
Received 27 October 2014

Accepted 12 June 2015

Analysis of Intelligent Classifiers and Enhancing the Detection Accuracy for Intrusion
Detection System

Mohanad Albayati
School of Computing, Teesside University,

Middlesbrough, England, UK

Biju Issac
School of Computing, Teesside University,

Middlesbrough, England, UK
E-mail: b.issac@tees.ac.uk

Abstract

In this paper we discuss and analyze some of the intelligent classifiers which allows for automatic detection and
classification of networks attacks for any intrusion detection system. We will proceed initially with their analysis
using the WEKA software to work with the classifiers on a well-known IDS (Intrusion Detection Systems) dataset
like NSL-KDD dataset. The NSL-KDD dataset of network attacks was created in a military network by MIT
Lincoln Labs. Then we will discuss and experiment some of the hybrid AI (Artificial Intelligence) classifiers that
can be used for IDS, and finally we developed a Java software with three most efficient classifiers and compared it
with other options. The outputs would show the detection accuracy and efficiency of the single and combined
classifiers used.

Keywords: Intrusion Detection; Data Mining; Machine Learning; Detection accuracy

1. Introduction

The computer networks expand on a daily basis and the
users of Internet are increasing. The sharing of
information is turning the world into a small village.
The technology of exchanging information across
networks had improved the efficiency of data transfer,
but it also has made more opportunity for cyber-attacks.
All of these possible network attacks make users,
organizations and government agencies to want to
protect their systems from intrusions. The intrusion can
be defined as the ability to break through a system and
trying to compromise its integrity, availability,
confidentiality or quality of service (Abraham and Patra,
2012). There are different defense measures employed
by most organizations to prevent the computer networks

and sensitive data from intrusion or attacks like
authentication, firewalls and physical security. All of
these measures are good but they do not protect against
sophisticated attacks - say like buffer overflow attacks
which makes use of the weakness in an application and
cause
for an intrusion detection system (IDS) began to appear.
They are like a second line of security defense.
According to (Abraham and Patra, 2012) the IDS can be
defined as a system of observing suspicious actions that
happens on computer networks to detect users who are
not permitted access, trying to breach network devices.
There are two typical methods of IDS that can be
implemented on computer networks, namely - Signature
based and Anomaly based (Benferhat and Tabia, 2004),
and there are some that is a mix between those two

International Journal of Computational Intelligence Systems, Vol. 8, No. 5 (2015) 841-853

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

841

Mohanad Albayati and Biju Issac

(Elvis, 2004). Signature based detection uses a signature
database to detect suspicious activity, where each
signature represent a print of known attack. These
systems are only as good as their database. Therefore
the database need to be updated continuously to ensure
there is information about the new intrusions. Anomaly
based intrusion detection system builds a profile of
normal system behaviour and detects any deviation
from the profile to identify possible attacks. The profile
can be constructed using machine learning techniques
and data mining and should be upgraded regularly. The
advantage of anomaly based over signature based is that
it can identify non-trivial attacks but it has a high
tendency for generating false alarms (Aydin, 2009). The
main problems with current IDS are efficiency and
accuracy in detecting intrusions (Hofmann and Sick,
2011). In this paper we are planning to study and
analyse the different intelligence classifiers of IDS, test
some of the hybrid approaches, and design a hybrid
software system that can be accurate and efficient at the
same time.

This paper is organised as follows. Section 2 is the
related works on intrusion detection done, section 3 is
introduction to IDS, section 4 is the discussion on
dataset used, section 5 is the analysis of IDS classifiers,
section 6 is on the developed software system, section 7
is the discussion and limitation of our work and section
8 is the conclusion.

2. Related Works

The first concept of intrusion detection was introduced
through a paper by (James P. Anderson, 1980) where
the authors introduced a model that develops a security
monitoring surveillance to detect anomalies in user
behaviour.

(Lee and Stolfo, 1998) proposed a systematic
framework that employs data mining techniques to
detect intrusions. (Schultz, Zadok, Stolfo, 2001)
proposed a framework which uses data mining
classifiers to train multiple classifiers on a set of
malicious and benign executables to detect new
examples. (Nadiammai and Hemalatha, 2012) presented
a study of all ruled based classifiers to predict their
effectiveness based on accuracy, time, specificity,
sensitivity and error.

(Hwang, Lee, and Lee, 2007) proposed a three-tier
architecture of IDS which consist of three lists - black
list, white list and multi-class. The black list contain any
known attacks from the traffic, the white list contain the
rest of the normal traffic, and the third list called multi-
class contains anomalies that are detected in the normal
traffic. (Tavallaee, Bagheri, Wei, and Ghorbani, 2009)

detection dataset. (Subramanian, Srinivasan, and
Ramasa, 2012) aimed to classify NSL-KDD dataset
using Random Tree classifier with respect to their
metric data and study their performance.

(Lippmann, Haines, Fried, J. Korba, and Das, 2000)
presented a comparison study to the various data mining
classification techniques for intrusion detection.
(Srinivasulu, Nagaraju, Kumar, and Rao, 2009)
presented different data mining techniques named
CART, Naive Bayesian, and artificial neural network
and evaluated the performance of each techniques using
a confusion matrix. (Kalyani and Lakshmi, 2012)
presented a comparison study between the techniques
such as Naive Bayes, J48, OneR, PART, and RBF
network classifier using NSL-KDD dataset; They also
discussed the advantages of using NSL-KDD dataset

Rajulu, 2011) presented a survey of various techniques
and the enhancement of IDS. (Neethu, 2012) explained
about the IDS framework that is a combination of Naïve
Bayes and Principal Component Analysis classifier that
helped to increase the speed of performance.

3. Introduction to IDS

Intrusion detection systems or IDS became very
important to office security now-a-days. However many
experts are still unsure about the function of these
systems, as to why we use them and how they perform.
The good number of security threats come from inside
the organization networks because of authorized
indignant employees. Or sometimes the attacks can be
through someone with stolen credentials of a valid
employee, which can be very difficult to trace. The
other attacks could come from outside users through
denial of service attacks or through hack attempts to
penetrate the network. Intrusion detection systems are
the only means to detect those attacks and respond to
threats that occur from both inside and outside the
organizational network.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

842

Enhancing IDS Detection Accuracy

Intrusion detection systems are necessary for a complete
security infrastructure. (BAC, 1999) said that using IDS
allows you to completely supervise a network,
regardless of the action being taken, and that
information will always exist to determine the nature of
the security threat and its source. Today most medium
size organizations have installed some form of intrusion
detection or something similar. Network attacks and
intrusion is motivated by financial, political, military or
personal reasons and every network is a potential target.
So owners of any official network should consider some
form of IDS, the networks are always at risk of attacks.

In early 2014 the cyber-attacks had caused security
breach of eBay employee log-ins, allowing access to the
contact and log-in information of around 233 million
eBay users. The Yahoo e-mail service for 273 million
users was hacked in early 2014, although the exact
number of accounts affected was not disclosed. In 2013
the Facebook was attacked by hackers who exploited a
previously unknown loophole in its computer system. In
the same year the Facebook hackers attacked Apple
computers, though no data appeared to have been stolen
and Burger King's twitter account became victim to
hackers as well as it began sending out pro-McDonald's
message. In 2011 Sony was attacked and hackers stole
private details of more than a million users. In 2007,
TJX, the parent company of discount stores T.J. Maxx
and Marshalls, disclosed that thieves had stolen data of
tens of millions of credit and debit cards. There was a
reported denial of service attacks in 2000 against
Amazon and E-bay. These consistent and recent attacks
shows the need to have an intrusion detection system
especially for commercial network and websites.

Intrusion detection is the process of monitoring
networks and computers for unauthorized access,
suspicious activity or file modification. IDS can also
monitor network traffic to detect if the system is being
targeted by network attacks like the different types of
denial of service attacks. The two types of intrusion
detection are Host-Based (HIDS) and Network-Based
(NIDS) approaches. Each of these attacks has different
ways to monitor. HIDS examine the personal data held
on computers, while NIDS looks at the exchange of data
between computers.

3.1. IDS Approaches and Techniques

For each of the two types of intrusion techniques -
HIDS and NIDS, there are four basic techniques to
detect the attacks - Anomaly detection, Misuse
detection, Target monitoring and Stealth probes.

3.1.1. Anomaly Detection

Like the name suggest, anomaly detection is searching

perform. Example of suspicious behaviour can be as
follows: the user log in more than 20 times a day, or
accessing e-mail that they are not allowed to, or log in at
2 am or out of the office hours etc. This will be
considered as an unusual behaviour and will alert the
system administrator.

3.1.2. Misuse Detection

Misuse detection or signature detection is used to
identify a specific known pattern of unauthorized
behaviour to predict similar attempts. These patterns are
called signatures. For example an improper FTP,
depending on the seriousness of the signature and alarm
could be triggered or a notification could be sent to the
admin to handle it.

3.1.3. Target Monitoring

These systems do not monitor behaviour or look for
signatures; they only look for modification in specific
files and they are designed to undercover the
unauthorized modification after it occurs. They can be
checked by computer through cryptographic hash on
files beforehand and compare the old files with new
files. These systems can be easy implemented and

administrator.

3.1.4. Stealth probes

This approach attempts to detect any attacks that is
carried out for prolonged periods of time. For example
the attacks will check for system vulnerabilities and
open ports and collect data and information about the
system and then launch the attack say, after two months
of the original system infection. This method combines
anomaly detection and misuse detection to discover
suspicious behaviour.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

843

Mohanad Albayati and Biju Issac

4. Discussion on Dataset Used

We wanted to discuss on the details of dataset used for
our experiments. This would help to see what kind of
network attacks are addressed in our work.

4.1. NSS-KDD Dataset

The DARPA Intrusion Detection Evaluation Program
by MIT Lincoln Labs in 1998 wanted to research into
intrusion detection. A wide variety of intrusions
simulated in a military network was generated and that
became the 1999 KDD intrusion detection dataset. This
data contained nine weeks of raw TCP dump data for a
simulated U.S. Air Force LAN with a number of
network attacks. The attacks fall into four main
categories: (1) DoS Denial of service (2) U2R -
Unauthorized access from a remote machine (3) R2L -
Unauthorized access to local super-user privileges (4)
Probe - Surveillance and other probing. DoS attack are
designed to consume all network bandwidth and will
look like normal traffic. The user to root (U2R) attack
happens on a local machine to elevate the user
privileges to that of the super user. Remote to local
(R2L) activity are attempts to login to a computer or
device from outside. Probe activity is done over the
network to collect the details of devices on the network.

The KDD training dataset consisted of 494,019 records
where 97,277 (19.69%) were classified as 'normal',
391,458 (79.24%) as DoS, 4,107 (0.83%) as Probe,
1,126 (0.23%) as R2L and 52 (0.01%) as U2R attacks.
Each record has 41 attributes described different
features and a label was assigned to each either as an
'attack' type or as 'normal' type. (Siddiqui and Naahid,
2013), (KDD Cup 1999 Data, 2014). Because of this
labelling we did not need to do any tuning to the dataset.

The basic features of individual TCP connections
contained the following features: length (number of
seconds) of the connection, type of the protocol like tcp
or udp, network service on the destination like http or
telnet, number of data bytes from source to destination,
number of data bytes from destination to source, normal
or error status of the connection, 1 if connection is
from/to the same host/port; 0 otherwise, number of
wrong fragments and number of urgent packets. The
content features within a connection suggested by
domain knowledge contained the following features:
number of 'hot' indicators, number of failed login

attempts, 1 if successfully logged in; 0 otherwise,
number of 'compromised' conditions, 1 if root shell is
obtained and 0 otherwise, 1 if 'su root' command
attempted and 0 otherwise, number of 'root' accesses,
number of file creation operations, number of shell
prompts, number of operations on access control files,
number of outbound commands in an ftp session, 1 if
the login belongs to the 'hot' list and 0 otherwise, 1 if the
login is a 'guest' login and 0 otherwise (KDD Cup 1999
Data, 2014). Table 1 shows the attack dataset showing
the type of attacks grouped as four categories.

Table 1. Type of attacks grouped as four categories.

Attacks in
Dataset

Attack Type

DoS apache2, smurf, neptune, dosnuke, land, pod,
back, teardrop, tcpreset, syslogd, crashiis,
arppoison, mailbomb, selfping, processtable,
udpstorm, warezclient

Probe portsweep, ipsweep, queso, satan, msscan,
ntinfoscan, lsdomain, illegal-sniffer

R2L dict, netcat, sendmail, imap, ncftp, xlock,
xsnoop, sshtrojan, framespoof, ppmacro, guest,
netbus, snmpget, ftpwrite, httptunnel, phf,
named

U2R sechole, xterm, eject, ps, nukepw, secret, perl,
yaga, fdformat, ffbconfig, casesen, ntfsdos,
ppmacro, loadmodule, sqlattack

The NSL-KDD is a dataset for intrusion detections
dataset but it

fixes some of the inheritance problems that are
mentioned in (Tavallaee, Bagheri, Lu, and Ghorbani,
2009). Although the NSL-KDD dataset still have some
problems, it is still good for training the IDS and it has a
reasonable amount of records. This advantage will make
it perfect for running experiments and the evaluation of
records will be consistent and comparable.

The NSL-KDD dataset has the following advantages
over the original KDD dataset. As it avoids the
duplicate records in the training set and in test sets,
there will be no bias in the classifiers towards records
that are more frequent during training and the
performance of the learners are not biased by the
classifiers that have better detection rates on the
frequent records during testing. The number of selected
records from each difficulty level group is inversely
proportional to the percentage of records in the original

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

844

Enhancing IDS Detection Accuracy

KDD dataset. Thus there is a wiser range in the
classification rates of distinct machine learning
methods, which allows an accurate evaluation of
different learning classifiers (NSL-KDD, 2014).

4.2. WEKA Software Study

The WEKA (2003) software is a program written in
Java to test out the different available artificial
intelligence (AI) classifiers. After studying the software,
we started to test the different classifiers. This software
is a really helpful tool to decide which classifiers gives
the best results, after testing it on WEKA software using
NSL-KDD dataset. Like mentioned previously, the
NSL-KDD is a dataset which is better than the original
KDD'99 dataset and is a good baseline dataset to
compare different intrusion detection methods. The best
results given was for Random Forest (RF) with 99.89%
accuracy, followed by Random Tree (RT) with 99.77%
accuracy and Naïve Bayes (NB) with 90.38% accuracy.

4.3. Arguments for and against NSL-KDD dataset

Thomas and Sharma et al. (2008) states the usefulness
of DARPA dataset for IDS evaluation. The DARPA
evaluation dataset has been found to have the required
potential in modelling the attacks that appear commonly
on the network traffic. They affirm that the dataset can
be considered as the base line of any research. The
paper concludes that it can be used to evaluate the IDSs
in the present scenario, against the notion that it is a
very outdated dataset, unable to accommodate the latest
trend in attacks. Tavallaee and Bagheri et al. (2009)
argue that although the KDD
from various problems, they are still an effective
benchmark to compare different intrusion detection
methods. To address some of the known issues a revised
version of the datasets called NSL-KDD was created.
We felt that the analysis of NSL-KDD will yield a
predictable performance results for the intrusion
detection algorithms we are using.

There are some arguments against using this dataset.
McHugh (2000) wrote a detailed critique identifying
shortcomings of KDD dataset evaluations where he
claimed that the evaluation failed to verify that the
network realistically simulated a real-world network.
Mahoney and Chan (2003) also found problems as they
looked at the content of the 1999 DARPA evaluation
tcpdump data. They found that the simulated traffic

contains irregularities where many of the network
attributes with large range in real-world traffic, have a
small and fixed range in the simulation.

5. Analysis of Intrusion Detection System
Classifiers

In this section we explain the details of experiments
done with different classifiers and the results achieved.

5.1. Experiments Performed

Several experiments were performed to test out the best
performance of each of the three selected classifiers
Naïve Bayes, Random Tree and Random Forest. All
experiments were conducted on VAIO Laptop with
Intel(R) Core I (3), 2.53 GHz CPU and 4.00GB RAM
with 250GB HDD. There were a total of 10 experiments
for each of these classifiers as listed below.

5.1.1. Naive Bayes

Naive Bayes classifier is group of simple classifiers
using Bayes' probability theorem with strong
independence assumptions between the features of what
is being binary classified (with two states yes or no).
This experiment was performed using WEKA software
on NSL-KDD dataset, the classifier used was Naïve
Bayes and the test option used was - cross validation of
10 cross folds. From table 1 it is evident that the
intrusion detection rate is 90.38% with alarm rate of
9.62%. It is error prone with root mean square value of
0.3058 which means it performs poorly compared to
other classifiers.

5.1.2. Applying Discretize filter to Naïve Bayes

We tried applying discretize filter to Naïve Bayes.
Discretization uses a set of predefined intervals and
grouping the featured values according to those interval
values. Or in other words, discretization involves

so that each interval can be treated as one value of a
discrete attribute. Thus the learning complexity of the
Naïve Bayes classifier can be reduced. The experiment
was done as before. As in table 1, you can notice the
change in accuracy after applying the filter have gone
significantly up from 90% to over 97%, and the build
time took only 0.12 seconds while before it was 1.57
seconds. You can also notice a lower false detection rate
of 2.87% while it was 9.62% before, and that shows the

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

845

Mohanad Albayati and Biju Issac

filter is getting much higher results than the normal
Naive Bayes classifier.

5.1.3. Random Tree

The experiment was done as before, but with
Random Tree (RT). RT used a certain number of
randomly chosen attributes at each node of a
decision tree. It is a predictive model that uses a set
of binary rules and can be used for classification or
regression applications. It is quite easy to interpret
the decision rules. The classification is quick once
the rules are designed. From table 1 we can infer
that Random Tree intrusion detection is quite high
with 99.77% accuracy with extremely low false
alarm rate of 0.11%, which is an excellent
performance. It is slower than Naïve Bayes where
the model build took 2.59 seconds. A high F-
Measure of 99% can also be observed.

5.1.4. Random Forest

Again the experiment was done as before, but with
Random Forest (RF). RF is an ensemble classifier that
combines the results from different models using many
Random Tree models. Here there is no need to prune
trees and overfitting is not a problem. As seen from
table 1, it is evident that Random Forest intrusion
detection rate is high with 99.89% accuracy with
extremely low false alarm rate of 0.11%, which is a very
high performance. It is slower than Naïve Bayes with
model build that took 22.33 seconds. But a high F-
Measure of 99% can be noted.

Table 1. Performance of AI classifiers (Cross Validation
of 10 Cross Folds)

Parameters Naïve
Bayes

Naïve
Bayes with
Discretize
filter

Random
Forest

Random
Tree

Correctly
Classified
Instances

113858
(90.38%)

122353
(97.13%)

125835
(99.89%)

125678
(99.77%)

Incorrectly
Classified
Instances

12115
(9.62%)

3620
(2.87%)

138
(0.11%)

295
(0.11%)

Total Number
of Instances

125973 125973 125973 125973

Root mean
squared error

0.3058 0.1612 0.0313 0.0479

Model
Building Time

1.57
seconds

0.12
seconds

22.33
seconds

2.59
seconds

TP Rate 0.904 0.971 0.999 0.998

FP Rate 0.101 0.032 0.001 0.002

Recall 0.904 0.971 0.999 0.998

F-Measure 0.966 0.997 0.999 0.998

5.1.5. Comparing the classifiers performance using
ROC curve

an alternative to accuracy for the evaluation of learning
classifiers on natural datasets. The curve is plotted by
using the true positive rate against the false positive rate
at various threshold settings. We tried to compare the

-
Naïve Bayes, Random Tree and Random Forest. The
smaller the ROC curve and the more close it is to value
1 on y-axis the better the performance of the classifier.
Refer to Figure 1. Naïve Bayes performance was
slightly less good than Random Tree and Random
Forest as we can see there is some curve on the thick
line. Random Tree and Random Forest performance was
excellent with the lack of curve that indicates a high
performance of the classifiers.

Fig. 1. ROC for - Naïve Bayes, Random Tree and
Random Forest (Singular versions)

5.1.6. Filter Method Naïve Bayes and Wrapper
Method Naïve Bayes

To explore some more options under Naïve Bayes as it
has lower model building times, we worked on the filter
and the wrapper methods. The Filter Method Naïve
Bayes uses an attribute evaluator and a ranker to rank

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

846

Enhancing IDS Detection Accuracy

the entire features in the dataset. The number of features
we want to select from the vector can be defined. Then
we can omit the features one at a time that have the
lower rank and we can see a predictive accuracy of the
classifier. We can only omit a certain number of
features until we reach the global minimum

the number of global minimum the dataset will start
overfeeding and we will get an increased number of
incorrectly classified instances. We ran the ranker with
the global minimum of 41, which means we can omit
the entire feature from bottom until we reach 41. While
omitting and retesting we noticed an increase of
accuracy each time as in table 3. The Naïve Bayes
accuracy was initially 90.38%, but with the filter the
accuracy has gone up to 90.72%.

In the wrapper method we used a subset evaluator and
this created all possible subsets from the featured
vector. After using the classifier like Naïve Bayes to
induce classifiers from the features in each subset, it
will then consider the subset of features with which the
classification classifier perform the best. We ran the test
and the best featured subset was number (3, 4, 17).
After elimination of all except for these three, the results
were 96.22 % accurate as in table 3. We observed that
the detection accuracy was still lower than the best ones
so far.

Table 3. Performance of Filter Method Naïve Bayes and
Wrapper Method Naïve Bayes (Cross Validation of 10

Cross Folds)

Parameters Naïve Bayes
Filter Method

Naïve Bayes
Wrapper Method

Correctly Classified
Instances

114283 (90.72%) 121216 (96.22%)

Incorrectly Classified
Instances

11690 (9.28%) 4757(3.78%)

Total Number of
Instances

125973 125973

Root mean squared error 0.3007 0.193

Model Building Time 2.19 seconds 1.62 seconds

TP Rate 0.907 0.962

FP Rate 0.1 0.038

Recall 0.907 0.962

F-Measure 0.968 0.984

5.1.7. Combining Three Classifiers The Best
Accuracy

After performing all of previous experiments we
combined the three classification classifiers - Naïve
Bayes (discretized), Random Tree, Random Forest on
Weka, and we compared their performance in ROC
curve. The result was high performance with 99.9%
accuracy. So we decided to use these three classifiers to
build a software system to detect intrusions. Refer to
figure 2 for ROC curve in comparison to figure 1. There
is no curve at all on the thick line. As stated before the
smaller the ROC curve and the more close it is to value
1 on y-axis the better the performance of the classifier.

Fig. 2. ROC for - Naïve Bayes, Random Tree and
Random Forest (Combined version)

6. Developed Software System

In order to test these classifiers and their performance
we developed a software in Java to detect intrusions on
a network or on a dataset. Using software libraries and
Java compiler, this system will function by first training
discretized Naïve Bayes classifier separately using K2
learning process. The reason we choose K2 is because it
shows high performance, and it can improve the
intrusion detection of Naïve Bayes classifier. After
training the Naïve Bayes the dataset will go through two
other training sessions using Random Tree and Random
Forest. These two classifiers will maximize the chance
of detecting more intrusions that can pass through Naïve
Bayes classifier. After that we will create a method
called Junction Tree inference. The idea of this
procedure is to construct a data structure called a
junction tree which can be used to calculate any query

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

847

Mohanad Albayati and Biju Issac

through the message passing on the tree (Jemili,
Zaghdoud and Ben Ahmed, 2007).

6.1. K2 Learning Process

K2 classifier works by finding the best structure
amounts to pick the best parents for each node
supposing we already know a total ordering on the
nodes (Cooper, Herskovits, 1992). K2 is a greedy search
classifier and it works as follows. Suppose we already
know the ordering of each node, the classifier will
incrementally add a set of parents and that addition
increases the score of the resulting structure. When no
addition of a single parent can increase the score, the
classifier will stop adding parents to that node. Based on
the assumption that we can add a parent to each node
independently, in our system we used this classifier to
train our classifier using Bayesian Network which uses
Naïve Bayes classifier.

6.2. Naive Bayes

A Naive Bayes classifier works on the principle that the
presence or absence of a specific feature of a class is
independent or unrelated to the presence or absence of
any other feature.

As per (Statsoft, 2014), be it continuous or categorical -
Naive Bayes classifiers can handle a random number of
independent variables. Given a set of variables, X =
{x1, x2, x..., xn}, we want to construct the posterior
probability for the event Cj among a set of possible
outcomes C = {c1, c2, c..., cn}. Thus X is the predictors
and C is the set of categorical levels present in the
dependent variable. As we use the Bayes' rule, we get
the following equation (1):

where p(Cj | x1,x2,x...,xn) is the posterior probability of
class membership, i.e., the probability that X belongs to
Cj. With the assumption that the conditional
probabilities of the independent variables are
statistically independent we can decompose the
likelihood to a product of terms as in equation (2):

6.3. Bayesian Network

The Bayesian network is a representation suited to
looking for relationships among a large number of
variables. With large set of variables, it is a graphical
model that efficiently models the joint probability
distribution. It is a graphical representation among a set
of random variables (Pearl, 1988). Consider this
example as given in Bayesnet.com: Consider the finite

each Xi may take the value from a finite set, denoted by
Val(Xi). Bayesian network is a graphical representation
that encodes joint probability distribution over X. The
nodes of the graph correspond to the random variables

influence from one variable to another. If there is a
direct link between the variable Xi and the Variable Xj
then the variable Xi will be a parent to the variable Xj.
Figure 3 is an example of Bayesian network (Cooper,
1999).

Fig. 3 Bayesian Network (Cooper, 1999).

6.4. Random Tree

The Decision tree consists of nodes that form a rooted
tree. It is a directed tree root node that has no incoming
edges but only outgoing ones. Like a binary tree, all
other nodes have exactly one incoming edge. A node
with outgoing edges is called an internal or test node.
All other nodes are called leaves (also known as
terminal or decision nodes). In a decision tree, based on
a function with input value of attributes, each test or
internal node splits the instance space into multiple sub-
spaces (Oded, and Lior. 2010) as in figure 4. A Random
tree considers K randomly chosen attributes at each
node of a decision tree.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

848

Enhancing IDS Detection Accuracy

Fig. 4. Decision Tree on Responses to Direct Mailing
(Oded, and Lior. 2010)

6.5. Random Forest

Random forest grows many classification trees. The
ideas is as follows. To classify new object from an input
vector, put the input vector of each tree in the forest.
Each tree will give a classification, and the tree vote for
that class. The forest chooses the classification having
the most votes. The reason we choose this classifier is
because we are using a large dataset, and the trees tend
to give high performance when using large datasets.

If the number of cases in the training set is N, sample

This sample will be the training set for growing the tree.
If there are R input variables, a number r < R is
specified at each node, r variables are selected at
random out of the R and the best split the node. The
value of r will be held constant during the period of tree
growing. In random forest there is no pruning, so each
tree will grow the largest extent possible. The Random
forest as in figure 5 combines trees and though the trees
are weak learners, the Random forest is a strong learner.
The Random Forest error rate depends on two things:
(1) the connections between any two trees in the forest
and excess connections in the forest increase the error
rate; (2) the strength of each tree in a Forest and
increasing the strength of individual trees decreases the
error rate.

Most important features of the Random forest are as
follows: The accuracy is unpredictable depending on the
training set. On large datasets the performance is
efficient. It can handle thousands of inputs without
having to delete any variables. It can give an estimation
of the most important variables to the classifier. It is the
most effective method for estimating missing data and
maintain accuracy when a large proportion of data is
missing. It can balance errors in class population for
unbalanced datasets. The generated forests can be saved
for future uses on other data. The computed prototypes
can give information about the relations between

Fig. 5. Random Forest (CitizenNet and Blackwell, A., 2012).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

849

Mohanad Albayati and Biju Issac

variables. It can detect variables interactions.

6.6. Implemented Software Building Blocks

The software system that we developed in Java is shown
in figure 6 and will function as follows: First we train
NSL-KDD dataset that has two classes - normal and
anomaly, through K2 learning process. It will take the
data from the dataset and train it to detect certain

anomaly. The K2 training will consist of Bayesian
Network classifier which will help detecting anomalies
in the dataset. After the Bayesian Network detection is
over, the system will go through a second training using
the Random tree classifier to detect any threats that the
Bayesian Network might have missed. Then the dataset
will go through a third training using Random forest
classifier to detect any anomalies that might have been
missed by the previous classifiers. When the training is
complete we will open new connection to the junction
tree which will connect every node to a parent and
predict anomalies from the normal behaviour.

6.7. Overall Detection Accuracy Results

The testing was initially done on a smaller dataset (20%
on NSL-KDD dataset). The accuracy was 99.67%

where few instances were classified wrong. The overall
results were high with 83 instances classified wrong out
of 25109 instances. 29 anomalies were classified normal
and 54 normal were classified anomalies. The reason we
got lower results from what we tested in Weka is
because we used 20% of the dataset, and trees perform
better on larger datasets. Refer to table 4.

Fig. 6. System Design Classes and their relationship

Table 4. Detection Accuracy Comparison

Naïve
Bayes

Random
Forest

Random
Tree

Discretize
Filter Naive
Bayes

Filter
Method
Naïve
Bayes

Wrapper
Method
Naïve
Bayes

Combined
Classifiers
20% NSL-
KDD

Combined
Classifiers
Full NSL-
KDD

Detection Rate (%) 90.38 99.89 99.77 97.13 90.72 96.22 99.67 99.99

False Positive Rate (%) 0.134 0.002 0.003 0.054 0.151 0.42 0.005 0.001

Model Building Time (Sec) 1.57 22.33 2.59 0.12 2.19 1.62 3.23 24.97

Precision (%) 0.89 0.999 0.998 0.954 0.88 0.964 0.996 1

Recall (%) 0.936 0.999 0.998 0.994 0.958 0.966 0.998 1

Root Mean Squared Error 0.3058 0.0313 0.0479 0.1612 0.3007 0.193 0.116 0.0086

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

850

Enhancing IDS Detection Accuracy

Then we performed the test on the full NSL-KDD
dataset. The results for the full dataset was very high,
i.e. 99.99%. From the table 4 it is clear that combining
the three classifiers gives the highest accuracy with
intrusion detection rate of 99.99% with an extremely
low false alarm rate of 0.01%. This is quite encouraging
compared with all other categories. Although it is
slower to build the model with 24.97 seconds than all
other classifiers, the classifier makes up for it in high
detection rate. Further, high F-value of 100% and high
precision 100% and recall 100%, makes it a very good
result overall, which is why we chose to combine and
use the classifiers instead of using it separately. The
accuracy comparison graph can be seen in figure 7.

7. Discussion and Limitations of our Work

The work done focuses mainly on the four attack types -
DOS, U2R, R2L and Probe in the dataset used. So the
attacks outside these could go unnoticed, as we have not
trained and tested them. Our focus was to show that a
hybrid version of classification algorithms can work
better on a given intrusion detection dataset rather than
individual ones. The use of an active or passive traffic
analyser in conjunction with our software will help to
monitor new attacks. So the use of network security

Even though we have used NSL-KDD dataset which is
done in 1999, the kind of network attack types remain
quite similar even now, even though there are emerging

and new kinds of attacks. It is true that some new
attacks inside and outside of these categories will
always evolve. We are sure that if we train the software
with newer attack types, such attacks could as well be
detected too, as the software is intelligent and adaptable
to changes. The work we have done is only at a
prototype level where we have not tested the software
with real-time traffic. It may not be that easy to generate
a similar dataset with real time traffic with different
kinds of attacks as in NSL-KDD dataset as it was
generated in an exhaustive manner in a military
network. We will try to address this in our future work.

8. Conclusion

In this paper we have outlined the importance of
intrusion detection systems, and have analyzed the
performance of some of the detection classifiers in
relation to NSL-KDD dataset. Finally we developed a
software system in Java to detect intrusion on networks
using the same dataset. Bayesian network has the
capabilities to provide auto detection, and they learn
from auditing data which can be either normal or
abnormal. This was combined with Random tree and
Random forest classifiers to get better detection
accuracy. The system demonstrated a high performance
in detecting intrusion with 99.67% accuracy on 20% of
the NSL-KDD dataset and 99.99% accuracy on the full
dataset with a model building time of 24 seconds. The
higher accuracy was because we used trees in the

Fig. 7. Detection accuracy comparison graph

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

851

Mohanad Albayati and Biju Issac

classifiers, and they tend to give a higher performance
when used on large datasets. It should also be noted that
for different datasets different individual classifiers may
work well or bad, but a combination of best performing
classifiers can behave more consistently across different
datasets.

References
1. Hofmann A. and Sick, B. (2011). "Online Intrusion Alert

Aggregation with Generative Data Stream Modeling,"
Dependable and Secure Computing, IEEE Transactions
on, vol. 8, pp. 282-294.

2. Neethu, B. (2012). "Classification of Intrusion Detection
Dataset using machine learning Approaches,"
International Journal of Electronics and Computer
Science Engineering, vol. 1, pp. 1044-51, 2012.

3. Bace, R. (1999). An Introduction to Intrusion Detection
and Assessment: For System and Network Security
Management. ICSA White, 2, p.32.

4. Bayesnets.com, (2014). Bayes nets. [Online] Available at:
http://www.bayesnets.com/ [Accessed 25 May. 2014].

5. CitizenNet and Blackwell, A. (2012). A Gentle
Introduction to Random Forests, Ensembles, and
Performance Metrics in a Commercial System. Accessed
online on 21 August 2014. [Online] Available at:
http://citizennet.com/blog/2012/11/10/random-forests-
ensembles-and-performance-metrics/

6. Cooper, G. and Herskovits, E. (1992). A Bayesian method
for the induction of probabilistic networks from data,
Machine Learning. 9, pp.309-347.

7. Thomas, V. Sharma and N. Balakrishnan (2008),
"Usefulness of DARPA dataset for intrusion detection
system evaluation", Proceedings of SPIE 6973, Data
Mining, Intrusion Detection, Information Assurance, and
Data Networks Security.

8. K. Reddy, M. IAENG, V. N. Reddy, and P. G. Rajulu,
(2011). "A Study of Intrusion Detection in Data Mining,"
World Congress on Engineering, vol. III, July 6-8.

9. G. Kalyani and A. J. Lakshmi, (2012). "Performance
Assessment of Different Classification Techniques for
Intrusion Detection," IOSR Journal of Computer
Engineering (IOSRJCE), vol. 7, no. 5, pp. 25-29, 2012.

10. G. V. Nadiammai and M. Hemalatha, (2012). "Perspective
analysis of machine learning classifiers for detecting
network intrusions," IEEE Third International Conference
on Computing Communication & Networking
Technologies (ICCCNT), India, pp. 1-7.

11. IDS, A. (2014). An Introduction to IDS | Symantec
Connect Community. [Online] Available at:
http://www.symantec.com/connect/articles/introduction-
ids [Accessed 25 May. 2014].

12.
critique of the 1998 and 1999 DARPA intrusion detection
system
ACM Transactions on Information and System Security,
vol. 3, no. 4, pp. 262 294, 2000.

13.
Technical Report, Fort

Washington, Pennsylvania, USA.

14. Jemili, F., Zaghdoud, M. and Ben Ahmed, M. (2007). A
framework for an adaptive intrusion detection system
using Bayesian network. pp.66--70.

15. KDD Cup 1999 Data (2014), Data and Task description,
Online: http://kdd.ics.uci.edu/databases/kddcup99/
(accessed on May 2014).

16. M, Oded, and R, Lior. (2010). Random Trees in the "Data
Mining and Knowledge Discovery Handbook", Springer.

17. M. A. Aydin, et al., (2009). "A hybrid intrusion detection
system design for computer network security," Computers
& Electrical Engineering, vol.35, pp. 517-526.

18. M. K. Siddiqui and S. Naahid, (2013), Analysis of KDD
CUP 99 Dataset using Clustering based Data Mining,
International Journal of Database Theory and Application,
6(5), pp.23-34.

19. M. Tavallaee, E. Bagheri, L. Wei, and A. A. Ghorbani,
(2009). "A detailed analysis of the KDD CUP 99 dataset,"
in IEEE Symposium on Computational Intelligence for
Security and Defense Applications, CISDA . pp. 1-6.

20.
DARPA/Lincoln Laboratory evaluation data for network

Detection, vol. 2820 of Lecture Notes in Computer
Science, pp. 220 237. Springer Berlin / Heidelberg, 2003.

21. NSL-KDD. (2014). The NSL-KDD Dataset. [Online]
Available at: http://nsl.cs.unb.ca/NSL-KDD/ [Accessed: 4
Mar 2014]

22. P, A, M., Abraham, A. and Patra, M. R. (2012). A hybrid
intelligent approach for network intrusion detection.
Procedia Engineering, 30 pp. 1--9.

23. P. Srinivasulu, D. Nagaraju, P. R. Kumar, and K. N. Rao,
(2009). "Classifying the Network Intrusion Attacks using
Data Mining Classification Methods and their
Performance Comparison," IJCSNS International Journal
of Computer Science and Network Security, vol. 9, no.6,
pp. 11-18.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

852

Enhancing IDS Detection Accuracy

24. Pearl, J. (1988). Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann, 0-934613, pp.73-7.

25. R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K.
Das, (2000). "The 1999 DARPA off-line intrusion
detection evaluation," Computer Networks, vol. 34, no. 4,
pp. 579-595.

26. S. Benferhat and K. Tabia, "Integrating Anomaly-Based
Approach into Bayesian Network Classifiers," (2009). e-
Business and Telecommunications, pp. 127-139.

27. S. Subramanian, V. B. Srinivasan, and C. Ramasa, (2012).
"Study on Classification Classifiers for Network Intrusion
Systems," pp. 1242-1246.

28. Schultz, M. G., Eskin, E., Zadok, E., and Stolfo, S. J.
(2001). "Data Mining Methods for detection of New
Malicious Executables," IEEE Symposium on Security and
Privacy, Columbia University, pp.38-49.

29. Snort. (2014). The open Source network intrusion
detection system [Online]. Available:
http://www.snort.org.

30. Stat.berkeley.edu (2014). Random forests - classification
description. [Online]Available at:
http://www.stat.berkeley.edu/~breiman/RandomForests/cc
_home.htm [Accessed 25 May 2014]

31. StatSoft (2014). Naive Bayes Classifier. [Online]
Available at: http://www.statsoft.com/textbook/naive-
bayes-classifier [Accessed 25 August 2014]

32. T .Elvis, et al., (2

the 20th Annual Computer Security Applications
Conference, pp.428-437.

33. T. Hwang, T.Lee, and Y. Lee, (2007). "A Three-tier IDS
via Data Mining Approach," 3rd annual ACM workshop
on Mining network data, pp. 1-6.

34. Tavallaee, M., Bagheri, E., Lu, W. and Ghorba ni, A.
(2009). A detailed analysis of the KDD CUP 99 dataset. In
IEEE Symposium on Computational Intelligence for
Security and Defense Applications, Cisda, pp. 1 6.

35. W. Lee and S. J. Stolfo, "Data mining approaches for
intrusion detection (1998).," 7th USENIX Security
Symposium, San Antonio, TX.

36. WEKA. (2014). Weka 3 - Data Mining with Open Source
Machine Learning Software in Java. [Online] Available
at: http://www.cs.waikato.ac.nz/ml/weka/ [Accessed: 4
Mar 2014].

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

853

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

