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Abstract

Comparing ear photographs is considered to be an important aspect of disaster victim identification and
other forensic and security applications. An interesting approach concerns the construction of 3D ear
models by fitting the parameters of a ‘standard’ ear shape, in order to transform it into an optimal ap-
proximation of a 3D ear image. A feature list is then extracted from each 3D ear model and used in the
recognition process. In this paper, we study how the quality and usability of a recognition process can
be improved by computational intelligence techniques. More specifically, we study and illustrate how
bipolar data modelling and aggregation techniques can be used for improving the representation and han-
dling of data imperfections. A novel bipolar measure for computing the similarity between corresponding
feature lists is proposed. This measure is based on the Minkowski distance, but explicitly deals with hes-
itation that is caused by bad image quality. Moreover, we investigate how forensic expert knowledge can
be adequately reflected in the recognition process. For that reason, a hierarchically structured compari-
son technique for feature sets and other characteristics is proposed. Comparison results are expressed by
bipolar satisfaction degrees and properly aggregated to an overall result. The benefits and added value of
the novel technique are discussed and demonstrated by an illustrative example.
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1. Introduction

Background. In case of disasters, it is of utmost im-

portance that the deadly victims are identified as ac-

curate and as fast as possible, preferably in a way

which is humane for their relatives. For that reason

the Disaster Victim Identification (DVI) unit of the

Belgian Federal Police involved the Medical Imag-

ing Research Centre of the Catholic University of

Leuven and the Database, Document and Content

Management research group of Ghent University in

a project that aimed at supporting ante mortem and

post mortem ear photograph comparison. This paper

reports on some results of this project.

Relevancy. Although still not officially recognized

as a legal way to identify persons, ear biometrics

can be used as a reliable and interesting compo-

nent of a more complex person identification pro-

cess, which by law always needs to be done by a

team of forensic experts. Indeed, there is currently
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no hard evidence that ear shapes are unique, but

there is neither evidence that they are not. Stud-

ies comparing more than ten thousand ear pho-

tographs of different persons revealed that no two

ear shapes are indistinguishable1,2. Other studies,

including ear shapes of fraternal and identical twins,

concluded that the external ear anatomy constitutes

characteristic features that are quite unique for each

individual3. More research is definitely needed to

prove uniqueness, but this does not imply that ear

shape comparison cannot be used in victim identi-

fication tasks. On the contrary, matching or mis-

matching ear shapes provide forensic experts with

useful, extra information that supports their identi-

fication tasks. The motivation for using ear shape

comparison is moreover strengthened by the follow-

ing observations:

• Ears are relatively immune to variations caused

by ageing as the ear shape remains unchanged be-

tween the ages of eight and seventy years4.

• Ears are often among the intact parts of found

bodies.

• Collecting ante mortem (ear) photographs is con-

sidered to be a humane process for relatives.

• (Semi-)automated comparison of photographs is

in general faster and cheaper than DNA analysis.

This makes research on the (automated) comparison

of ear photographs relevant and interesting.

Problem description. Consider the situation where a

set of ear photos of a victim has to be compared with

a set of ear photos of a missing person. This is one

of the tasks forensic experts might have to deal with

when trying to identify a victim’s body. Ear pic-

tures of a victim are taken in post mortem conditions

and henceforth referred to as post mortem (PM) pic-

tures, whereas pictures of a missing person are al-

ways taken ante mortem and therefore called ante

mortem (AM) pictures. PM pictures are assumed to

be of good quality, because they are usually taken by

forensic experts under controlled conditions: high

resolution, correct angle, uniform lighting, with the

ear exposed as best as possible. AM photos are often

of lower, unprofessional quality. They are not taken

with the purpose of ear identification and are usu-

ally provided by relatives or social media. Because

there is no control over the conditions in which these

pictures were taken, we can only hope retrieving the

best we can. Moreover, parts of the ear might be ob-

scured by hair, headgear or other objects, or can be

deformed by glasses, earrings or piercings. This is

illustrated in Fig. 1.

Fig. 1. Data quality issues in PM and AM photographs.

Efficiently coping, in a (semi-)automated way,

with the different aspects of the comparison of im-

perfect ear photographs, as taken into account by

forensic experts, is a research challenge.

Contribution. Research in medical image processing

revealed that working with 3D ear models helps to

overcome problems caused by differences in orien-

tation, scaling and resolution of 2D ear pictures. In

this paper, we investigate if and how computational

intelligence techniques can be used and combined

for comparing 3D ear models. More specifically

we investigate ear recognition techniques which al-

low to explicitly reflect forensic expert knowledge

on ear identification, and moreover provide seman-

tically richer information on the quality of retrieved

results.

The presented work is the further development

and integration of two techniques that we separately

introduced5,6. The first technique handles the bipo-

larity that will arise when distinguishing feature

points that are of sufficient (positive pool) or of in-

sufficient quality (negative pool). All the results

of comparisons of feature points are expressed us-

ing bipolar satisfaction degrees (BSDs)7. A BSD

quantifies how well two feature points match (or

do not match), and additionally assesses the hesi-

tation about that comparison result, which is, e.g.,

caused by a lower quality of the AM photographs.

The second technique is used to split off and com-

pare subsets of feature points that correspond to
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specific areas of the ear shape. Results of elemen-

tary comparisons results are then combined using a

hierarchic logic scoring of preferences (LSP)8 ag-

gregation structure. This provides us with facili-

ties to adequately model and incorporate (forensic)

expert knowledge on ear comparison issues. LSP

based comparison as presented in5 does not cope

with bipolarity at all. Combining both techniques

requires that the bipolarity in the data is properly re-

flected in the aggregation. Handling this is the main

novel contribution of this paper.

Structure of the paper. The remainder of the paper

is organized as follows. Related work is briefly de-

scribed and discussed in Section 2. In Section 3,

some preliminaries are given. First, some general

issues on ear comparison are explained. Second,

some basic concepts and definitions of bipolar sat-

isfaction degrees are given. In Section 4, the 3D ear

model that is used in our research is introduced. Sec-

tion 5 deals with ear recognition and comprises the

main contribution of the paper. It describes how cor-

responding (groups of) feature points from two ear

models can be compared, using a novel bipolar sim-

ilarity measure. Furthermore, it describes how this

bipolar similarity measure can be used for compar-

ing two 3D ear models. Finally, it explains the inter-

pretation of comparison results in a bipolar setting.

The benefits and added value of the novel ear recog-

nition approach are discussed and demonstrated by

an illustrative example in Section 6. Finally, some

conclusions and plans for further research are re-

ported in Section 7.

2. Related Work

Aspects of ear photograph comparison have been

studied in several works9,10,11,12. An important as-

pect of an ear comparison process is ear recogni-

tion. During ear recognition corresponding features,

which are extracted from two ear models, are com-

pared in order to decide whether the associated ears

match or not. Most related work on ear recognition

is based on machine learning techniques. The con-

sidered feature extraction methodology can be used

to categorize it.

Intensity based recognition methods use tech-

niques like principal component analysis, in-

dependent component analysis and linear dis-

criminant analysis for the comparison13,14,15.

Other categories of recognition methods are

based on force field transformations16, 2D ear

curves geometry 17, Fourier descriptors18, wavelet

transformation19, Gabor filters20 or scale-invariant

feature transformation21.

A last category of recognition techniques is

based on 3D shape features. Most approaches

use an iterative closest point algorithm for ear

recognition22,23,24,25,26,27. In28 both point-to-point

and point-to-surface matching schemes are used,

whereas the method in29 is based on the extraction

and comparison of a compact biometric signature.

An elaborate survey on ear recognition is con-

tained in30. Another work covering the main aspects

of automatic recognition of human ears is31.

Only a few recognition approaches11,12 consider

to select specific areas on ear models and compare

them in a pairwise fashion. Comparison results are

then aggregated to obtain an overall matching score.

Weighted aggregation allows assigning a different

importance to specific ear parts, which in its turn can

be interesting when some parts can be less trusted

than others (due to, e.g., data quality issues). Ex-

plicitly considering separate ear parts in recognition

also supports the reflection of forensic expert knowl-

edge. For example, it is generally known that ears

are relatively immune to variation due to ageing4.

This holds true for the full ear shape, with the excep-

tion of the ear lobule which is known to elongate for

elderly people. So, when the PM photograph is of a

person who is more than seventy years old and the

AM photograph is of a person who is much younger,

a mismatch of the ear lobule shape should not have a

significant impact on the overall ear comparison re-

sult. Likewise, some variations of the ear shape are

known to be extremely rare. A match for such parts

should give a significantly higher indication that the

full ear shapes should match too.

To the best of our knowledge, none of the ex-

isting ear recognition techniques adequately assess

and handle data quality issues. However, assessing

data quality and reflecting its impact on the results

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

298
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of ear comparisons is important. Indeed, extra infor-

mation expressing the quality of the data on which

the comparisons are based enriches the comparison

results. Forensic experts can use this extra informa-

tion to improve their decision making. For exam-

ple, the case where an AM photograph A and a PM

photograph P only partially match, while both hav-

ing sufficient quality, clearly differs from the case

where A and P partially match to the same extent,

but where A is of (much) lower quality.

3. Preliminaries

3.1. General Issues on Ear Comparison

Deploying ear biometrics for victim identification

can be seen as a pattern recognition process. In

this process, ear photographs of a victim and ear

photographs of a missing person are respectively re-

duced to a PM and an AM feature set, which are

then consecutively compared with each other. By

doing so for all registered, missing persons the pro-

cess aims to help identify the victim on the basis of

the best match. The following main steps are hereby

distinguished31:

1. Ear detection. The ear shape is located and

the ear is extracted from the photographs.

2. Ear normalisation and enhancement. De-

tected ears from different photographs of the

same person are transformed to a consistent

ear model using, e.g., geometric and photo-

metric corrections.

3. Feature extraction. Representative features

are extracted from the ear model.

4. Ear recognition. Feature sets of AM and PM

ear models are compared. A matching score

indicating the similarity between both models

is computed.

5. Decision. The matching scores are ranked and

used to render an answer that supports foren-

sic experts in their decision making.

Errors in the first three steps can undermine the

utility of the process. So, features that are obtained

from low quality data should be handled with care,

and forensic expert knowledge on data quality as-

pects in ear comparison should be reflected as ad-

equately as possible. It is considered that forensic

experts provide us with heterogeneous bipolar in-
formation regarding the quality of (features located

in) different parts of the AM and PM ear models.

This means that some features are obtained from re-

liable data and usefully contribute to the recognition

process. Other features definitely stem from unre-

liable data and should be avoided, while for other

features still there can be hesitation about their qual-

ity. The latter should be handled with special care.

In order to do that, we consider that a feature set can

be subdivided into subsets to which different impor-

tances can be assigned in view of the recognition

process. Corresponding feature subsets of PM and

AM ear models are then evaluated separately, after

which their resulting matching scores are aggregated

in accordance to the predetermined preferences of

forensic experts.

3.2. Bipolar Satisfaction Degrees

Bipolar satisfaction degrees (BSDs)7 are used for

handling the heterogeneous bipolar information on

the data quality in a proper way. Only the fea-

tures for which the quality is considered to be ‘good

enough’ should contribute to the comparison pro-

cess. However, features for which there is hesitation

about their quality should not be discarded, but used

for assessing the hesitation on the outcome of the

comparison. A BSD allows modelling to which ex-

tent a (comparison) criterion is satisfied (or not), but

differs from a regular satisfaction degree in that it

additionally provides information on the hesitation

about the satisfaction of the criterion. A BSD is a

couple

(s,d) ∈ [0,1]2 (1)

where s is the satisfaction degree and d is the dis-
satisfaction degree. Both s and d take their values in

the unit interval [0,1], reflecting to which extent the

BSD represents satisfied, resp. dissatisfied. The ex-

treme values are 0 (‘not at all’) and 1 (‘fully’). The

values s and d are independent of each other. A BSD

can be used to express the result of a comparison, in

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

299
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which case s (resp. d) denotes to which extent the

comparison criterion is accomplished (resp. not ac-

complished).

Three cases are distinguished:

1. If s+ d = 1, then the BSD is fully specified.

This situation corresponds to traditional invo-

lutive reasoning.

2. If s+ d < 1, then the BSD is underspecified.

In this case, the difference h = 1− s− d re-

flects the hesitation about the accomplishment

of the comparison. This situation corresponds

to membership and non-membership degrees

in Atanassov intuitionistic fuzzy sets32.

3. If s+d > 1, then the BSD is overspecified. In

this case, the difference c = s+ d − 1 reflects

the conflict in the comparison results.

Consider that i denotes a t-norm (e.g., min) and

u denotes its associated t-conorm (e.g., max). The

basic logical operations for conjunction, disjunction

and negation of BSDs (s1,d1) and (s2,d2) are re-

spectively defined by7:

(s1,d1)∧ (s2,d2) = (i(s1,s2),u(d1,d2)) (2)

(s1,d1)∨ (s2,d2) = (u(s1,s2), i(d1,d2)) (3)

¬(s1,d1) = (d1,s1). (4)

4. 3D Ear Model

In previous work, we tried to accomplish ear recog-

nition by using 2D ear images33. However, imper-

fect geometric and photometric transformations of

2D AM photos put a limit on the quality of compar-

ison results. To improve upon our previous work we

currently work with a 3D ear shape model that cap-

tures the three dimensional details of the ear surface,

as shown in the left and middle parts of Fig. 2.

4.1. Construction

A 3D ear model is obtained by estimating the pa-

rameters of a mathematical shape function. The val-

ues for these parameters should be chosen in such a

way that the resulting shape optimally fits the avail-

able images of the ear. More details on this fitting

technique can be found in34. Other, related work

includes35,36,37. Fitting of 3D ear shapes can be done

within a 3D box frame with fixed height h, as shown

in the figure. This allows to normalize a set of 3D

ear models to a set of models that all have the same

height and resolution.

Fig. 2. An illustration of our 3D ear model (with hesitation

spheres).

For the part of our research that is presented in

this paper we assume that for each victim, we have

a 3D PM ear model at our disposal. This model is

obtained from fitting a 3D camera image of the vic-

tim’s right ear. We also assume there is a 3D AM

model of the right ear of each missing person. The

AM ear models, used for the reported research, are

also obtained from 3D camera images. Ongoing re-

search in medical image processing aims to develop

advanced techniques for constructing a 3D AM ear

model by fitting fragments, which are extracted from

a set of 2D photos of the same missing person.

4.2. Assessing Data Quality

Denote that a 3D ear model is an artificial represen-

tation of a real ear shape, which is constructed based

on the available information. If data about the shape

of some parts of the ear are missing or of lower qual-

ity, this will result in a quality decrease of (some

parts of) the fitted 3D ear model. Unavailability of

data while constructing a PM ear model might be

due to ear damage incurred during the disaster. In a

realistic setting, unreliability of data in AM ear mod-

elling can be caused by obstructed ear parts, strange

ear shape deformations, lower 2D photograph qual-

ity, etc. In this study, we rely on forensic experts to

manually point out (if applicable) which parts of the

3D ear model are less reliable than others.
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Properly assessing and handling data quality in

an ear recognition process is important because

it offers forensic decision makers extra informa-

tion about the reliability of the recognition results.

We propose to use computational intelligence tech-

niques to accomplish this. Unreliable parts of 3D

ear models will be denoted by so-called hesitation
spheres. As illustrated in the right part of Fig. 2,

a hesitation sphere H is defined by two concentric

spheres H+, H− and a maximal hesitation value

vH ∈]0,1].
All points p that are located inside or on the sur-

face of the inner sphere H+ are considered to have

a fixed associated hesitation value hH(p), which

equals to vH . By default, vH can be set to 1, rep-

resenting full hesitation. For points on the surface

or outside the outer sphere H− the hesitation level is

considered to be 0, whereas for points between both

spheres the hesitation is gradually decreasing from

vH to 0, depending on their distance to H+, i.e.,

hH(p) = vH ·
(

1− d(H+, p)
d(H+,H−)

)
(5)

where d denotes the Euclidean distance. In general,

forensic experts can manually assign as many hesi-

tation spheres as required to indicate unreliable parts

in the 3D model. (Semi-)automation of this assign-

ment process is a subject for future work. In the

presence of k > 1 hesitation spheres Hk, the overall

hesitation about the quality of a point p is computed

by:

h(p) = max
k

hHk(p). (6)

Thus, in such a case the maximal hesitation assigned

to the point is taken.

4.3. Feature Extraction

When working with a 3D ear model, feature extrac-

tion boils down to selecting n representative points

of the model’s surface. The more points that are con-

sidered, the more computation time will be needed

during ear recognition. Considering more points in-

creases matching quality at the cost of computation

time. Choosing too little points will result in worse

recognition results.

The shape fitting approach, introduced above, al-

lows for a rather simple feature extraction method. It

is sufficient to choose a 3D ear model of a ‘standard’

ear and choose n representative points on its surface.

As such, a standard feature set FS = {pS
1, . . . , pS

n} is

obtained. Helpful suggestions on which points to

choose are presented in Subsection 5.3.

For constructing a 3D ear model F of a given

3D ear image, the fitting algorithm is initialised with

the parameter values of the ‘standard’ 3D ear model

S. The fitting algorithm34 will transform each point

on the surface of the ‘standard’ model S to a point

on the surface of the fitted ear model F . Hence,

each feature pS
i , i = 1, . . . ,n in the feature set FS =

{pS
1, . . . , pS

n} will be transformed to a corresponding

feature pF
i that is located on F . The correspondence

between pS
i and pF

i is hereby fully determined by the

transformation.

If an AM ear model A and a PM ear model P
are constructed, the feature set FS = {pS

1, . . . , pS
n}

of the ‘standard’ ear model S is respectively trans-

formed to the feature sets FA = {pA
1 , . . . , pA

n} and

FP = {pP
1 , . . . , pP

n}. Because a feature pA
i ∈ FA cor-

responds to the feature pS
i ∈ FS, and pS

i corresponds

to the feature pP
i ∈ FP, pA

i and pS
i also correspond.

This holds for all i = 1, . . . ,n. Hence, feature sets

of different 3D ear models, resulting from the fitting

process as described above, consist of correspond-

ing features and can meaningfully be used for ear

recognition purposes.

5. Ear Recognition

In ear recognition, the feature sets of two right (or

two left) ear models are compared. If used for victim

identification, the feature set FP of the PM ear model

P of the victim’s right (or left) ear has to be com-

pared with the feature set FA of the AM ear model A
of a missing person’s right (or left) ear.

In this section we propose a novel method for

improving the quality of an ear recognition process.

In Subsection 5.1, a basic technique for comparing

corresponding features of AM and PM feature sets

is described. This technique is improved in Subsec-

tion 5.2 to explicitly cope with the hesitation that

might exist about the data quality. In Subsection 5.3,
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we study how two 3D ear models and their metadata

can be compared. Special attention goes to the ade-

quate modelling of forensic expert knowledge. The

interpretation of the results and the added value of

our novel approach are discussed in Subsection 5.4.

5.1. Similarity of Corresponding Features

A commonly used technique for comparing corre-

sponding points of two feature sets is to use the

Minkowski distance. In the 3D Euclidean space R
3

defined by the three orthogonal axes X1, X2 and X3,

the Minkowski distance between a point pA of FA
and its corresponding point pP in FP is given by:

dk(pA, pP) =

(
3

∑
i=1

|(pA)i − (pP)i|k
)1/k

(7)

where (.)1, (.)2 and (.)3 respectively denote the X1,

X2 and X3 coordinates of the point. Some commonly

used values for k are 1, 2 and ∞ which respectively

generate the Manhattan distance, Euclidean distance

and Chebyshev distance.

The similarity between two points is then ob-

tained by applying a similarity function μSim to their

distance. This function can generally be defined as

the membership function of a fuzzy set38 Sim over

the domain [0,+∞[ of preferred distances. A practi-

cal function is the following:

μSim : [0,+∞[→ [0,1]

d �→ 1, iff d � ε1

d �→ 0, iff d � ε0

d �→ 1− d − ε1

ε0 − ε1
, iff ε1 < d < ε0 (8)

where 0 � ε1 � ε0. With Eq. (8) it is reflected that,

if the distance d < ε1, then both points are located

close enough to each other to be considered com-

pletely similar. So, their similarity is defined to be

1. If d > ε0, then both points are located too far from

each other to be considered similar. So, their simi-

larity is defined to be 0. For distances d between ε1

and ε0 the similarity is gradually decreasing from 1

to 0.

Hence, the obtained similarity measure fSim for

the comparison of two features pA and pP is:

fSim : P×P→ [0,1]

(pA, pP) �→ μSim(dk(pA, pP)) (9)

where P⊆R
3 denotes the 3D space in which the ear

model is defined.

5.2. Bipolar Similarity

The computation of the similarity between two cor-

responding features pA and pP as defined by Eq. (9)

does not cope with data quality issues. In order to

do so, we propose to explicitly take into account the

hesitation values h(pA) and h(pP) of both features,

obtained by Eq. (6). For that purpose, a novel, so-

called bipolar similarity measure fBSim is proposed:

fBSim : P×P→ [0,1]2

(pA, pP) �→ (s,d). (10)

The similarity measure fBSim returns a BSD

(s,d), which expresses the result of the comparison

of pA and pP as described in Subsection 3.2, i.e., s
(resp. d) denotes to which extent pA and pP are sim-

ilar (resp. not similar), and is defined by:

s = (1−max(h(pA),h(pP))) · fSim(pA, pP) (11)

and

d = (1−max(h(pA),h(pP))) · (1− fSim(pA, pP)).
(12)

With these definitions, the hesitation h rep-

resented by (s,d) becomes h = 1 − s − d =
max(h(pA),h(pP)) ∈ [0,1], while s (resp. d) is the

proportion of 1− h that corresponds with the simi-

larity (resp. dissimilarity) between pA and pB that is

obtained by applying the regular similarity measure

fSim (Eq. (9)). It is assumed that s+ d = 1− h � 1,

such that the BSD is either fully specified (if h = 0),

or underspecified (if h > 0). (The case of conflicting

expert inputs is not studied in this paper.)

5.3. Comparing 3D Ear Models

Eq. (10) yields a BSD (s,d), expressing the degree

of satisfaction s and the degree of dissatisfaction d
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about the matching of two corresponding features pA

and pP. As extra information, the degree of hesita-

tion h= 1−s−d about the matching can be derived.

In order to come to a comparison of two 3D ear mod-

els A and P, their feature sets FA = {pA
1 , . . . , pA

n} and

FP = {pP
1 , . . . , pP

n} have to be compared. Available

metadata (gender, age, race, etc.) about the persons

whose ears are being modelled is also taken into ac-

count.

The comparison of two feature sets FA and FP
is done piecewise. Different subsets of the feature

sets can be compared separately, after which the re-

sulting BSDs are aggregated using a hierarchical ag-

gregation structure. The BSDs resulting from the

evaluation of criteria on the metadata can also be in-

corporated in the aggregation structure. Moreover,

BSDs can be assigned different weights reflecting

the relative importance of their associated criteria in

the ear recognition process. This approach allows us

to reflect and handle forensic knowledge on how to

compare ears, in the matching process.

Fig. 3. Different parts of an outer ear.

5.3.1. Comparing Corresponding Subsets of
Features

The separate treatment of different subsets of fea-

ture sets FA and FP in the comparison process is mo-

tivated by the fact that forensic experts have con-

siderable knowledge about the typicality of specific

shapes of different parts of the outer ear. Fig. 3

contains an overview of the most important distin-

guished ear parts. Also, knowledge about which

parts are sensitive to deformations due to ageing,

earrings, objects or other phenomenons might be rel-

evant for fine-tuning the ear recognition process.

Hence, there is a need for a facility to group all

features that belong to an identified part of the ear in

a subset and compare corresponding subsets stem-

ming from two 3D ear models. Such comparisons

can then later be combined with other comparisons

and criteria on the metadata. Feature point selection

will in general be guided by the need to distinguish

among specific parts of the ear.

Consider a subset F ′
A = {p′A1 , . . . , p′Ak } ⊆ FA and

its corresponding subset F ′
P = {p′P1 , . . . , p′Pk } ⊆ FP.

Hereby, it is assumed that each feature p′Ai ∈ F ′
A cor-

responds to the feature p′Pi ∈ F ′
P, i = 1, . . . ,k. The

bipolar group similarity between two (correspond-

ing) feature subsets F ′
A and F ′

P is defined by the sim-

ilarity measure f G
BSim:

f G
BSim :℘k(P)×℘k(P)→ [0,1]2

({p′A1 , . . . , p′Ak },{p′P1 , . . . , p′Pk }) �→ (s,d) (13)

where ℘k(P) denotes the subset of the power set

℘(P) of P that consists of all sets with k elements

(1 � k � n). With the understanding that (.)s and

(.)d respectively denote the s and d components of a

BSD, the BSD (s,d) in Eq. (13) is defined by:

s =
∑k

i=1( fBSim(p′Ai , p′Pi ))s

k
(14)

d =
∑k

i=1( fBSim(p′Ai , p′Pi ))d

k
. (15)

So, the (dis)satisfaction degree of the bipolar group

similarity between two feature subsets is considered

to be the average of the (dis)satisfaction degrees of

all corresponding features contained in the subsets.

Other definitions are possible here. For example,

when a pessimistic approach is used, (s,d) can be

defined as being the worst of all the BSDs resulting

from the comparisons of the corresponding features,

i.e.

(s,d) = arg

(
min

(si,di)∈C

(
si +(1−di)

2

))
(16)

with C = { fBSim(p′Ai , p′Pi )|i = 1, . . . ,k}.
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G. De Tré et al. / Human Centric Recognition of 3D Ear Models

5.3.2. Aggregation Trees for Ear Recognition

At the basis of the comparison of an AM ear model

A and a PM ear model P are the comparison(s) of

(subsets of) their respective feature sets FA and FP
—as described above— and the evaluation of meta-

data criteria. Metadata criteria can, among others, be

used for checking the age, gender or race of two per-

sons, or for checking the presence of characteristics

like birthmarks, tattoos and perforations by earrings

or piercings.

The result of a metadata criterion evaluation can

also be expressed by means of a BSD. Indeed, ver-

ifying whether the metadata for A and P match

(or not) can yield in a full satisfaction s = 1 (or

full dissatisfaction d = 1), which corresponds to

the BSD (1,0) (or (0,1)). It can also result in a

partial (dis)satisfaction caused by some hesitation

0 < h � 1 which can, e.g., be reflected by the BSD

((1− h)/2,(1− h)/2) (cf. Eq. (10)). For example,

if A and P are both ear models of a person belong-

ing to the Caucasian race, the comparison criterion

for race will yield (1,0), denoting full satisfaction.

However, if there is a hesitation h about the race of

P it will result in a partial satisfaction. More details

on the specification and evaluation of metadata cri-

teria are not given in this paper.

The next step in the 3D ear model comparison,

is the aggregation of the BSDs that are obtained

from subset comparisons and metadata criteria eval-

uations. Aggregation should result in an overall

BSD that adequately reflects the similarity between

the AM and PM ear models and the hesitation that

might exist about this similarity. In order to obtain

this, a hierarchic aggregation structure is proposed.

An aggregation tree8 allows to adequately reflect

human decision making and hence can also be con-

figured to model ear comparison strategies that are

used by forensic experts8.

Aggregation tree structures are constructed as

follows. Each leaf node either corresponds to a sub-

set comparison or to a metadata criterion. The eval-

uation of a leaf node results in a BSD. Each internal

node corresponds to an aggregator. Such an aggre-

gator groups (the results of) related subset compar-

isons and/or metadata criteria. It also supports the

modelling of higher abstraction levels that might ex-

ist in the decision making. For example, one ag-

gregator can group criteria that check the presence

of piercings and earrings. Another aggregator can

group criteria that relate to the central parts of the ear

(ear notch, tragus, antitragus and antihelix). And yet

another aggregator can be used to reflect that simi-

larity of the ear lobules should rather be considered

as a bonus (not a requirement) in those cases where

the estimated age of the victim is older than sev-

enty and the difference in time of the AM ear photo

shoots is significant. We will further develop some

of these examples in Section 6.

The evaluation of an internal node involves the

aggregation of the BSDs that result from the evalu-

ations of its child nodes and results in a new BSD.

This BSD reflects the overall satisfaction and hesi-

tation, considering all subset comparisons and meta-

data criteria, which are specified in the subtree that

has the internal node as root. Ear model comparison

then boils down to (recursively) evaluating the root

node of the aggregation tree.

Fig. 4. Example of an aggregation tree.

An example of an aggregation tree is depicted in

Fig. 4. The solid rectangles at the left side of the fig-

ure represent the subset comparisons and metadata

criteria. Each comparison and criterion is evaluated,

which yields a BSD. These BSDs are the leaf nodes

of the tree and form the inputs for the evaluation of

the other nodes. Each internal node represents an

aggregator and is characterized by a parameter α ,

which will be introduced next. The inputs of an ag-

gregator have a weight w, as explained below.

The aggregators of the aggregation tree are all

defined based on the generalized conjunction/dis-
junction (GCD) function8,5, which is adapted here
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to cope with BSDs. Both basic aggregators and par-

tial absorption aggregators are considered.

Basic Aggregators. For each basic aggregator
Aα

b , two kinds of parameters have to be provided:

weights and the andness parameter α .

A weight wi ∈ [0,1] is assigned with each input

(si,di), 1 � i � n of the aggregator. The weights

have to sum up to one, i.e., if we have an aggregator

with n BSDs as input, ∑n
i=1 wi = 1. In this way, each

weight reflects the relative importance of the input

to which it is associated.

The andness parameter α ∈ [0,1] determines the

logical behaviour of the aggregator. It acts as an

index expressing how ‘close’ the logical behaviour

of the aggregator Aα
b should be to the logical be-

haviour of the regular conjunction operator. Hence,

andness stands for simultaneity, whereas its com-

plement orness (ω = 1−α) reflects replaceability8.

The weighted power mean definition of Aα
b is as fol-

lows:

Aα
b : ([0,1]2)n × [0,1]n → [0,1]2

(((s1,d1), . . . ,(sn,dn)),(w1, . . . ,wn)) �→⎧⎪⎨
⎪⎩
(min(s1, . . . ,sn),max(d1, . . . ,dn)), if α = 1

(max(s1, . . . ,sn),min(d1, . . . ,dn)), if α = 0

((∑n
i=1 wi · sq

i )
1/q,(∑n

i=1 wi ·dq
i )

1/q), else

(17)

where the exponents q and q (∈]− ∞,+∞[) differ

from zero and can be numerically approximated by

computing8:

(0.25+1.602 · (0.5− x)+1.051 · (0.5− x)2+

2.163 · (0.5− x)3 −3.390 · (0.5− x)4)/(α ·ω)
(18)

with x = α for q and x = 1−α = ω for q.

The semantics of the aggregators that are defined

by Eq. (17) are completely in line with the seman-

tics of the logical operators that were introduced in

Eq. (2)-(4). For α < 0.5 we have disjunction. When

α = 0 the disjunction is called full disjunction (D).

For 0 < α < 0.25 a hard partial disjunction (HPD)

operator is obtained, whereas 0.25 < α < 0.5 yields

a soft partial disjunction (SPD) operator. Hence,

α = 0.25 can be considered as corresponding to

a neutral partial disjunction (PD) operator. Like-

wise, for α > 0.5 we have conjunction and α = 1

is called full conjunction (C). For 0.75 < α < 1, a

hard partial conjunction (HPC) operator is obtained,

whereas 0.5 < α < 0.75 yields a soft partial con-

junction (SPC) operator. The andness α = 0.75 can

be considered as corresponding with a neutral par-

tial conjunction (PC) operator. If α = ω = 0.5, the

neutral (weighted) arithmetic mean operator (A) is

obtained. In this case q = q = 1 holds.

Partial Absorption Aggregators. A partial ab-
sorption aggregator A(α ,P,R)

a is needed for combining

a mandatory (or sufficient) input x with an optional

input y (cf.39,40). Partial absorption aggregators

have three parameters: the andness α ∈]0,0.25]∪
[0.75,1[, a mean penalty percentage P ∈ [0,100%]
and a mean reward percentage R ∈ [0,100%]. If α �
0.75, the aggregator is conjunctive, in which case x
is interpreted as a mandatory input. If α � 0.25,

the aggregator is disjunctive and x is interpreted as a

sufficient input. The penalty and reward percentages

are used to adapt the BSD of x in case the optional

criterion y is satisfied (resp. not satisfied). In a bipo-

lar setting, a partial absorption aggregator is defined

as:

A(α,P,R)
a : [0,1]2 × [0,1]2 → [0,1]2

((s1,d1),(s2,d2)) �→ (s,d) (19)

where

s =
(
(1−w2) · (w1 · s1 +(1−w1) · s2)

q +w2 · sq
1

)1/q

and

d =
(
(1−w2) · (w1 ·d1 +(1−w1) ·d2)

q +w2 ·dq
1

)1/q
.

This definition is an extension of the partial absorp-

tion aggregators presented in39, where the neutral

aggregator (A) is chosen for the ‘inner’ aggregation

and Eq. (18) is used for approximating the exponents

q and q of the ‘outer’ aggregation. The weights w1

and w2 are computed to reflect, as adequately as pos-

sible, the impact of the mean penalty P and mean

reward R percentages provided by the user. Hereby,
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it is considered that the criterion satisfaction is de-

creased with a penalty of p% if the optional condi-

tion is not satisfied at all, and increased with a re-

ward of r% if the optional condition is fully satis-

fied. The given values P and R are (approximately)

the mean values of p and r and are used to compute

w1 and w2 as described in40.

5.4. Interpreting the Results

The evaluation of the aggregation tree yields a single

BSD (s,d) ∈ [0,1]2. This BSD expresses how well

two 3D ear models A and P match (s) and do not

match (d) with respect to the forensic expert knowl-

edge that is modelled by the criteria and aggregators

of the tree. Moreover, h = 1− s−d provides an as-

sessment of the overall hesitation that exists about

the comparison result (due to imperfect data qual-

ity).

In a typical victim identification search, a PM

3D ear model is compared with a set of m AM 3D

ear models taken from a database containing infor-

mation about missing persons. Each of these com-

parisons results in a BSD (si,di), i = 1, . . . ,m. In

practice, forensic experts will be interested in the

top-k matches for a given PM 3D ear model. For

that purpose, the resulting BSDs (si,di), i= 1, . . . ,m,

have to be ranked. In the given context, the best ear

matches are those where si is as high as possible and

hi is as low as possible. Therefore, considering that

hi = 1− si −di, the ranking function

r : [0,1]2 → [0,1]

(s,d) �→ s+(1−d)
2

(20)

can be used. This function computes a single rank-

ing value r((si,di)) for each BSD (si,di), which

can then be used to rank order the comparison re-

sults and select the top-k among them. Other rank-

ing functions are possible and discussed in41. An-

other option is to work with two threshold values

δs,δh ∈ [0,1]. In such a case, only ear models for

which the resulting BSD (s,d) satisfies s � δs and

h = 1− s−d � δh are kept in the comparison result.

Compared to existing comparison methods, the

presented approach has two main advantages, which

together reflect the novelty of this work and con-

tribute in making ear comparison more human cen-

tric. First, BSDs allow to assess data quality and

hence provide the decision makers with extra infor-

mation that is not available with regular approaches.

Second, the advanced aggregation technique allows

to better reflect existing expert knowledge in the de-

cision making process.

However, configuring the similarity measure and

aggregation structure can be time consuming and

requires some specific user skills. More research

on how to make the approach more user-friendly is

needed and subject to future work.

6. Illustrative example

The benefits and enriched expressibility of our pro-

posed approach are discussed and demonstrated by

the following illustrative example. Consider the

simplified comparison scenario, presented in Fig. 5.

An AM ear model A is compared with a PM ear

model P. There are two metadata attributes ‘gen-
der’ and ‘race’, whose values, if available, should

match. The other six attributes denote subsets of

feature points. Attributes ‘antihelix’, ‘tragus’, ‘ear
notch’, ‘antitragus’ and ‘lobule’ correspond to spe-

cific parts of the ear as depicted in Fig. 3, whereas

attribute ‘other parts’ denotes the subset of all other

feature points (not included in the subsets of the five

previous attributes). The attribute values for A and

P are resp. presented in the first and second column

next to the attribute name.

Fig. 5. Illustrative example.

For each attribute there is a corresponding ele-

mentary criterion. Criteria c111 and c112 respectively

check whether the gender and race of A and P pos-

sibly match or not, whereas the other criteria c1211,
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G. De Tré et al. / Human Centric Recognition of 3D Ear Models

c1212, c1213, c1214, c122 and c2 compare correspond-

ing subsets of feature points by applying Eq. (13).

Each elementary criterion is evaluated with its corre-

sponding attribute values for A and P. The resulting

BSDs enter the aggregation structure (dotted box)

via their corresponding arrows. (For the sake of clar-

ity, the BSDs are not represented in the figure.)

The aggregation structure reflects (part of) the

forensic expert knowledge. The following knowl-

edge rules are reflected:

• Both criteria on the metadata (c111 and c112) are
mandatory and should be fully satisfied in order
to conclude a match. This is modelled by a pure

conjunctive basic aggregator (α = 1). Weights do

not have any impact on this aggregation and are

by default set to 0.5.

• Parts of the inner ear are considered to be more
important for the matching process. The inner
ear parts under consideration are the tragus, ear
notch, antitragus and antihelix where the tragus
and ear notch are slightly more important than
the other two. This is modelled by two basic ag-

gregators. The first aggregator aggregates all re-

sults stemming from the comparison of inner ear

parts. The results that stem from the tragus (c1212)

and ear notch (c1213) comparisons are assigned a

slightly higher weight (0.3) than those stemming

from the antitragus (c1214) and antihelix (c1211)

comparisons (0.2). A hard partial conjunction

(α = 0.9) with an andness of 90% is considered.

This reflects that all criteria should be satisfied to

some extent, but some relaxation of 10% satisfac-

tion is allowed to conclude a match. The second

aggregator combines the inner ear comparison re-

sult with the result of comparing the other fea-

ture points (c122), excluding those that belong to

the lobule. Respective weights of 0.7 and 0.3 re-

flect the importance of the inner ear over the other

parts. A neutral partial conjunction (α = 0.75)

is considered to allow for some relaxation in the

matching results.

• The shape of the lobule of elder persons can elon-
gate over time. A solution for coping with this rule

is to consider ear lobule matching optional. If the

ear lobules (partially) match, a corresponding re-

ward is assigned to the matching score, otherwise

a penalty is assigned. This is modelled by a con-

junctive partial absorption aggregator (α = 0.9)

with mean penalty P = 10% and mean reward

R = 40%. Because the partial absorption aggre-

gator is a binary operator, the results of the meta-

data comparison and other feature point compar-

isons first have to be aggregated to obtain a single

mandatory input. A pure conjunctive basic aggre-

gator (α = 1) is used. The result of the lobule

comparison (c2) is the optional input.

The above example illustrates the added-value

of our proposal. With traditional aggregation tech-

niques the given knowledge rules would be much

more difficult to model. Moreover, the aggregation

structure takes BSDs as input and generates an over-

all BSD (s,d), which also reflects the overall hesita-

tion about the data quality. Such extra information

helps the forensic experts to correctly interpret the

worth of the comparison results, revealing hints in

cases where no adequate matches are found. A more

complex aggregation structure is needed for compar-

ing real cases, where more knowledge rules are in-

volved in the comparison process.

A main advantage of the proposed framework is

that it offers novel facilities for tackling the chal-

lenging problem of comparing a 3D PM ear model

obtained from a good 3D image with a 3D AM

model obtained from lower quality 2D AM pho-

tographs. To the best of our knowledge, this problem

has not been studied yet. More research is definitely

needed here, but it is already clear that potential so-

lutions would benefit from data quality assessment

and configurable representations of forensic expert

knowledge.

Current approaches for 3D ear image recogni-

tion, as described in Section 2, already yield good

comparison results when applied to high quality im-

ages. If applied to high quality 3D images (full

visibility, no deformations, no difference in age),

the recognition approach described above is accurate

enough to generate comparable results. Small differ-

ences, caused by imperfections in the fitting process,

are compensated by the flexibility of the proposed

similarity measure (parameters ε1 and ε0 in Eq. (9)).

However, adequately dealing with low quality

AM photos requires more flexibility for guiding the
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comparison process in accordance to preferences

that are set by forensic experts. Indeed, in these

cases, the fitting process will yield larger differences

so that untrusted parts should be excluded from the

comparison process. (Else, the required compensa-

tions would be so large, that a large number of false

positives will be inevitable.) The techniques pre-

sented in this paper are meant to contribute in of-

fering such a flexibility.

Also, experiments with representative, real-life

data sets are required for fine-tuning all the parame-

ters that occur and for validating the approach. Con-

structing such data sets is time consuming and sub-

ject to ongoing work. For example, a representative

number of 3D AM ear models containing unreliable

parts, representing information from old photos, etc.

should be included, as well as ear models of relatives

like parents, siblings, twins, etc. In a later stage,

3D ear models obtained from 2D AM photos should

also be included.

7. Conclusions and Future Work

The purpose of this paper is proposing a theoreti-

cal framework for novel techniques, which make ear

comparison more human centric. More specifically,

the paper first presents a framework for assessing

data quality and reflecting the hesitation caused by

bad data quality in the comparison results. This pro-

vides decision makers with useful extra information.

Another novelty in the paper is the integration of an

advanced, configurable aggregation structure, sup-

porting the incorporation of forensic expert knowl-

edge in the comparison process. Configuring the rel-

ative weights of the inputs and the andness param-

eters of the basic aggregators and configuring the

penalty, reward and andness parameters of the par-

tial absorption aggregators in the aggregation struc-

ture supports decision makers in performing differ-

ent comparisons for investigating multiple circum-

stances and scenarios.

The paper focuses on the semantic aspects of

the ear comparison problem and demonstrates how

computational intelligence techniques help to make

ear comparison more human centric. In our future

work we plan to focus on the fine-tuning of the sim-

ilarity measure and the configuration of the aggre-

gation structure. We also plan extensive tests with

real-life cases once a database with enough data, ob-

tained from 2D AM photographs, is available. As

well the impact on execution time, as the impact

on the recognition results of different parameter set-

tings and configurations will be studied.
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