Bayes' rule, we get 
the following equation (1):

where p(Cj | x1,x2,x...,xn) is the posterior probability of 
class membership, i.e., the probability that X belongs to 
Cj. With the assumption that the conditional 
probabilities of the independent variables are 
statistically independent we can decompose the 
likelihood to a product of terms as in equation (2):

6.3. Bayesian Network

The Bayesian network is a representation suited to 
looking for relationships among a large number of 
variables. With large set of variables, it is a graphical 
model that efficiently models the joint probability 
distribution. It is a graphical representation among a set 
of random variables (Pearl, 1988). Consider this 
example as given in Bayesnet.com: Consider the finite 

each Xi may take the value from a finite set, denoted by 
Val(Xi). Bayesian network is a graphical representation 
that encodes joint probability distribution over X. The 
nodes of the graph correspond to the random variables 

influence from one variable to another. If there is a 
direct link between the variable Xi and the Variable Xj 
then the variable Xi will be a parent to the variable Xj. 
Figure 3 is an example of Bayesian network (Cooper, 
1999).

Fig. 3 Bayesian Network (Cooper, 1999).

6.4. Random Tree

The Decision tree consists of nodes that form a rooted 
tree. It is a directed tree root node that has no incoming 
edges but only outgoing ones. Like a binary tree, all 
other nodes have exactly one incoming edge. A node 
with outgoing edges is called an internal or test node. 
All other nodes are called leaves (also known as 
terminal or decision nodes). In a decision tree, based on 
a function with input value of attributes, each test or 
internal node splits the instance space into multiple sub-
spaces (Oded, and Lior. 2010) as in figure 4. A Random 
tree considers K randomly chosen attributes at each 
node of a decision tree.
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Fig. 4. Decision Tree on Responses to Direct Mailing 
(Oded, and Lior. 2010)

6.5. Random Forest

Random forest grows many classification trees. The 
ideas is as follows. To classify new object from an input 
vector, put the input vector of each tree in the forest. 
Each tree will give a classification, and the tree vote for 
that class. The forest chooses the classification having 
the most votes. The reason we choose this classifier is 
because we are using a large dataset, and the trees tend 
to give high performance when using large datasets.

If the number of cases in the training set is N, sample 

This sample will be the training set for growing the tree.  
If there are R input variables,  a number r < R is 
specified at each node, r variables are selected at 
random out of the R and the best split the node. The 
value of r will be held constant during the period of tree 
growing. In random forest there is no pruning, so each 
tree will grow the largest extent possible. The Random 
forest as in figure 5 combines trees and though the trees 
are weak learners, the Random forest is a strong learner. 
The Random Forest error rate depends on two things: 
(1) the connections between any two trees in the forest 
and excess connections in the forest increase the error 
rate; (2) the strength of each tree in a Forest and 
increasing the strength of individual trees decreases the 
error rate.

Most important features of the Random forest are as 
follows: The accuracy is unpredictable depending on the 
training set. On large datasets the performance is 
efficient. It can handle thousands of inputs without 
having to delete any variables. It can give an estimation 
of the most important variables to the classifier. It is the 
most effective method for estimating missing data and 
maintain accuracy when a large proportion of data is 
missing. It can balance errors in class population for 
unbalanced datasets. The generated forests can be saved 
for future uses on other data. The computed prototypes 
can give information about the relations between 

Fig. 5. Random Forest (CitizenNet and Blackwell, A., 2012).
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variables. It can detect variables interactions.

6.6. Implemented Software Building Blocks

The software system that we developed in Java is shown 
in figure 6 and will function as follows: First we train 
NSL-KDD dataset that has two classes - normal and 
anomaly, through K2 learning process. It will take the 
data from the dataset and train it to detect certain 

anomaly. The K2 training will consist of Bayesian 
Network classifier which will help detecting anomalies 
in the dataset. After the Bayesian Network detection is 
over, the system will go through a second training using 
the Random tree classifier to detect any threats that the 
Bayesian Network might have missed. Then the dataset
will go through a third training using Random forest 
classifier to detect any anomalies that might have been 
missed by the previous classifiers. When the training is 
complete we will open new connection to the junction 
tree which will connect every node to a parent and 
predict anomalies from the normal behaviour.

6.7. Overall Detection Accuracy Results

The testing was initially done on a smaller dataset (20% 
on NSL-KDD dataset). The accuracy was 99.67% 

where few instances were classified wrong. The overall 
results were high with 83 instances classified wrong out 
of 25109 instances. 29 anomalies were classified normal 
and 54 normal were classified anomalies. The reason we 
got lower results from what we tested in Weka is 
because we used 20% of the dataset, and trees perform 
better on larger datasets. Refer to table 4.

Fig. 6. System Design Classes and their relationship

Table 4. Detection Accuracy Comparison

Naïve 
Bayes

Random 
Forest

Random 
Tree

Discretize 
Filter Naive 
Bayes

Filter
Method 
Naïve 
Bayes

Wrapper 
Method 
Naïve 
Bayes

Combined 
Classifiers 
20% NSL-
KDD

Combined 
Classifiers 
Full NSL-
KDD

Detection Rate (%) 90.38 99.89 99.77 97.13 90.72 96.22 99.67 99.99

False Positive Rate (%) 0.134 0.002 0.003 0.054 0.151 0.42 0.005 0.001

Model Building Time (Sec) 1.57 22.33 2.59 0.12 2.19 1.62 3.23 24.97

Precision (%) 0.89 0.999 0.998 0.954 0.88 0.964 0.996 1

Recall (%) 0.936 0.999 0.998 0.994 0.958 0.966 0.998 1

Root Mean Squared Error 0.3058 0.0313 0.0479 0.1612 0.3007 0.193 0.116 0.0086
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Then we performed the test on the full NSL-KDD
dataset. The results for the full dataset was very high, 
i.e. 99.99%.  From the table 4 it is clear that combining 
the three classifiers gives the highest accuracy with 
intrusion detection rate of 99.99% with an extremely 
low false alarm rate of 0.01%. This is quite encouraging 
compared with all other categories. Although it is 
slower to build the model with 24.97 seconds than all 
other classifiers, the classifier makes up for it in high 
detection rate. Further, high F-value of 100% and high 
precision 100% and recall 100%, makes it a very good 
result overall, which is why we chose to combine and 
use the classifiers instead of using it separately. The 
accuracy comparison graph can be seen in figure 7.

7. Discussion and Limitations of our Work

The work done focuses mainly on the four attack types -
DOS, U2R, R2L and Probe in the dataset used. So the 
attacks outside these could go unnoticed, as we have not 
trained and tested them. Our focus was to show that a 
hybrid version of classification algorithms can work 
better on a given intrusion detection dataset rather than 
individual ones. The use of an active or passive traffic 
analyser in conjunction with our software will help to 
monitor new attacks. So the use of network security 

Even though we have used NSL-KDD dataset which is 
done in 1999, the kind of network attack types remain 
quite similar even now, even though there are emerging 

and new kinds of attacks. It is true that some new 
attacks inside and outside of these categories will 
always evolve. We are sure that if we train the software 
with newer attack types, such attacks could as well be 
detected too, as the software is intelligent and adaptable 
to changes. The work we have done is only at a 
prototype level where we have not tested the software 
with real-time traffic. It may not be that easy to generate 
a similar dataset with real time traffic with different 
kinds of attacks as in NSL-KDD dataset as it was 
generated in an exhaustive manner in a military 
network. We will try to address this in our future work.

8. Conclusion

In this paper we have outlined the importance of 
intrusion detection systems, and have analyzed the 
performance of some of the detection classifiers in 
relation to NSL-KDD dataset. Finally we developed a 
software system in Java to detect intrusion on networks 
using the same dataset. Bayesian network has the 
capabilities to provide auto detection, and they learn 
from auditing data which can be either normal or 
abnormal. This was combined with Random tree and 
Random forest classifiers to get better detection 
accuracy. The system demonstrated a high performance 
in detecting intrusion with 99.67% accuracy on 20% of 
the NSL-KDD dataset and 99.99% accuracy on the full 
dataset with a model building time of 24 seconds. The 
higher accuracy was because we used trees in the 

Fig. 7. Detection accuracy comparison graph
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classifiers, and they tend to give a higher performance 
when used on large datasets. It should also be noted that 
for different datasets different individual classifiers may 
work well or bad, but a combination of best performing 
classifiers can behave more consistently across different 
datasets.
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