
Received 25 June 2015

Accepted 27 January 2016

SONFIS: Structure Identification and Modeling with a Self-Organizing
Neuro-Fuzzy Inference System

Héctor Allende-Cid 1 ∗, Rodrigo Salas 2, Alejandro Veloz 2,4, Claudio Moraga 3, Héctor Allende 4

1 Pontificia Universidad Católica de Valparaı́so,
Escuela de Ing. Informática, Av. Brasil 2241,

Valparaı́so, Chile
E-mail: hector.allende@pucv.cl

2 Universidad de Valparaı́so
Escuela de Ing. Biomédica, General Cruz 222

Valparaı́so, Chile
E-mail: {alejandro.veloz; rodrigo.salas}@uv.cl

3 Technical University of Dortmund, 44221 Dortmund, Germany.
E-mail: claudio.moraga@udo.edu

4 Universidad Técnica Federico Santa Marı́a, Chile
Departamento de Informática, Avda. España 1680, Valparaı́so, Chile.

E-mail: hallende@inf.utfsm.cl.

Abstract

This paper presents a new adaptive learning algorithm to automatically design a neural fuzzy model. This
constructive learning algorithm attempts to identify the structure of the model based on an architectural
self-organization mechanism with a data-driven approach. The proposed training algorithm self-organizes
the model with intuitive adding, merging and splitting operations. Sub-networks compete to learn specific
training patterns and, to accomplish this task, the algorithm can either add new neurons, merge correlated
ones or split existing ones with unsatisfactory performance. The proposed algorithm does not use a
clustering method to partition the input-space like most of the state of the art algorithms. The proposed
approach has been tested on well-known synthetic and real-world benchmark datasets. The experimental
results show that our proposal is able to find the most suitable architecture with better results compared
with those obtained with other methods from the literature.

Keywords: Neuro-Fuzzy Models, Self-Organization, Nonlinear Structure Identification.

1. Introduction

Determining the appropriate architectural design of

machine learning models is one of the most chal-

lenging issues in system identification and model-

ing of several engineering and science applications.

Nowadays there are machine learning models that

still rely on a rigid and pre-specified topology, where

∗ corresponding author

International Journal of Computational Intelligence Systems, Vol. 9, No. 3 (2016) 416-432

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

416

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling

their learning algorithms are limited to search only

in the parametric space for a suitable architecture.

The users, based on their empirical intuitions and ex-

perience, are usually the ones that select the appro-

priate architecture to solve specific learning prob-

lems. For example, both the selection of the number

of hidden neurons of a Feedforward Artificial Neural

Network7,9 and the activation functions in an Adap-

tive Network13 are crucial and difficult decisions for

system modeling in many real world problems. If

the model size (complexity) is underestimated the

model will not be able to effectively solve the prob-

lem, while an overly large size tends to overfit the

training data and consequently results in poor gen-

eralization performance28.

An important and difficult issue in neural mod-

eling is the structure identification of complex and

high dimensional systems. Several solutions that in-

troduce flexibility to the architecture have been pro-

posed to face this difficult problem. The most com-

mon approach is based on two learning stages. The

first stage consists in the partitioning of the input

space, while the second stage is used to estimate

the parameters and adjust the neuronal model to the

system. Nevertheless, this approach assumes regu-

larity and independence of the neuronal (sub)model

for each partition, an assumption that in general is

not correct.

The most well known schemes for input space

partitioning are the rigid-grid-type, the clustering-

based, the Genetic-Algorithm-based, scatter-type

and the self-organization partitioning. In the grid-

type partitioning13,11, each block of the grid is as-

sociated to a neural sub-network. However, a major

drawback of this scheme is the stiffness of the ar-

chitecture during the learning process and the fact

that the number of neurons required for a suitable

system representation increases exponentially with

the dimension size. The clustering-based partition-

ing provides a more flexible partition, where the sub-

networks of the model are located according to the

input data distribution. However, the interpretability

of the model is hard for the user14,8 and the learning

process requires two separated stages. The Genetic-

Algorithm-based partitioning is based on evolution-

ary paradigms. These global search heuristics opti-

mize the input space partitioning24. This approach

requires high computational time to evaluate and

find suitable partitions. Hence this scheme is not ad-

equate for on-line operations. The scatter type par-

titioning divides the input space into patches21. It

covers a subset of the whole input space that char-

acterizes a region of possible occurence of the in-

put vectors. The scatter-type partitioning can also

limit the number of rules to a reasonable amount.

This makes it hard to estimate the overall mapping

directly from the consequent of each rule output. Fi-

nally, a self-organizing partitioning solves the input

space partitioning problem by means of a learning

algorithm which automates structure and parame-

ters identification simultaneously1,19,32,38. This type

of partitioning has a strong dependence on the self-

organizing operations. Most operations are paramet-

ric, thus, a bad choice of these parameters can lead

to over-partitioning of the input space. In spite of

this, it has the advantage that it does not rely on too

many assumptions, like the other methods.

The remainder of the article is structured as fol-

lows. In the next section we give a brief state of

the art of identification of neuro-fuzzy systems. In

the following section the Adaptive Network-based

Fuzzy Inference System (ANFIS) is described due

to its importance as the underlying structure of our

proposed SONFIS model, which is presented in the

following section. Because of this relationship we

kept the suffix “FIS” in the name of our model, even

though no explicit fuzzy inference is pursued. Sec-

tion 5 presents experimental results on SONFIS and

some discussion. Finally, the last section concludes

with some remarks and we delineate some future

works.

2. The State of the Art of Constructive
Methods

Nowadays, constructive methods for flexible mod-

eling and identification have attracted the atention
1,19,32,38. Several authors have extended the neuro-

fuzzy models in order to endow them with some

constructive capabilities. Originally, the neuro-

fuzzy models were meant to extract fuzzy if-then

rules from numerical data, which have shown to be

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

417

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling

able to reach very accurate numerical models. The

interpretability of extracted fuzzy if-then rules and

the numerical accuracy of the final model with these

kind of systems are however conflicting goals, that

hardly ever may simultaneously be achieved12.

Juang et al. introduced the self-constructing neu-

ral fuzzy inference network14 (SONFIN) with on-

line learning ability. SONFIN first performs a struc-

ture identification by means of an aligned clustering-

based algorithm in the input space. After acquiring

the initial structure of the input space, the algorithm

requires the identification of the parameters of the

consequent rules. Following the structure initial-

ization, the consequent parameters are adjusted by

either least mean squares (LMS) or recursive least

squares (RLS). On the other hand, Chuang et al. pre-

sented the robust fuzzy regression agglomeration8

(RFRA) that uses a robust clustering approach to de-

termine the neuro-fuzzy structure. Tung et al. intro-

duced the GenSoFNN38 model that employs a new

clustering technique known as discrete incremen-

tal clustering (DIC). Furthermore the fuzzy rules

obtained by the network are consistent and com-

pact, since GenSoFNN has built-in mechanisms to

identify and prune redundant and/or obsolete rules.

Leng et al. proposed a structure learning which at-

tempts to achieve an economical network size with

a self-organizing approach based on operators that

add or prune fuzzy rules to the model structure de-

pending on an error measure19. Qiao et al. pro-

posed the self-organizing fuzzy neural network 32

(SOFNN), where a self-organizing clustering ap-

proach is used based on rival penalized competi-

tive learning (RPCL), to establish the structure of

the network and to obtain the initial values of its

parameters. Then they use a supervised learning

method to optimize these parameters. Qiao et al.

later presented a self-organizing approach based on

Radial basis functions33. Khayat et al presented

an implementation of SOFNN with Genetic Algo-

rithms and PSO17. Jakubek et al. used a resid-

ual of the generalized total least squares11 (GTLS)

parameter estimation with an iterative decomposi-

tion of the partition space. Afterwards in each

step of this approach, an axis-oblique partitioning

is performed by multiobjective optimization using

the Expectation-Maximization algorithm. Liu et al.

introduced the self-spawning neuro-fuzzy system21

(SSNFS) consisting in a self-spawning competitively

learning algorithm to incrementally search the rule

patches. This method is capable of both structural

and parametric learning. It constructs the fuzzy sys-

tem by detecting a suitable number of rule patches

with their positions and shapes in the input space.

Initially the rule base consists of one single fuzzy

rule and during the iterative learning process the

rule base expands according to a supervised spawn-

ing validity measure. Kasabov et al. proposed

DENFIS16 (dynamic evolving neural-fuzzy infer-

ence system), for on-line and off-line learning, ap-

plied specially to time series prediction. The par-

ticularity of DENFIS is that it evolves through in-

cremental, hybrid learning and accomodates new in-

put data, including new features, new classes, etc.

through local element tuning. Leng et al. proposed

an algorithm for the generation of Takagi-Sugeno-

type (TS) neuro fuzzy systems20. The algorithm

consists of two stages: in the first stage, an initial

structure is adapted from an empty neuron or fuzzy

rule set, based on the geometric growth criteron and

the ε-completeness of fuzzy rules; then, in the sec-

ond stage, the initial structure is refined through a

hybrid learning algorithm. We will refer to this

method as ”Leng’s method“.

Angelov et al. proposed an evolving Takagi-

Sugeno model3 (eTS). It is based on a learning algo-

rithm that recursively updates the TS model struc-

ture and parameters by combining supervised and

unsupervised learning. The rule base and the pa-

rameters evolve continuously by adding new rules if

the potential of the new rules is higher than the po-

tential of the existing ones. The potential is based

on the modelling ability that the set of rules have

on new data. Based on this principle SAFIS34 was

proposed. It is an algorithm based on the functional

equivalence between a radial basis function network

and a fuzzy inference system (FIS). They introduce

the concept of influence of a fuzzy rule and use this

to add or remove rules based on the input data re-

ceived so far. Both of these algorithms are online

learning algorithms, so the adaptation of the rules

occurs whenever a new data point is received.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

418

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling

A Growing-Pruning algorithm for Fuzzy Neu-

ral Networks (FNN) that can add new fuzzy rules

and eliminate useless fuzzy rules using a sensitivity

analysis (SA) of the output from the model was pro-

posed by Han et al. and was called GP-FNN10. The

SA method has been successfully used by other re-

searchers for neural network structure design18. The

relevance of the fuzzy rules is determined by ana-

lyzing the Fourier decomposition of the variance of

the FNN’s output. Each contribution to the fuzzy

rule is given by assigning a sensitivity ratio for mea-

suring the contribution of a neuron (that could be

interpreted as the premises of a fuzzy if-then rule)

for generating the output value. The training algo-

rithm for the parameters is implemented using a su-

pervised gradient decent method, which ensures the

convergence of the GP-FNN-learning process. An

efficient self-organization learning neural network40

(SOSLINN) was presented, which according to the

authors present a fast and accurate model based on

the significance evaluation of hidden networks with

respect to the network output. There are several

more applications of Self-Organizing Fuzzy Neural

Networks to real-world problems2,22,26.

In this work we propose a constructive learning

algorithm inspired in the self-organization mecha-

nism to simultaneously identify the structure and the

weights of an ANFIS neuro-fuzzy system13 with a

data-driven approach. The self-organization mech-

anism searches for a suitable structure by means

of attraction that merges correlated rules, repulsion

that splits rules with unsatisfactory accuracy perfor-

mance and creation of rules when there are sub-

spaces without rule base representation. The algo-

rithm behaves competitively for the learning of spe-

cific patterns, and, along with the iterations, it adds

or prunes, constructively neurons to the model until

the topology stabilizes. Hence, the model without

being guided by an external source, like the user,

starts to construct the fuzzy rules from the available

data and then makes them compete to model it. This

means that if there is expert knowledge, it can be

used as a starting point of our algorithm. Neverthe-

less, if there is no expert knowledge, our algorithm

has the ability to find a stable architecture that has

a better performance than other (single) neural net-

work systems reported in the literature with respect

to approximation problems. This will be measured

by means of Mean-Square Error and other perfor-

mance measures presented in section 5. Some initial

results1 were later improved and made to the orig-

inal split, merge and grow operators, and a formal-

ization of their corresponding algorithms. Also an

exhaustive experimentation was carried out, by val-

idating the model with several real world and syn-

thetic data sets, and meta-heuristics were applied in

order to find optimal parameters. We show in section

5, that the model architectures obtained are sparse

and parsimonious. It should be emphasized that our

proposed model is mainly dealing with the problem

of getting a good approximation performance, with-

out aiming to obtain interpretable rules.

Although the concept of growing, splitting and

pruning operations is not new in neuro-fuzzy mod-

els, we provide an alternative way to apply these

kinds of operations. This proposal does not use the

same criteria/methods to apply these operations. It

only applies the same concept. Despite the concept

of these operations not being new, by applying our

own growing, splitting and prunning operations we

outperform state of the art methods that use similar

operations. Another thing to be pointed out is that

these operations have intuitive fundamentals, rely-

ing on thresholds of number of examples, activa-

tion of rules and error perfomance. Another dif-

ference between these proposal and other state-of-

the-art methods, is that most of them have an initial

phase where they use clustering algorithms to create

an initial set of rules. Our method does not rely on

an initial clustering algorithm (see Section 4) and, if

available, it allows the use of an initial set of rules

defined by experts. This set of rules can be then im-

proved by means of the proposed growing, splitting

and pruning operators. Table 1 presents a qualitative

comparison with state-of-the-art self-organizing and

constructive models.

3. ANFIS: Adaptive-Network-Based Fuzzy
Inference System

The Adaptive Network-based Fuzzy Inference Sys-
tem (ANFIS) was proposed by Jyh-Shing R. Jang13

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

419

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling

Table 1. Table summarizing models

Model Structure Search Learning Process Operators Founda-

tion

SONFIN Aligned clustering-

based algorithm in

the input space

Least Mean

Squares (LMS) or

Recursive Least

Squares (RLS)

Initial input-space

partitioning de-

pends initially

on the clustering

algorithm and its

parameters

GenSoFNN Discrete Incremen-

tal Clustering in

the initial phase

followed by the

use of an adding

and prunning

mechanism

Backpropagation

learning

Initial input-space

partitioning de-

pends initially

on the clustering

algorithm and its

parameters

SOFNN Self-organizing

clustering based

on Rival Penal-

ized competitive

Learning

An improved

backpropagation

algorithm with

adaptive learning

rate and momen-

tum

Initial input-space

partitioning de-

pends initially

on the clustering

algorithm and its

parameters

GP-FNN Self-organizing

mechanism based

on Prunning and

Growing operators

Supervised gra-

dient descent

method

A set of fuzzy rules

can be inserted or

reduced during the

learning process.

Leng’s Method Geometric Growth

Criterion and

ε-completeness

Hybrid Learning

based on back-

propagation and

recursive weight

learning algorithm

Initial input-

space partitioning

based on geo-

metric growth

criterion and

ε-completeness

DENFIS Evolving Cluster-

ing Method

Widrow-Hoff LMS

Algorithm

Initial input-space

partitioning based

on evolving clus-

tering method

SONFIS (Proposal) Iterative simultane-

ous parameter and

structure identifica-

tion via Prunning,

Spliting and Grow-

ing operations.

Hybrid Learning

Algorithm: LMS

and Backpropaga-

tion

No initial input-

space partitioning.

Partitioning per-

formed iteratively

with operators that

update the struc-

ture which rely on

intuitive heuristics

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

420

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling

as an outcome of his doctoral thesis12. This model

is functionally equivalent to a Takagi-Sugeno-Kang
Inference System. Therefore, it is able to model con-

tinuous input/output relationships by means of fuzzy

IF-THEN rules without employing precise quantita-

tive analysis. This fuzzy inference model has been

successfully used in several applications, e.g., to

build function approximators31,6, fuzzy controllers5

and fuzzy classifiers27. There have also been devel-

oped many practical systems, such as prediction and

inference15, signal processing and communication

systems25,35, non-linear control36,29, just to mention

a few (Notice that none of the above mentioned ap-

plications had as a goal an interpretable if-then fuzzy

rule-based system). The model is a fuzzy inference

system implemented in the framework of adaptive

neural networks that can construct an input-output

mapping based on both human intelligence and data

samples. In this section we present the architecture

and the classical learning procedure of the original

ANFIS model.

Let the input vector be x = (x1, ...,xd)
′ ∈ X , X ⊆

R
d and d is the dimension of the input space, where

v′ is the transpose of the vector v, and let the target

be y ∈ Y , Y ⊆ R. The rule base consists of K fuzzy

if-then rules of Takagi and Sugeno’s type (see 37),

i.e. for each k rule we have:

Rule k: If x1 is A(k)
1 and ... and xd is A(k)

d , then

fk(x,θ) = θ1x1 + ...+θdxd +θd+1 = Θ′
kx.

These rules are modeled with an ANFIS model

whose architecture and execution are summarized as

follows. The architecture of ANFIS consists of five

layers of neurons. The first layer is used to associate

the input variables to linguistic terms; a T-norm op-

erator is employed in the second layer to obtain the

strengths of the rules; and the third layer normalizes

these rules strengths. The fourth layer computes the

weighted hyperplane, where the consequents of the

rules are determined. Finally, the output of the net-

work is calculated as the summation of all the in-

coming signals pertaining to the previous layer.

The nodes of layer 1 (Fuzzification Layer) com-

pute the degree to which a given input xi satisfies

the linguistic quantifier A(k)
i . The output of the node

is given by the membership function μ
A(k)

i
(xi). The

Gaussian-type membership function13 is used:

μ
A(k)

i
(xi;η (k)

i) = exp

⎡⎣−(xi −ν(k)
i

σ (k)
i

)2
⎤⎦ (1)

where η (k)
i = {ν(k)

i ,σ (k)
i } are the premise parame-

ters that should be estimated for the linguistic label

A(k)
i , the ν(k)

i parameter stands for the location while

σ (k)
i is the width of the membership function of the

linguistic operator A(k)
i .

The nodes of layer 2 (Generalized “AND
Layer”) consist of T −norm operators that perform

the generalized AND. Each node of this layer rep-

resents the firing strength of some specific rule. In

ANFIS the product T − norm is used, because it is

differentiable, a property that is necessary for using

the backpropagation learning algorithm, which is a

gradient descend algorithm.

wk = wk(x;η (k)) = μ
A(k)

1

(x1,η
(k)
1) · ... ·μ

A(k)
d
(xd ,η

(k)
d)

(2)

for k = 1 . . .K.

Layer 3 (Normalization Layer) computes the nor-
malizing firing strength of the weights of the previ-

ous layer: wk = wk(x;η (k)) = wk

∑K
j=1 w j

, k = 1..K.

The nodes of layer 4 (Consequent Layer) com-

pute the weighted hyperplane that approximates the

nonlinear mapping, i.e.,

f k(x;η (k),Θk) = wk(x;η (k)) fk(x;Θk)

= wkΘ′
kx

(3)

where wk is the output of the k-th node of layer 3 and

Θk = (θ (k)
1 , ...,θ (k)

d ,θ (k)
d+1)

′ is the consequent param-

eter.

Finally, layer 5 (Network Output) consists in a

single node that computes the overall output as the

sum of all the incoming signals:

g(x;η ,Θ) =
K

∑
k=1

wk(x;η (k)) fk(x;Θk) (4)

where η = (η (1)
1 , ...,η (K)

d)′ and Θ = (Θ1, ...,ΘK)
′

correspond to the premise and consequent set of pa-

rameters respectively.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

421

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling

To estimate the parameters, the classical ANFIS

employs a hybrid learning procedure that uses the

Ordinary Least-Square (OLS) estimation procedure

to estimate the consequent parameters Θ and con-

secutively the backpropagation learning algorithm

to determine the premise parameters η .

The OLS procedure estimates the consequent pa-

rameters for each rule separately by minimizing the

following criterion for each node, k = 1, . . . ,K, of

the layer 4:

min
Θk

1

N
(y−xeΘk)

T Φi(y−xeΘk) (5)

where xe = [x;1] is the regressor matrix extended by

a unitary column, N is the data set size and Φk is

a matrix having the firing strengths (wi) on its main

diagonal

Φk =

⎡⎢⎢⎢⎣
wk,1 0 . . . 0

0 wk,2 . . . 0
...

...
. . .

...

0 0 . . . wk,N

⎤⎥⎥⎥⎦ (6)

Therefore, the least-square estimates of the con-

sequent parameters are given by

Θk = (xT
e Φkxe)

−1xT
e Φky, where k = 1, . . .K (7)

The premise parameters η (k)
i = {ν(k)

i ,σ (k)
i } are

estimated iteratively by the following updating

rules:

ν(k)
i (t +1) = ν(k)

i (t)+4α(t)
1

(σ (k)
i)2

(xi −ν(k)
i)wkzk

(8)

σ (k)
i (t+1) = σ (k)

i (t)+4α(t)
1

(σ (k)
i)3

(xi−ν(k)
i)2wkzk

(9)

where we denote g = g(x;η ,Θ), zk = (fk−g)(y−g)
and fk = fk(x;Θk) for short. Moreover α(t) is the

learning rate function, that behaves as the following

equation:

α(t) =
γ√

∑η

(
∂E
∂η

)2
(10)

where γ , 0 < γ < 1 is the step size, and it controls

the speed of convergence.

4. SONFIS: Self-Organizing Neuro-Fuzzy
Inference System

In this work we propose an extension to Jang’s AN-
FIS model called Self-Organizing Neuro-Fuzzy In-
ference System (SONFIS).The basic structure of the

proposal and its functionality is similar to the AN-

FIS model explained in the previous section. How-

ever, during the learning procedure, our proposed

model self-organizes its architecture in order to au-

tomatically identify the number of premises and

consequents needed to model the available complex

and highly dimensional data.

The self-organization learning procedure con-

sists of two stages. In the first stage we construct

a base model with a predefined number of nodes

and we estimate the parameters using the hybrid al-

gorithm explained in the previous section. During

the self-organization stage we proceed to apply three

types of operators: Grow Net (GrowNet), Split Sub-
networks (SplitNet) and Vanish Sub-networks (Van-

ishNet). These operators are applied iteratively until

the net self organizes and stabilizes satisfying some

user’s performance criterion. Before applying any

operator, the current base model is frozen, meaning

that none of the parameters can be any longer up-

dated. From now on we will refer to each if-then

Takagi-Sugeno Fuzzy rule as sub-networks. The

sub-networks can be added, split or vanished.

The structure of a sub-network consists of the

following elements: a set of nodes of the first layer

that are Gaussian-type functions, one node for each

dimension; a node of the second layer that computes

the product of the incoming values; a normalization

node of the third layer; the weighted regression line

modeled by the node of the fourth layer; and all

the incoming and outgoing links of aforementioned

nodes.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

422

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling

The proposal can start either from a predefined

number of nodes or from scratch. For example, if

there are experts with some kind of knowledge re-

lated to the phenomena under analysis, their exper-

tise can be used as base rules for our proposal. On

the other hand, we can start from a model with no

prior knowledge of the number of nodes necessary

to satisfy some performance criteria.

In what follows, several learning parameters will

be discussed, where their adjustments are based on

“user-defined” values. With this we mean, val-

ues based on the experience of the designer or ad-

justed with heuristic methods (e.g. evolutionary al-

gorithms). It should be remarked that if the designer

adjusts the parameters, these are based on intuitive

principles like percetange of data or number of ex-

amples. Both alternatives will be illustrated with ex-

amples in section 5.

The Grow Net operator consists in adding sub-

networks to increase the granularity of the partition

of the feature space. For each input x of the training

data we compute the firing strength wk for all the K
sub-networks with equation (2). If the maximum of

these strengths is less or equal than a user defined

threshold δ to the power of d, where d is the dimen-

sion of the input space, i.e.,

max
k=1..K

wk � δ d (11)

then we say that the sample (x,y) is not well-

modeled by the current model. We add it to a “bad

samples” set, together with the information of the

best matching criteria that currently best models the

sample, i.e.,

wκ = argmax
k=1..K

wk(x,η (k)) (12)

After having revised all the training data, we

group the data into the set Vκ according to their

best matching criteria wκ . For each group that

has more than Ngrow samples, where Ngrow is user-

defined, we construct and add a new sub-network

for each dimension μ
A(K+1)

i
(xi;η (K+1)

i), i = 1..d, with

the premise parameters η (K+1)
i = ν(K+1)

i ,σ (K+1)
i ini-

tialized with the mean and standard deviation of the

samples belonging to this group, i.e.,

ν(K+1)
i =

1

Nκ

Nκ

∑
i=1

x(κ)i (13)

σ (K+1)
i =

√
1

Nκ

Nκ

∑
i=1

(
x(κ)i −ν(K+1)

i

)2

(14)

The consequent parameters of the sub-network

are randomly initialized.

The Split Sub-network operator consists in split-

ting a sub-network with bad performance into two

new ones. To evaluate the sub-network perfor-

mance, the training set is partitioned in K sets where

the sample (x,y) is assigned to the set Vk if its best

matching criteria (12) is wk. For each set we com-

pute the mean square error,

Ek =
1

Nk
∑

(x,y)∈Vk

(y−g(x;η ,Θ))2 (15)

where Nk is the number of samples belonging to

the set Vk and g(x;η ,Θ) corresponds to the artifi-

cial neural network output given by equation (4).

If the performance of sub-network k, Ek, is higher

than a user defined threshold ε and Nk is higher than

the minimum required samples Nsplit , where Nsplit
is user-defined, then the sub-network is divided into

two new ones. If the premise parameters of the k-th

sub-network are ν and σ , then the premise parame-

ters of the new sub-networks are:

ν (K+1)
i = νi − σi

2
; σ (K+1)

i = σi
2

;

ν(K+2)
i = νi +

σi
2

; σ (K+2)
i = σi

2
;

(16)

The hyperplane parameters are initialized randomly.

After the inclusion of the new sub-networks, the k-th

sub-network is eliminated.

The Vanish Sub-network operator consists in

eliminating nodes that model less than Nvanish sam-

ple data, where Nvanish is user-defined. To accom-

plish this, we introduce an agek variable that starts

from zero and is increased by one if a sub-network

models no data, i.e. the set Vk is empty. If the

age variable of the k-th sub-network reaches the

threshold λ , then the k-th sub-network is eliminated,

where λ is user-defined. If the set Vk is no longer

empty, then the agek variable is set back to 0. Af-

ter the application of the operators, all the unfrozen

parameters (sub-networks) are updated according to

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

423

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling

equations (5), (8) and (9). Afterwards, the whole net

architecture is frozen. The operators and the train-

ing steps are applied iteratively until the architecture

self-stabilizes and no longer changes. Finally, all the

parameters (frozen and unfrozen) of the network are

updated in the last iteration.

The SONFIS algorithm works as follows: At first

the model must be initialized. The initialization con-

sists in starting from a predefined number of nodes

(if there is no prior knowledge the default is 1) and

setting the user-defined thresholds. This step will

provide an initial SONFIS architecture. After that,

the algorithm will proceed with the iterations to es-

tablish a final parsimonious architecture.

In each iteration the current architecture must be

frozen, so that the current nodes remain stable. The

first operator to be evaluated is the GrowNet opera-

tor. This operator decides if the current number of

nodes are having a good performance with all the

training data. If not, this operator creates new sub-

networks. The next step evaluates the SplitNet oper-

ator only if GrowNet has not added a new node. This

operator splits a specific sub-network into 2 if it has

a poor performance based on a defined threshold and

if it does not model a minimum of data points.

The following step evaluates the VanishNet op-

erator. This operator deletes a sub-network that has

a poor performance or is modeling not a sufficient

amount of data points. This step is crucial because

it may eliminate nodes that could have been cre-

ated by the other 2 operators and that are not mak-

ing a relevant contribution to the performance of the

model. After that, the next step adjusts the mem-

bership functions and hyperplane parameters of the

sub-networks that the operators have created. The

iterations stop when the operators fail to create new

sub-networks. Finally the algorithm unfreezes the

parameters of all the nodes of the SONFIS architec-

ture and proceeds to adjust the premise and conse-

quent parameters of all the nodes.

The order of complexity of the proposal can be

defined by means of the following parameters of the

model:

• Number of examples (Ne).

• Maximum number of subnetworks (Ns).

• Training epochs (E).

• Number of examples times the input dimension

(Ne ×dimension).

• Vapnik-Chervonenkis dimension (VC).

Considering the aforementioned, the complex-

ity of the model will be O((Ne × Ns × E + Ne ×
dimension))×VC Since the proposal iterates until

the SONFIS architecture stabilizes, the complexity

is also affected by how many times the model it-

erates. The number of iterations is strictly related

by the complexity of the data that is being mod-

eled. Regarding the convergence of the proposal, the

user must be careful with the choice of several pa-

rameters. Each of the operations performed by the

model (create, split and vanish subnetworks) has 2

user-defined parameters each. As stated previously,

these parameters are intuitive, but still a bad choice

of them will lead to several iterations, and will not

garantee convergence. It has been established that it

is necessary to specify the parameters according to

the rule Ngrow �Nsplit �Nvanish. The Ngrow should be

larger than the Nsplit , in order that the operations al-

low the network to create subnetworks in parts of the

subspace where the model has not a good approxi-

mation. And Nvanish should be lesser that Nsplit , since

it eliminates subnetworks that are modelling a small

number of examples, so it enforces the creation of a

parsimonius network. In other words a bad choice

of these parameters will affect the model’s stability.

5. Experimentation

In this section we present the performance of

our proposed Self-Organizing Neuro-Fuzzy In-
ference System (SONFIS) model compared to

the models: Self-Constructing Neural Fuzzy In-
ference Network14 (SONFIN), a Generic Self-
Organizing Fuzzy Neural Network38 (GenSoFNN),

Self-Organizing Fuzzy Neural Network32 (SOFNN),

the Leng’s algorithm20, Dynamic Evolving Neural-
Fuzzy Inference System (DENFIS), Genetic Dy-
namic Fuzzy Neural Network30 (GDFNN), Novel
hybrid algorithm for creating self-organizing
fuzzy neural networks17 (SOFNNGAPSO), Effi-
cient Self-Organization Learning Neural Network40

(SOSLINN) and Robust Fuzzy Regression Agglom-
eration8 (RFRA). The simulation studies were con-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

424

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling

ducted on both synthetic and real datasets. The latter

were obtained from benchmark sites. In what fol-

lows, we first present all the synthetic and real data

sets and the performance measures that we will com-

pute; after that, we present numerical results and, at

the end, we give some discussion about them.

5.1. Datasets

For the synthetic experiments we have created 2 syn-

thetic data sets based on the following nonlinear

functions:

f = (1+ x0.5 + y−1 + z−1.5)2 (17)

and

y =
sinx1 sinx2

x1x2
, −5 � x1,x2 � 5 (18)

The training samples of the first synthetic

experiment32, consists of 216 uniformly sampled

three-input data from input ranges [1,6]× [1,6]×
[1,6] and their corresponding target data. For

the testing samples, 125 uniform samples from

[1.5,5.5]× [1.5,5.5]× [1.5,5.5] were used.

In the second synthetic experiment8, 196 uni-

formly sampled two-input data from input ranges [-

5,5] are used and their corresponding target data for

training the model. Then, 392 testing data examples

were generated, similar to the training data, to eval-

uate the generalization ability of the model.

Moreover Chuang et al. apply to equation (18) a

gross error model8 generated with a linear combina-

tion of a Gaussian Noise G∼N(0,σa) and an outlier

generating distribution H ∼N(0,σi) F =G(1−ε)+
εH with 0 < ε < 1, σa = 0.01 and σi = 0.05.

In the third synthetic experiment20, we tested our

approach with the well-known Mackey Glass Time-

series, with the same experimental configuration.

The training data are 1000 input-target data gener-

ated between t = 124 and 1123, and another 1000

input-target data between t = 1124 and 2123. The

prediction model with the series by the following

equation:

x̂(t +6) = f (x(t),x(t −6),x(t −12),x(t −18))
(19)

For the real data experiments, we compare the

performance of the techniques with the following

datasets: The Laser Dataset that was contributed by

Udo Huebner, Phys.-Techn. Bundesanstalt, Braun-

schweig, Germany. These data were registred

from a Far-Infrared-Laser in a chaotic state38; The

Wastewater dataset32, Boston dataset and Building

dataset were obtained from UCI Machine Learn-

ing repository4. The first real dataset38 was ob-

tained from the Forecasting and Time Series Anal-

ysis Santa Fe Institute Competition. The original

dataset consists of 1100 observations of the fluctu-

ations of infrared spectra in Laser. The data was

separated in training and test data. The first 1000

samples were used as training data and the last 100

samples were used as testing data. The laser data

time series has relatively simple oscillations, but has

global events that are hard to predict (rapid decay of

oscillations). The sample data consists of 5 inputs

and 1 output given by the following autoregressive

time series structure:

x(t) =F(x(t−1),x(t−2),x(t−3),x(t−4),x(t−5))
(20)

where x(t) is the output to be predicted, {x(t −
1),x(t − 2),x(t − 3),x(t − 4),x(t − 5)} is the set of

5 past observations and F is the nonlinear function

that relates the next observations with the past ones.

In the second real experiment a sludge wastewa-

ter treatment process is modeled. The key point

to simulate and control this kind of treatment pro-

cess is to establish the forecast model of the output-

water quality. Input-output-water quality data from

a sewage treatment plant in 2003 is taken as our orig-

inal data32. The original data has 521 examples, but

the authors claim to have deleted abnormal data. The

resulting data has 330 examples. The first 300 sam-

ples are set as training data and the rest as test data.

The experiment was conducted reducing the origi-

nal size to 330. We used a median filter approach to

obtain the 330 examples.

To compare SONFIS with other models we use

the following performance measures: Mean Square

Error (MSE), Root Mean Square Error (RMSE),

Normalized Mean Square Error (NMSE), Average

Percentage Error (APE), Mean Absolute Percentage

Error (MAPE), Mean Absolute Error (MAE), Co-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

425

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling
M

o
d
el

M
S

E
M

A
E

R
2

C
E

IA

A
N

F
IS

-4
5
,0

2
5

±
7
,9

7
7

1
,0

8
4

±
0
,6

2
0

0
,8

7
6

±
0
,0

7
0

0
,5

3
1

±
0
,7

5
9

0
,9

0
7

±
0
,0

0
5

S
y
n
th

et
ic

1
F
A

N
N

-4
0
,5

8
8

±
0
,2

9
6

0
,4

3
0

±
0
,1

5
1

0
,9

5
2

±
0
,0

2
1

0
,9

4
6

±
0
,0

2
6

0
,9

9
5

±
0
,0

0
6

S
O

N
F

IS
-4

0
,2

1
8

±
0
,2

0
6

0
,2

8
2

±
0
,1

4
6

0
,9

8
2

±
0
,0

1
6

0
,9

8
2

±
0
,0

1
6

0
,9

9
7

±
0
,0

0
1

D
E

N
F

IS
-4

5
0
,1

2
7
9

±
0
,0

4
9
7

0
,2

3
4
2

±
0
,0

4
7
3

0
,9

7
6

±
0
,0

1
1
3

0
,9

7
6
9

±
0
,0

1
1
3

0
,9

9
0

±
≈

0

A
N

F
IS

-9
0
,0

2
5
5

±
0
,0

0
5
4

0
,1

2
2

±
0
,0

1
4

0
,6

7
5

±
0
,0

6
7

0
,6

7
5

±
0
,0

6
7

0
,7

9
3

±
0
,0

4
7

S
y
n
th

et
ic

2
F
A

N
N

-9
0
,0

0
7
4

±
0
,0

0
1
9

0
,0

6
3

±
0
,0

0
9

0
,9

0
4

±
0
,0

1
8

0
,9

0
3

±
0
,0

1
9

0
,9

7
2

±
0
,0

0
4

S
O

N
F

IS
-9

0
,0

0
1
8

±
0
,0

0
0
1

0
,0

3
3

±
0
,0

0
1

0
,9

7
6

±
0
,0

0
2

0
,9

7
6

±
0
,0

0
2

0
,9

9
3

±
0
,0

0
1

D
E

N
F

IS
-2

1
0
,0

0
2
4

±
0
,0

0
0
9

0
,0

3
4
6

±
0
,0

0
5
2

0
,9

7
0

±
0
,0

1
1

0
,9

6
3

±
0
,0

0
6
7

0
,9

8
9

±
≈

0

A
N

F
IS

-5
5
9
2
,1

1
±

0
,0

5
2
2
,5

±
0
,0

0
≈

0
±
≈

0
-6

,2
5
0

±
0
,2

5
6

0
,3

3
6

±
0
,0

0
1

B
o
st

o
n

F
A

N
N

-5
2
2
,6

4
±

4
,1

4
3
,1

±
0
,4

1
0
,7

3
1

±
0
,0

5
1

0
,7

2
2

±
0
,0

5
7

0
,8

7
6

±
0
,0

4
4

S
O

N
F

IS
-5

1
6
,9

4
±

1
,2

3
3
,0

±
0
,1

2
0
,7

9
4

±
0
,0

1
6

0
,7

9
4

±
0
,0

1
6

0
,9

4
0

±
0
,0

1
5

D
E

N
F

IS
-4

4
2
2
,4

2
5
4

±
9
,5

4
1

2
,9

3
0

±
0
,3

1
5
8

0
,7

4
6
9

±
0
,1

0
6
1

0
,7

4
6
9

±
0
,1

0
6
1

0
,9

5
0
5

±
≈

0

A
N

F
IS

-5
0
,0

0
3
0

±
≈

0
0
,0

4
4
7

±
0
,0

0
0
1

0
,8

5
5

±
0
,0

0
0

0
,8

5
5

±
0
,0

0
0

0
,9

2
2

±
0
,0

5
4

B
u
il

d
in

g
F
A

N
N

-5
0
,0

0
2
8

±
0
,0

0
0
2

0
,0

4
1
4

±
0
,0

0
1
2

0
,8

6
6

±
0
,0

1
2

0
,8

6
6

±
0
,0

1
1

0
,9

6
6

±
0
,0

0
2

S
O

N
F

IS
-5

0
,0

0
3
0

±
≈

0
0
,0

4
4
7

±
0
,0

0
0
1

0
,8

5
5

±
0
,0

0
0

0
,8

5
5

±
0
,0

0
0

0
,9

6
0

±
0
,0

0
0

D
E

N
F

IS
-8

2
0
,0

0
6
1

±
≈

0
0
,0

5
7
5

±
0
,0

0
0
1

0
,4

3
6
3

±
0
,0

0
7
1

0
,4

3
6
3

±
0
,0

0
7
1

0
,8

5
9
2

±
≈

0

A
N

F
IS

-4
9
1
4
2
,9

±
1
,9

8
7
,5

7
±

0
,0

0
6
6

≈
0

±
≈

0
-5

,7
3
8

±
0
,3

2
7

0
,3

2
4

±
0
,0

0
0

W
as

te
w

at
er

F
A

N
N

-4
3
2
8
,2

±
1
0
3
,2

9
,7

1
0
7

±
1
,6

2
2
0

0
,8

0
6

±
0
,0

4
9

0
,7

8
5

±
0
,0

5
9

0
,9

2
7

±
0
,0

1
1

S
O

N
F

IS
-4

4
7
,1

±
1
,1

5
,0

0
7
5

±
0
,0

4
1
1

0
,9

6
7

±
0
,0

0
1

0
,9

6
7

±
0
,0

0
1

0
,9

9
1

±
0
,0

0
0

D
E

N
F

IS
-1

0
8

1
1
6
,0

1
±

6
3
,4

0
7
,4

1
7
8

±
2
,2

6
6
6

0
,7

6
1
2

±
0
,1

3
0
5

0
,7

6
1
2

±
0
,1

3
0
5

0
,9

4
3
2

±
≈

0

A
N

F
IS

-4
9
1
4
2
,9

±
1
,9

8
7
,5

7
±

0
,0

0
7

≈
0

±
≈

0
-5

,7
3
8

±
0
,3

2
7

0
,3

2
4

±
0
,0

0
0

F
o
re

st
F

ir
e

F
A

N
N

-4
4
1
4
5
,6

±
2
3
,4

4
1
8
,8

8
9

±
0
,9

5
2
5

0
±

0
-0

,0
5
9
5

±
0
,0

0
2

0
,7

4
4
1

±
0
,0

0
2

S
O

N
F

IS
-4

4
0
8
0

±
3
4
,4

5
1
3

1
9
,9

8
±

0
,1

8
8

0
,0

0
5
7

±
0
,0

0
2
8

-0
,1

5
0

±
0
,0

7
1

0
,7

3
1

±
0
,0

0
2
8

D
E

N
F

IS
-1

0
2

1
0
5
8
0

±
2
0
2
1

3
6
,6

3
±

2
,4

7
2

≈
0

±
≈

0
-9

,0
7
2

±
3
,5

9
1

-1
,6

2
3

±
3
,2

1
3

A
N

F
IS

-1
4

1
5
6
1
,7

±
≈

0
3
5
,8

1
8

±
0

≈
0

±
≈

0
-4

,6
3
4

±
0
,0

1
7

-0
,4

1
7

±
0
,1

0
3

C
o
n
cr

et
e

F
A

N
N

-1
4

3
6
,9

1
0

±
0
,9

5
5

4
,4

6
8

±
0
,0

3
7
7

0
,8

6
6
8

±
0
,0

0
2
6

0
,8

6
6
8

±
0
,0

0
2
6

0
,9

6
3
2

±
0
,0

0
9
3

S
tr

en
g
th

S
O

N
F

IS
-1

4
5
1
,0

0
5

±
1
5
,2

4
4
,7

1
1

±
0
,5

2
7

0
,8

0
9

±
0
,0

5
8

0
,8

0
9

±
0
,0

5
8

0
,9

3
5
1

±
0
,0

1
8
9

D
E

N
F

IS
-7

4
4
9
,1

5
5

±
6
,0

7
6
6

4
,5

3
6
7

±
0
,2

1
8
2

0
,8

2
2
2

±
0
,0

2
2
0

0
,8

2
2
2

±
0
,0

2
2
0

0
,9

5
9
3

±
0
,0

1
5
3

Table 2: Cross-validation experiments.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

426

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling

efficient of Determination (R2), Coefficient of Effi-

ciency (CE) and Index of Agreement (IA).

5.2. Results

The first part of this section, consists in presenting

a complete study of 5 real benchmark datasets and

2 synthetic ones (Wastewater and both of the syn-

thetic experiments that were presented above, the

rest were obtained from the UCI Machine Learn-

ing repository). We compare 4 algorithms: Our pro-

posed SONFIS algorithm, the classic ANFIS, the ex-

panded high-order DENFIS algorithm and a Feed-

forward Neural Network (FANN). The results can

be seen in Table 2. The architectural parameters of

both ANFIS and FANN, were set according to the

resulting Membership Functions created by our pro-

posal (setting the corresponding number of neurons

in the first layer and the number of hidden neurons

respectively). The experimental configuration con-

sisted in 4 rounds of a 5-fold cross-validation exper-

iment. The cross-validation indices were generated

randomly for each round.

The results of the experiments shown in Table 2

we can observe that SONFIS outperforms in all mea-

sures the classic ANFIS algorithm. If we compare

SONFIS with FANN we can observe that in the Syn-

thetic 1, Synthetic 2, Boston and Wastewater data

sets, SONFIS outperformed the FANN algorithm in

every measure. In only the Building and Concrete

Slump Strength data sets, the FANN algorithm out-

performed SONFIS. Nevertheless, the results are

comparable between these two algorithms. It should

be pointed out that the parameters chosen for the

SONFIS algorithm were the same used in the exper-

imentation of synthetic data set 2. We did not per-

form an exhaustive search for the values of this pa-

rameters. If we notice the number of sub-networks

between SONFIS and DENFIS, clearly SONFIS al-

gorithm generates less of them, which gives us a

more parsimonious model. It should be noted that

in most cases SONFIS outperforms DENFIS, and

it does it with a smaller number of subnetworks.

In some cases, the opossite occurs but the DENFIS
model in all cases creates a larger final network. De-

spite the fact, that in some cases DENFIS outper-

forms SONFIS, the results obtained by the proposal

are comparable, and it accomplishes it with a much

smaller number of subnetworks.

The second part of the numerical results con-

sists in conducting the experiments following the

methodology that were reported in the original arti-

cles of the methods. The results obtained by SON-
FIS were compared to GDFNN, SOFNN and SOFN-
NGAPSO in the first synthetic experiment and are

shown in Table 3. SONFIS C-V is the same pro-

posed algorithm, applying a 5-fold cross-validation

experimental approach. Details will be given in the

next subsection.

Table 3. Performance of SONFIS, GDFNN, SOFNN and SOFN-
NGAPSO in the synthetic experiment 1.

Algorithm APEtrain APEtest Training Epochs

SONFIS 0.750 0.650 140

GDFNN 2.110 1.54 160

SOFNN 0.560 2.320 200

SOFNNGAPSO 1.210 1.240 90

SONFIS C-V 0.937 0.939 100

The results from the second synthetic experiment

are presented in Table 4. We present the comparison

between RFRA, SONFIN and SONFIS.

Table 4. Performance of RFRA, SONFIN and SONFIS in the
synthetic experiment 2.

Model RMSEtest

RFRA 0.0353

SONFIN 0.0575

SONFIS 0.0221
SONFIS C-V 0.0298

In Table 5 we present the values of the param-

eters used in the synthetic experiments. In these

cases, we used an empirical approximation to obtain

the resulting parameters.

Table 5. Parameters used in the SONFIS Operators.

Data ε Nsplit δ Ngrow λ Nvanish

Synt1 0.5 40 0.8 30 2 30

Synt2 0.7 30 0.8 20 2 20

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

427

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling

Table 6. RMSE of SOFNN, Leng’s method 20, DENFIS,
SOSLINN and SONFIS for the Mackey Glass Timeseries.

Model neurons RMSEtrain RMSEtest

SOFNN 4 0.0123 0.0118

Leng’s method 10 0.0084 0.0088

DENFIS 4 0.0048 0.0134

SOSLINN 6 0.0065 0.0061

SONFIS 8 0.0024 0.0051

Now we present the results obtained with the first

real dataset (Laser dataset). In Ref. 38 they compare

their proposed model GenSoFNN with Feedforward

Neural Networks FANN, with different topological

definitions. The results can be seen in Table 7. We

compare the results of our proposal with the results

obtained in Ref. 38. SONFIS GA is the same pro-

posed algorithm, applying a Genetic Algorithm to

find the optimal parameters. Further details will be

given in the next subsection.

Table 7. Performance of FANN, GenSoFNN and SONFIS for
the Laser Time Series.

Model NMSEtest

Feedforward(200-100-1) 0.770

Feedforward(50-20-1) 1.000

Feedforward(50-350-50-1) 0.380

GenSoFNN 0.244

SONFIS 0.004

SONFIS GA 0.003

As a performance measure in the Wastewater ex-

periment, 32 presented the APE and RMSE as per-

formance measures.

The results of SOFNN, ANFIS and SONFIS are

presented in tables 8 and 9. The data used with

SONFIS was with and without outliers.

Table 8. APE of SOFNN, ANFIS and SONFIS for the Wastew-
ater dataset.

Model APEtrain APEtest

SOFNN 3.77% 3.98%

ANFIS 3.99% 4.38%

SONFIS 2.64% 3.14%

Table 9. RMSE of SOFNN, ANFIS and SONFIS for the Wastew-
ater dataset.

Model RMSEtrain RMSEtest

SOFNN 3.717 3.871

ANFIS 3.909 4.135

SONFIS 2.873 3.042

The results obtained in the first synthetic exper-

iment (Table 3) show that the SOFNN algorithm

outperforms SONFIS in the training data, where

SOFNN obtains an APE of 0.56 and SONFIS 0.75;

but if we observe the test results we can clearly

see that SONFIS obtains a much lower APE than

SOFNN, which seems to be affected by overfitting.

SONFIS outperforms GDFNN and SOFNNGAPSO
in both Train and Test results. The results of SON-
FIS are the mean value of 20 experimental runs.

The minimum obtained by SONFIS in the training

data was 0.63 and the minimum in the testing data

was 0.52. Quiao and Wang32 report, 200 epochs of

training for SOFNN. The number of training epochs

for SONFIS was 140, i.e. 60 less than SOFNN.

Also with SONFIS a 5-fold cross-validation was per-

formed (SONFIS C-V). As can be seen in the table

SONFIS C-V also outperforms SOFNN in the test-

ing phase. The training epochs used are remarkable,

because this result is obtained with only 100 epochs,

exactly half of the epochs required by SOFNN.

The results from the second synthetic experiment

are presented in Table 4. To measure the perfor-

mance of the models the Root Mean Squared Er-

ror (RMSE) was used. The performance results ob-

tained by SONFIS are clearly better that the ones

obtained with RFRA and SONFIN. The RMSE re-

ported is the mean value of 20 experimental runs.

The best test performance obtained by SONFIS was

0.0160. The mean value of the experimental runs

with the training data was 0.010. Also the mean

value of the number of neurons in the first layer ob-

tained was 6. It is also important to clarify that the

mean value of the training epochs was 140. As in the

synthetic experiment 1, a 5-fold cross-validation ex-

periment with SONFIS was performed, reporting a

test RMSE of 0.0416. The resulting training epochs

were 200. In this case even SONFIS C-V outper-

forms RFRA and SONFIN in terms of the RMSE test

error.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

428

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling

The results from the Mackey Glass Time series

are presented in Table 6. It shows the results of

the algorithms SOFNN, Leng’s Method20, DENFIS,

SOSLINN and SONFIS. The RMSE results obtained

by SONFIS is the mean of 20 experimental runs. The

best train and test performance obtained by SONFIS
were 0.0016 and 0.0043, respectively. The authors

of Leng’s Method20 do not report the number of ex-

perimental runs. As can be seen, SONFIS outper-

forms the four other algorithms in the training and

testing RMSE. The authors of Leng’s Method20 test

their proposed algorithm with several other algo-

rithms. Please refer to this paper for further details

about the other algorithms. Our proposed algorithm

SONFIS was also compared with the DENFIS16 al-

gorithm and SOSLINN40.

In Table 7 we present the normalized mean

squared error (NMSE) of SONFIS, GenSoFNN38

and 3 different feedforward neural networks models

with distinct topological configurations for the Laser

dataset. SONFIS outperforms GenSoFNN and the

Feedforward Neural Networks in 2 orders of magni-

tude. 20 experimental runs were conducted report-

ing the mean test NMSE. The mean train NMSE ob-

tained was 0.0002. The authors of GenSoFNN do

not report the number of experimental runs, so we

have to assume that the results reported are the best

ones. Our minimum NMSE for the test data was

0.001. The parameters of SONFIS were obtained

empirically. In SONFIS GA we used a real-valued

Genetic Algorithm to find the optimal parameters of

the algorithm. We obtained a better performance of

the model with these. The configuration of the Ge-

netic Algorithm (GA) experiment was the follow-

ing: 3 different configuration for the mutation and

cross-over probabilities, 10 populations and 4 in-

dividuals per population in each experiment. As it

was expected for an evolutionary approach, a large

amount of time is necessary to perform these experi-

ments. The best result for the NMSEtest was 0.0003.

The ε parameter obtained was 0.453428 and a δ
of 0.743895. As can be seen in tables 8 and 9 the

SONFIS model has a better performance compared

to SOFNN and ANFIS in the Wastewater dataset

in terms of APE and RMSE. 20 experimental runs

were conducted and the mean value was reported.

The mean value of the resulting neurons of the first

layer was 4. The results of SONFIS with the filtered

data are significantly better than the ones obtained

with SOFNN and ANFIS. The starting solution for

the first and second real experiment were the values

of the parameters obtained empirically, described in

more detail below.

The parameters were chosen empirically for the

real-world benchmark dataset: ε = 0.3, Nsplit = 30,

δ = 0.7, Ngrow = 20, λ = 2 y Nvanish = 20.

5.3. Discussion with state of the art methods

In this paper we have introduced a flexible archi-

tecture algorithm inspired on ANFIS, called SON-
FIS. Our proposed model self organizes its architec-

ture in order to automatically identify the number of

premises and consequents needed to model the avail-

able complex data. The adaptation is performed in-

troducing Takagi and Sugeno’s fuzzy if-then rules,

based on the evaluation of self-organization opera-

tors with a data-driven approach, that can improve

the fitting performance in the training phase, lead-

ing to a better performance in terms of generaliza-

tion ability.

As a starting point, expert knowledge can be in-

corporated to initialize the model structure, and our

proposed approach is able to improve it iteratively,

establishing a proper architecture based on the sam-

ples available. This is a key point while compar-

ing our proposal with other state of the art meth-

ods. Most of them generate an initial set of rules

based on a clustering method, partitioning the input-

space. Then with this initial set of rules, they refine

the search for suitable rules, applying other methods

(Mostly prunning, spliting and growing operations).

Our method does not need an initial set of rules de-

rived from the data set, because it constructs it iter-

atively, with the aforementioned operations. There-

fore, state-of-the-art methods cannot use previously

acquired or expert knowledge, because they do not

take into account the knowledge when they first de-

rive the rules from the data. Also it should be re-

marked that the operations used in this proposal have

intuitive fundamentals, relying on thresholds or pa-

rameters that can be easily interpreted by not so ex-

perienced users. They represent number of exam-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

429

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling

ples, percentages of data that “belong” to a member-

ship function and user-defined maximum allowed

error performance. So the meaning of our proposal

parameters are more interpretable by the users. An-

other advantage of our proposal is that it does not

create a huge number of rules, if we compare it for

example with the DENFIS algorithm. Also the num-

ber of rules can be easily controlled by tuning the al-

gorithm parameters properly. This is an advantage,

because it creates a more parsimonious model, thus

using less computational resources. Despite all the

advantages of our proposed model, we have to clar-

ify that our model, is sensible in the sense that if

the user-defined parameters are not well-defined it

can get stuck in several iterations, creating and prun-

ing rules indefinitely. This can be partially solved

by having a threshold parameter that stops the al-

gorithm when the number of iterations reach that

threshold parameter. Also, if the data is very noisy

(or even with many outliers), the parameter of the

number of examples necessary to create new subnet-

works, will be insufficient to detect such scenarios

thus, the model will not be able to model the prob-

lem properly.

Our algorithm shows better results in both syn-

thetic and real data sets in most cases, when com-

pared with other State of the Art algorithms. The

experimentation consisted in 2 parts. The first

part consisted in performing an exhaustive com-

parative analysis in order to contrast our algorithm

with the classic ANFIS, DENFIS and FANN mod-

els. The second one was conducted to compare

our proposal with other well-known self-organizing

methods, where the results obtained were remark-

able. In this part we experimented with two real

world benchmark data known as Laser and Wastew-

ater. The comparative study with the classic self-

organizing algorithms shows that our algorithm out-

performs the alternative models with statistical sig-

nificance, obtaining good results in both synthetic

and real data.

6. Conclusion

As a conclusion to this work we can say that an a pri-

ori fixed number of fuzzy rules is not necessary. This

is a useful improvement in applications where an in-

experienced user needs to work with Neural-based

models without knowing the optimal net architec-

ture. Also, another particularity of this method,

in comparison with other neuro-fuzzy constructive

methods, is that our proposed model has not only the

ability of self-organizing based on a data-driven ap-

proach, but also to start from an a priori knowledge

base set by an expert or by other methods, leading to

an algorithm that is more capable of facing different

kinds of problems. According to the ”No free lunch“

theorem, it is known that for every specific problem

we have to find some adequate parameters, because

it is not possible to find a super-model that is able

to model every data set in an optimal way. In future

works we will deal with problems related with big

data and data streams.

Acknowledgement

This work was supported by the following re-

search grants: Fondecyt 1110854, Fondecyt Ini-

tiation into Research 11150248, CCTVal, DGIP-

UTFSM, DIUV 64-2011 and UVA1402 of the Min-

istry of Education - Chile. The work of C. Moraga

was partially supported by the Foundation for the

Advancement of Soft Computing, Mieres, Spain.

1. Allende-Cid H., Veloz A., Salas R., Chabert S. and Al-
lende H.: Self-organizing neuro-fuzzy inference sys-
tem. Progress in Pattern Recognition, Image Analy-
sis and Applications, 13th Iberoamerican Congress on
Pattern Recognition, CIARP 2008, pp. 429-436.

2. Alvarez-Molina E.R., Martinez L.G., Castanon-Puga
M. and Rodriguez-Diaz, A. A Neuro-Fuzzy System
as a complex system of emergent behavior in orga-
nizations. Complex Systems (WCCS), 2014 Second
World Conference on, 2014, pp. 463 - 468.

3. Angelov P.P. and Filev D.P.: An approach to online
identification of Takagi-Sugeno fuzzy models. IEEE
Transactions Systems, Man and Cybernetics, Part B,
Vol.34 (1), 2004, pp. 484-498.

4. Asuncion A. and Newman D.J.: UCI machine learning
repository, 2007.

5. Boukezzoula R., Foulloy L. and Galichet S.: Inverse
controller design for fuzzy interval systems. IEEE
Transactions on Fuzzy Systems, Vol. 14(1), 2006, pp.
569-582.

6. Chen W. and Saif M.: A novel fuzzy system with dy-
namic rule base. IEEE Transactions on Fuzzy Sys-
tems, Vol. 13(5), 2005, pp. 569-582.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

430

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling

7. Cheng B. and Titterington D.M.: Neural networks -
a review from a statistical perspective. Statistical Sci-
ence, Vol. 9(1), 1994, pp. 2-30.

8. Chuang C.C., Su S.F. and Chen S.S.: Robust TSK
fuzzy modeling for function approximation with out-
liers. IEEE Transactions on Fuzzy Systems, Vol. 9(6),
2001, pp. 810-821.

9. Cotrell M., Girard B., Girard Y., Mangeas M. and
Muller C.: Neural modeling for time-series - a sta-
tistical stepwise method for weight elimination. IEEE
Transactions on Neural Networks, Vol. 6(6), 1995, pp.
1355-1364.

10. Han H. and Qiao J.: A self-organizing fuzzy neural
network based on a growing-and-pruning algorithm.
IEEE Transactions on Fuzzy Systems, Vol. 18(6),
2010, pp. 1129 -1143.

11. Jakubek S. and Hametner C.: Identification of neu-
rofuzzy models using GTLS parameter estimation.
IEEE Transactions on System, Man and Cybernetics,
Part B, Vol. 39(5), 2009, pp. 1121-1133.

12. Jang J.S.R.: Neuro-Fuzzy Modeling: Architecture,
Analyses and Applications. PhD thesis, Department
of Electrical Engineering and Computer Science, Uni-
versity of California, U.S.A., 1992.

13. Jang J.S.R.: ANFIS: Adaptive-network-based fuzzy
inference system. IEEE Transaction on Systems, Man
and Cybernetics, Vol. 23(3), 1993, pp. 665-685.

14. Juang C.F. and Lin C.T.: An on-line self-constructing
neural fuzzy inference network and its applications.
IEEE Transactions on Fuzzy Systems, Vol. 6(1), 1998,
pp. 12-32.

15. Kandel A.: Fuzzy Expert Systems. CRC Press, 1992.
16. Kasabov N. and Song Q.: DENFIS: dynamic evolving

neural-fuzzy inference system and its application for
time-series prediction. IEEE Transactions on Fuzzy
Systems, Vol. 10(2), 2002, pp. 144-154.

17. Khayat O., Ebadzadeh M.M., Shahdoosti H.R., Rajaei
R. and Khajehnasiri I.: A novel hybrid algorithm for
creating self-organizing fuzzy neural networks. Neu-
rocomputing, Vol 73(1), 2009, pp. 517524.

18. Lauret P., Fock E. and Mara T.A.: A node pruning al-
gorithm based on a Fourier amplitude sensitivity test
method. IEEE Transactions on Neural Networks, Vol.
17(2), 2006, pp. 273-293.

19. Leng G., Prasad G. and McGinnity T.M.: An on-
line algorithm for creating self-organizing fuzzy neu-
ral networks. Neural Networks, Vol. 17(10), 2004, pp.
1477-1493.

20. Leng G., Zeng X.-J. and Keane J.A.: A hybrid learning
algorithm with a similarity-based prunning strategy
for self-adaptive neuro-fuzzy systems. Applied Soft
Computing, Vol. 9(1), 2009, pp. 1354-1366.

21. Liu Z.Q., Guan T. and Zhang Y.J.: Self-spawning
neuro-fuzzy system for rule extraction. Soft Comput-
ing, Vol. 13(11), 2009, pp. 1013-1025.

22. Mozaffari A., Fathi A. and Behzadipour S.: An evolv-
able self-organizing neuro-fuzzy multilayered classi-
fier with group method data handling and grammar-
based bio-inspired supervisors for fault diagnosis of
hydraulic systems. International Journal of Intelligent
Computing and Cybernetics. Vol. 7(1), 2014, pp. 38-
78.

23. Nash J. and Sutclife J.: River flow forecasting through
conceptual models part I - a discussion of principles.
Journal of Hydrology, Vol. 10(3), 1970, pp. 282-290.

24. Nelles O., Fischer M. and Muller B.: Fuzzy rule ex-
traction by a genetic algorithm and constrained non-
linear optimization of membership functions. In Pro-
ceedings of the Fifth IEEE International Conference
on Fuzzy Systems, Vol. 1, 1996, pp. 213-219.

25. Nie J. and Linkens D.A.: Fuzzy Neural Control: Prin-
ciples, Algorithms and Applications. Prentice-Hall,
1994.

26. Ocampo-Duque W., Juraske R., Kumar V., Nadal M.,
Domingo J.L. and Schuhmacher M.: A concurrent
neuro-fuzzy inference system for screening the eco-
logical risk in rivers. Environmental Science and Pol-
lution Research, Vol. 19(4), 2013, pp. 983-999.

27. Pal S.K. and Mitra S.: Multi-layer perceptron, fuzzy
sets and classification. IEEE Transactions on Neural
Networks, Vol. 3(5), 1992, pp. 683-697.

28. Parekh R., Yang J. and Honavar V.: Constructive
neural-network learning algorithms for pattern classi-
fication. IEEE Transactions on Neural Networks, Vol.
11(2), 2000, pp. 436-451.

29. Pedrycz W.: Fuzzy Control and Fuzzy Systems. Wiley
Series, 1989.

30. Pratama M., Er M.J., San L., Richard J.O., Zhai L.-Y.,
Torabi A. and Arifin I.: Genetic Dynamic Fuzzy Neu-
ral Network (GDFNN) for Nonlinear System Identifi-
cation. Lecture Notes in Computer Science, Vol. 6676,
2011, pp. 525-534.

31. Pomares H., Rojas I., Ortega J., Gonzalez J. and Prieto
A.: A systematic approach to a self-generating fuzzy
rule-table for function approximation. IEEE Transac-
tions System Man and Cybernetics, Part B, Vol. 30(3),
2000, pp. 431-447.

32. Qiao J. and Wang H.: A self-organizing fuzzy neural
network and its applications to function approxima-
tion and forecast modeling. Neurocomputing, Vol. 71,
2008, pp. 564-569.

33. Qiao J.-F. and Han H.-G.: Identification and modelling
of nonlinear dynamical systems using a novel self-
organizing RBF-based approach. Automatica, Vol
48(8), 2012, pp. 17291734.

34. Rong H.-J., Sundararajan N., Huang G.-B. and
Saratchandran P.: Sequantial adaptive fuzzy inference
system (SAFIS) for nonlinear system identification
and prediction. Fuzzy Sets and Systems, Vol. 157(1),
2006, pp. 1260-1275.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

431

H. Allende-Cid et al. / SONFIS: Structure Identification and Modeling

35. Sanver M. and Karahoca A.: Fraud detection using
an adaptive neuro-fuzzy inference system in mobile
telecommunication networks. Journal of Multiple-
Valued Logic and Soft Computing, Vol. 15(2-3), 2009,
pp. 155-179.

36. Sugeno M.: Industrial Applications of Fuzzy Control.
Elsevier, 1985.

37. Takagi T. and Sugeno M.: Derivation of fuzzy con-
trol rules from human operator’s control actions. In in
Proc. IFAC Symposium Fuzzy Information, Knowl-
edge Representation and Decision Analysis, 1983, pp.

55-60.
38. Tung W.L. and Quek C.: GenSoFNN: A generic self-

organizing fuzzy neural network. IEEE Transactions
on Neural Networks, Vol. 13(5), 2002, pp. 1075-1085.

39. Willmott C.J.: On the validation of models. Phys. Ge-
ogr., Vol. 2(1), 1981, pp. 184-194.

40. Yang G., Yang H. and Dai L.: Time-series predic-
tion modelling based on an efficient self-organization
learning neural network. IFAC-PapersOnLine, Vol.
48(8), 2015, pp. 248253.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

432

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

