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Abstract

Covering algorithms (CAs) constitute a type of inductive learning for the discovery of simple rules to predict future 
activities. Although this approach produces powerful models for datasets with discrete features, its applicability to 
problems involving noisy or numeric (continuous) features has been neglected. In real-life problems, numeric 
values are unavoidable, and noise is frequently produced as a result of human error or equipment limitations. Such 
noise affects the accuracy of prediction models and leads to poor decisions. Therefore, this paper studies the 
problem of CAs for data with numeric features and introduces a novel non-discretization algorithm called RULES-
CONT. The proposed algorithm uses relational reinforcement learning (RRL) to resolve the current difficulties
when addressing numeric and noisy data. The technical details of the algorithm are thoroughly explained to 
demonstrate that RULES-CONT contribute upon the RULES family by collecting its own knowledge and 
intelligently re-uses previous experience. The algorithm overcomes the infinite-space problem posed by numeric
features and treats these features similarly to those with discrete values, while incrementally discovering the 
optimal rules for dynamic environments. It is the first RRL algorithm that intelligently induces rules to address
continuous and noisy data without the need for discretization or pruning. To support our claims, RULES-CONT is 
compared with 7 well-known algorithms applied to 27 datasets with four levels of noise using 10-fold cross-
validation, and the results are analyzed using box plots and the Friedman test. The results show that the use of RRL 
results in significantly improved noise resistance compared with all other algorithms and reduces the computation 
time of the algorithm compared with the preceding version, which does not use relational representation.
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1. Introduction

Currently, intelligent machines can be found in almost 
every home around the world. Data are collected by 
these machines, and decisions are made depending on 
user behavior. Machine learning (ML) is one of the 
tools that can be used for this purpose1, and a significant 
amount of research has focused on the concept of 
classification learning. Although statistical methods are 
widely used in ML, various studies2, 3 have shown that 
these methods are very difficult to understand and act as 
black boxes. Another subset of ML techniques, called 
covering algorithms (CAs)4, possess several 

characteristics that make them more attractive than 
statistical ML methods. The basic purpose of a CA is to 
learn a set of rules from a given set of instances and 
create a classifier that can predict new situations. This 
approach is interesting because of its simplicity and 
direct representations, which are unambiguous and can 
be easily updated, understood and validated.5-7

Unfortunately, CAs face one major hurdle that makes it 
difficult to apply them to real-life problems. 

CAs are essentially designed to address discrete and 
clean values, whereas problems involving noise or 
quantities that can take any values in an infinite space 
have been neglected. However, the ability to handle 

International Journal of Computational Intelligence Systems, Vol. 9, No. 3 (2016) 572-594

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

572



H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

numeric (continuous)1 features is important for 
addressing complex real-life problems. In the literature
regarding CAs, several attempts have been made to 
solve this problem, but suitable solutions are still 
lacking. ElGibreen and Aksoy8 investigated the problem 
in various inductive learning (IL) families. According to 
the summary of the state of the art presented in that
paper, numeric features were originally handled by 
means of discretization; the deficiencies of these 
approaches can be summarized as follows: 

Offline Discretization: Future updates are a major 
concern because it is difficult to update the intervals 
of older rules; this difficulty reduces their accuracy. 
Online Discretization: More accurate than offline 
discretization, but its time and computational costs
are very high because a large number of evaluations 
must be performed during the learning stage.
Within the past few years, another approach has 

been developed by a small group of researchers. It is
called non-discretization because it does not involve the 
discretization of features and addresses both numeric
and discrete values in the same manner. Although this 
approach overcomes some of the problems with
discretization, it also encounters new issues, as follows: 

Non-discretization: This approach overfit its
training sets, resulting in a reduced level of noise 
tolerance. Current methods attempt to address this 
problem using pruning techniques, but this increases 
the complexity of the algorithm, and it is difficult to 
determine the appropriate pruning technique to use.
To address the issues discussed above, this paper 

focuses on the problem of noise tolerance in a dataset 
with numeric features. The primary goal is to generalize
the performance of CAs for application to numeric 
datasets such that good results can be obtained even if 
noise is introduced. This objective was chosen because 
it is important to build a repository that can address real-
world problems, especially considering that noise is 
typically present in the data collected to address such 
problems. Whether these data are collected from users 
or gathered through sensors, noise is frequently 
produced as a result of limitations in the measurement 
equipment or through human error. Such noise affects 
the accuracy of prediction models, which can cause 
agents to make poor decisions.

1 Through this document, the term ‘numeric’ corresponds to numeric 
and continuous values. 

This paper contributes to the field of CAs by 
introducing the use of relational reinforcement learning 
(RRL) in a CA family called RULES9. A novel non-
discretization approach using RRL is proposed, and 
based on this approach an algorithm called RULES with 
continuous attributes (RULES-CONT) is developed. 
This algorithm scales to any type of data, fills the gaps 
in CA applications, and discovers simple and strong 
knowledge that can be used by both expert systems and 
decision-makers. 

Unlike other versions of RULES, the proposed 
algorithm uses the concept of knowledge transfer 10, 11in 
order to incrementally update its repository.  It re-uses 
past rules discovered in previous steps to incrementally 
update the repository when a new patch of data is 
provided as input. Transferred knowledge that covers
any of the new examples is stored in the new repository,
and the covered example is flagged for no further 
processing. This increases the speed of the algorithm 
and takes advantage of historical experience. The
induction procedure is different from that of all other 
algorithms in the family; although it induces one rule at 
a time, induced rule is discovered using RRL procedure. 
In RULES-CONT, the RRL process is adjusted to 
discover the optimal rules using a reward function. The 
features and their possible values are stored in logical 
representations, and the agent continuously learns the 
best optimal rule values via trial-and-error interactions.

To the best of our knowledge, no one has previously 
exploited RRL to solve the problem of applying CAs to 
data with numeric features. The RRL elements are 
adapted to the problem of rule induction in CAs and to 
discover the best actions to induce the optimal rule for 
every seed example. Through the use of RRL, the 
algorithm is endowed with several appealing properties
in addition to the ability to solve problems with numeric 
features. Because RRL has the property of continuous 
learning, the extracted knowledge can be easily updated 
without the need for additional procedures. Thus, it 
becomes possible to automatically update the repository 
if incremental induction is applied. 

To test the performance of RULES-CONT, the 
KEEL tool12, 13 was used for 10-fold cross-validation.
The proposed algorithm was compared with seven 
different algorithms applied to 27 real-life benchmarks. 
The error rates of the algorithms at four levels of noise 
were collected to assess the noise resistance in the case 
of datasets with numeric features. Moreover, the total 
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resistance level was visualized using box plots, and the 
total variance in the error rate over all levels of noise 
was computed. Afterward, the Friedman test was
applied to determine whether there were significant 
differences in performance and to rank the algorithms 
using the CD diagram. Finally, to demonstrate how the 
use of RRL representation reduces the computation time
of the algorithm, the speed of RULES-CONT was
compared with that of the preceding non-discretization 
version, in which RRL is not applied. The results 
confirm that the RRL approach offers significantly 
improved noise resistance and that the use of the 
relational representation reduces the computation time. 

This paper is organized as follows: First, the 
fundamentals of CAs and RRL elements are defined
followed by a discussion of related work on the problem 
of numeric datasets. Then, the proposed algorithm is 
discussed, along with its technical details. Next, the 
performance of the algorithm is benchmarked, and the 
empirical results are discussed. Finally, the paper 
concludes with perspectives on future work.

2. Preliminaries 

This section defines the CA problem and presents the 
elements required to build RRL agent.

2.1. Covering Algorithms

CAs are often called separate-and-conquer algorithms 
because they separate each instance or example when 
inducing optimal rules. The resulting rules are stored in 
an ‘IF condition THEN conclusion’ structure. One
example (called a seed) is selected at a time to 
incrementally build a rule, condition by condition. 

Problem Statement - The problem of rule induction 
in a CA can be mathematically expressed as in (1),
where the CA is described in terms of four 
characteristics: E, A, V and CF. E represents the finite 
set of examples (instances) provided as input to the 
agent. A is the finite set of features (attributes)
possessed by each example. Note that the last feature is 
the class and represents the output to be predicted in the 
future. V denotes the infinite set of values that can be 
taken by each feature in each example, which represents
a feature domain. This domain may consist of either 
discrete or numeric values. Finally, CF is the classifier 
that represents the conclusions drawn based on the 
presented data, which are stored as rules in the CA. 

= < , , , >               (1)

For example, Table 1 shows a dataset that can be 
given to a classifier for the construction of a model. The 
contents of this table represent the problem of user 
satisfaction with a purchased laptop, in which the 
purpose is to predict whether users will be satisfied with 
their laptops. The table contains three seed examples 
and five features. In this example, E comprises each 
row; A includes Disk Space, Battery Life, Price, RAM 
and Satisfied, where Satisfied is the class; the values (V)
of the features are shown in each cell and include both 
discrete (nominal) and continuous (numeric) values; and
CF is the set of rules induced from this table. 

Table 1: CA data sample for user satisfaction on laptops

Disk Space Battery Price RAM Satisfied
3 High 5000 5i No
4 High 6000 7i Yes
6 Medium 3000 7i Yes

2.2. Relational Reinforcement Learning (RRL)

Reinforcement learning (RL) is inspired by the manner 
in which a living being learns to behave through 
interacting with its environment. Kaelbling et al.14 state 
that RL is “the problem faced by an agent that must 
learn behavior through trial-and-error interactions with 
a dynamic environment”. The main goal of RL is to 
reach a decision through a series of tasks involving trial-
and-error interactions with the environment.15 In RL,
learners are not told what to do but instead discover the 
most rewarding actions by trying them. 

Based on the concept of RL, an extension of RL
called RRL was developed for better space 
representation16. It was developed to facilitate the 
handling of a large number of states and actions by 
grouping them into one object. In RRL tasks, relational 
atoms are used to describe the environment16-18. One of 
the best-known representations for this purpose is 
relational factoring, which uses abstract qualities in 
first-order logic (FOL). Mellor19 conducted several 
studies and concluded that the primary advantage of this 
approach is its simplicity due to static abstraction.

Definition – Given the following elements, the 
objective
actions rA from the state space rS and maximizes the 
total rewards16. Thus, any state is actually an r-state that 
consists of multiple states connected by a logical 
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operation, and the action space is also an r-action space 
that contains relevant actions within the state space.20

1. A set of states S rS is described in relational 
language and belongs to the state rS.

2. A set of actions A rA is described in relational 
language, and each state has its own set of actions.

3. A real-valued reward (r: S × A R) to determine
whether the agent has chosen a good action.

Example – Blocks World Problem: RRL elements 
are obtained differently depending on the problem. In a
blocks world problem (Figure 1), each state represents a
certain set of positions of the blocks and the actions are 
their movements. The relational representation allows 
an agent to move more than one block at the same time,
instead of only one, because it represents several blocks
as a single state and handles them as one object. Actions 
are transformed into predicates (On, Clear, Move), and 
their domain is the set of block names (a, b, c, d, floor).
The policy that is discovered is the optimal movement 
of the blocks to reach the goal, which is to stack the 
blocks on top of each other. The reward is computed 
such that the number of movements required to stack 
the blocks is minimized. Hence, applying RRL avoided
the need to maintain a separate space for each block.

Statei = a, b, d On(a, b) (b, c) (d, a) Blocks (Stacked)

Figure 1: An example of RRL in the blocks world problem

From the above example, it can be concluded that 
RRL elements are defined differently for each problem. 
The states, actions, goal, reward, and policies are 
determined depending on the problem to which RRL is 
applied. For the problem of addressing numeric features 
in a CA, the RRL elements will represent the possible 
values and conditions that can be applied until the 
optimal policy is discovered. Using the discovered 
policies, rules can be extracted without feature 
discretization, as will be explained in section 4.1.

Motivation – RRL in Rule Induction: The primary
advantage of using RRL, as discussed in Ref. 21, lies in 
the size reduction achieved by virtue of its rich 
representation. This representation allows an entire rule 
to be represented as one state instead of addressing each
feature separately. The actions are transformed into 

predicates that take the features in their domain as 
arguments, thereby reducing the space and preserving
the relationships between features and their values as 
well as their relationships to other examples in the 
dataset. Moreover, such a representation provides a 
spontaneous means of using and managing knowledge. 
It simplifies the transfer of knowledge to more complex 
tasks. It also preserves the structural aspects of action-
state pairs, unlike the attribute-value representation. 

3. Related Work on Numeric Features Problem 

Various improvements have been made to CAs to allow 
them to handle an infinite space of numeric values.
These algorithms can be characterized, based on their 
approach to discretization, as offline, online, or non-
discretization. Each approach has its own shortcomings
that can motivate future directions of research.  

3.1. Offline Discretization 

Offline discretization is a pre-processing step in which
numeric ranges are split into a fixed number of 
intervals. The basic idea is to apply some discretization 
technique, such as EqualWidth or ChiMerge 22, to the
data before performing rule induction. Various
discretization techniques have been adopted, yielding
CAs such as SIA23, ESIA24, covering and evolutionary 
algorithms25, RULES-3+26, and the Prism family5, 27.
Although offline discretization reduces the time 
required for rule induction, it can severely affect the 
quality of the induced rules.28 In particular, there is a 
considerable trade-off between the number of intervals 
used and the consistency of the rules. Choosing a small 
number of split points increases the interval size, which 
results in inconsistent rules; and choosing a large
number of split points reduces the interval size which
gives an overspecialized rules model.

As a result, several attempts have been made to 
create overlapping intervals based on fuzzy set theory.29

FURIA30, 31 is a fuzzy unordered rule induction 
algorithm. This algorithm is an extension of Ripper,
with several modifications. It induces fuzzy rules that 
are not ordered as a list. However, lists are important for
ranking rules and choosing the strongest when a conflict
arises. Thus, regardless of its good performance, FURIA 
presents a serious problem when multiple rules for 
different classes match the same example. Another 
attempt has been made in RULES family (FuzzySRI32)
to address numeric features using fuzzy theory. This 
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approach uses offline entropy-based discretization to 
discretize the features into crisp intervals. Then, it uses 
fuzzy theory to induce fuzzy rules based on the crisp
values. However, the accuracy improvement achieved 
through the use of fuzzy theory is obtained at the cost of 
complexity. Furthermore, the accuracy of the algorithm 
is highly dependent on the membership function chosen
by the user. Hence, its performance is not guaranteed,
and user interaction is required.

Ultimately, in offline discretization, future cases are 
not considered and the intervals are fixed prior to rule 
induction. Important data and measures extracted during 
induction are not considered. Thus, this approach can 
lead to serious problems, when it is possible that the 
values of forthcoming data might not retain the same 
distribution as the training set. It is difficult to update 
the intervals of older rules, and as a result, the accuracy 
of these rules will be reduced in the future. 

3.2. Online Discretization 

In online discretization, a fixed number of intervals are 
assigned during the learning process. This approach 
attempts to solve the problems faced by offline 
discretization by allowing greater flexibility. The REP-
based family of algorithms (Slipper33 and Ripper34)
introduced the concept of online discretization. These 
methods identify the best split points during incremental 
learning by repeatedly sorting all numerical values of 
the features. Although they offer good performance,
they require intensive computations involving every 
feature in each example. They perform extensive sorting 
and need at least three tables for every feature. These 
tables are processed and re-sorted in every loop. Thus,
in addition to the computational complexity, this 
approach incurs high memory requirements.

A new CA family, called Ant-Miner, was developed 
in Ref. 35 to perform global searches over a dataset. This 
method was built based on an evolutionary algorithm 
called Ant Colony Optimization. Several improvements 
have been made to deal with numeric features online,
either partially36 or fully37, 38. These methods are 
applicable only to datasets with solely numeric features. 
They also must represent the features in a tree before 
extracting rules. They are optimized over the training 
sets that result in artificial performance and are neither 
scalable nor incremental by nature. Several values must 
be computed and stored to optimize the results. Thus,

this approach is highly complex and has high memory 
requirements during learning.

Another online discretization approach has been
applied in the RULES family by integrating it into the 
RULES-SRI classifier.39 Instead of examining all 
individual values, this method examines only the 
boundary values of each numeric feature during 
learning. Split points are added when adjacent values of 
the same feature are identified, where each belongs to a 
different class. Such points will differ from one rule to 
another, depending on the classes’ frequencies and the
distribution of numeric values covered by a given rule. 
Regardless of the accuracy improvement, the execution 
time of this algorithm is tremendously increased by the 
need to re-compute the boundaries for each rule. 
Another version, called RULES-840, has also been
developed to discretize numeric features online during 
learning. In this algorithm, the examples are re-sorted
based on the seed attribute-value pair for split point 
selection. Although this method is robust to noise, it still 
suffers from the same shortcomings as the REP-based 
family due to re-sorting with every feature selection.  

Ultimately, online discretization can be more 
accurate than offline discretization methods. The 
resulting intervals depend on the rule that is being 
processed during learning. Hence, they are context-
dependent, thus enabling the management of bias in the 
data. However, the computational cost of this approach
is very high because of the large number of evaluations
required to re-evaluate the intervals at every step. 

3.3. Non-discretization 

Once the shortcomings of discretization were 
recognized, a third approach, known as non-
discretization, was developed. However, this approach
is still not well recognized because it is often confused 
with online discretization. In general, both approaches 
address numeric features during the induction process. 
However, in online discretization, fixed intervals are 
selected for each group of values and all groups are 
updated with every change. By contrast, in non-
discretization methods, an alternative threshold is 
chosen for each value in each seed to induce the best 
rule without requiring continuous updates. Hence, in
non-discretization, numeric features are not assigned to 
particular ranges; instead, different ranges are 
determined for each value during the learning process. 
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Several attempts have been made to handle numeric
features in CAs without discretization. A modified 
version of AQ, called Continuous AQ (CAQ), was 
developed in Ref. 41 to handle both numeric and discrete 
features. It was proven that treating numeric features as 
real numbers instead of forcing them into discrete 
representations would produce more effective results. 
However, CAQ does not obtain appropriate ranges 
because it operates only on the current example without 
considering the data as a whole.

RULES-528 was designed to define the interval of 
each feature during rule construction based on the 
distribution of the examples. For each seed example, an 
interval is chosen such that the value of the most similar 
negative example is excluded. This algorithm was found 
to offer improved performance compared with the rest 
of the RULES family, and a further improved version 
called RULES-5+42 was later proposed to reduce the 
reliance on statistical measures by applying a new 
knowledge representation. However, the number of 
rules discovered by this algorithm is too large, leading 
to overspecialization and, thus, sensitivity to noise. 
Therefore, its performance is not guaranteed. 

RULES-IS43 also incorporates a procedure for
handling numeric values without discretization. This 
algorithm was inspired by the immune system domain. 
It regards every example as an antigen and creates an 
antibody (rule) for each antigen. The antibody-antigen 
pairs are stored in short-term memory, in which its size 
is determined based on the function of the immune 
system; thus, 5% of the oldest antibody-antigen pairs 
are removed from memory at each round. During rule 
generation, a range is created for every numeric feature 
to cover the positive examples. However, this algorithm 
must match every antigen with all possible antibodies,
which increases its time and computational costs.

In addition, Brute44 system has been developed that 
uses a measure of variance to select the boundaries on 
numeric values. It reduces the number of rules by 
repeatedly applying rule induction over different 
overlapping examples. Another version of this approach 
was developed in Ref. 45 by introducing a similarity 
measure to represent the similarity between rules. 
However, it increased the computational cost due to the 
reproduction of rules. Moreover, it is questionable 
whether the system can produce stable rules from small 
datasets. Hence, its performance is uncertain in the case 
of either very large or very small training sets.

Another rule-based algorithm, called uRule46, was 
developed to handle uncertain numeric features. This 
method is based on the REP-based family of algorithms,
specifically Ripper47, and uses new heuristics to 
optimize and prune the discovered rules, identify the 
optimal thresholds for numeric data, and handle 
uncertain values. During the learning process, the 
threshold that best divides the training data is 
determined based on extended information gain 
measures. In Ref. 48, the empirical results revealed that 
uRule can successfully handle uncertainties in numeric
and discrete features. However, it is time-consuming
because of its rule pruning complexity.

Ultimately, the non-discretization approach 
overcomes the difficulties encountered in discretization 
approaches. However, this approach is not yet mature
and suffers from shortcomings in several aspects. In 
particular, the application of non-discretization 
algorithms to noisy data remains a major problem and 
an open area of research. Any bias in the data should be 
handled by considering the relationships between the 
examples and their classes in addition to the dataset.

4. RULES-CONT Algorithm

Motivated by the importance of numeric data and the 
deficiencies of current CA approaches, a new algorithm 
called RULES-CONT is proposed in this section. This 
algorithm is designed to serve as an improved CA for 
application to features that take values on an infinite 
space. It is inspired by the RULES family9 and the trial-
and-error interactions in RRL. It attempts to learn from 
scratch and build its experience to address numeric
values in a manner similar to discrete ones.

The basic idea of RULES-CONT is to address 
numeric features without discretization or fuzziness 
during rule induction. From Figure 2, RULES-CONT 
begins by reading the training set and initializing the 
parameters. In the first step, the initial RRL state space 
is defined to include the states that represent null rules 
for every class. In the second step, if the training set 
belongs to a previous patch of incremental examples,
the incremental procedure is activated to transfer the 
agent’s previous knowledge, similarly to RULES-TL49,
and flag examples in advance to reduce the search 
space. Hence, if there is a rule that cover a seed example 
(step 3), then that example is flagged as covered (step 4)
and the rule is stored in the final rule set. 
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Figure 2: RULES-CONT learning approach

The RRL procedure is executed afterward (step 5 & 
6) to discover new rules to flag uncovered examples. 
This search procedure addresses numeric values while 
discovering the best policy to represent the optimal rule. 
The search will proceed without prior assumptions for 
every seed such that all features are encompassed in a
single state. When the goal state is found, it will be 
transformed into an if-then statement and applied to 
cover any matching examples. The details of this 
procedure will be explained later in section 4.2. The 
discovered rules are then stored in the final rule set. If 
the goal state has not yet been found (step 7), 
inconsistent rules that are near the goal will be selected 
as the final rule set using a beam width search. Finally, 
in step 8, identical rules are removed. The resulting rule 
set can then be used to classify future examples.

To understand how RULES-CONT manages 
numeric features, the details of the RRL environment 
and learning procedure are important. Therefore, in the 
following subsections, the RRL elements and technical 
details will first be explained, and the learning and 
prediction procedures will subsequently be presented. 

4.1. RRL Elements and Environment

RRL elements need to be defined specifically for the 
numeric features problem. To understand how RRL is 
applied, this section presents the RRL elements for the 
CA problem for the agent to begin its learning.

4.1.1. RRL Environment

In RULES-CONT, the RRL environment is unknown 
and is built throughout the lifespan of the agent; the 
state space differs depending on the training set, and its 
actions change from one seed example to another to find 

the most appropriate value to cover the examples. This 
dynamicity is introduced to reduce the state and action 
spaces, in which only needed objects are stored.
Moreover, because RRL is applied, a single state (rS) 
contains a number of states, and the same applies for the 
actions (rA). The algorithm searches for the most 
consistent state by applying different actions, and thus,
different condition values (A rA) are added to obtain 
a consistent state rS with reward = 1.

4.1.2. rState Space

In RULES-CONT, each state contains several 
predicates that change based on its actions. The 
predicates represent all possible actions that can be 
applied over the features. These predicates are {Equal,
Less, Greater, LessEqual, GreaterEqual} and are 
chosen to select the best alternatives for a feature value. 
The domain of these predicates includes the feature 
names and values. Note that predicates (or sub-states)
containing either numeric or discrete values may be
grouped together by the AND logical expression. 

For example, Figure 3 shows the rules discovered 
from a dataset about item identification to demonstrate
how RULES-CONT can represent these rules in the 
state space. In this dataset, an item can be identified as a
toy, motorcycle, or car depending on its properties. Four 
discovered rules are presented in Figure 3.a, and 
RULES-CONT manages these rules as shown in Figure 
3.b. If a new action {Less (tier, 5)} is discovered and 
added to rS3, then a new state { body, tier Equal (body,
Metal) (tier, 3) (tier, 5) item 
Equal(item, Car)} will be stored as rS4.

(a) Rules discovered from item identification dataset 
If (body = plastic) THEN (class = toy)
If (tier = 0) THEN (class = toy)
If (body = metal) and (tier = 3) THEN (class = motorcycle)
If (body = metal) and (tier > 3) THEN (class = car)
(b) Relational state space: 3 states
rS1 { body, tier Equal(body, Plastic) (tier, 0)

item Equal(item, Toy)}
rS2 { body, tier Equal(body, Metal) (tier, 3)

item Equal(item, Motorcycle)}
rS3 { body, tier Equal(body, Metal) (tier, 3)

item Equal(item, Car)}
Figure 3: An example of an RRL state space in RULES-
CONT containing three states

Note that the first and second rules are combined 
using OR because each contains only one feature; the 
NOT logical expression can also be added, depending 
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on the technique used. Currently, RULES-CONT uses 
only the AND operation because it induces one rule at a 
time for each uncovered seed example. Moreover, it
checks for conflicts and tests only actions that are 
applicable to the current state. For example, if the Equal
(tier, 3) action is applied over rS3, then the predicate 
{Greater (tier, 3)} will be replaced to obtain a new 
state; the new action will not be added to rS3 because 
this predicate conflicts with the logical meaning of rS3.

Every rS is associated with metadata to represent the 
logical meaning of the state and to indicate which seed 

example has visited the state, in addition to its most 
similar examples from every class. For example, the 
state { body, tier Equal (body, Metal)
GreaterEqual(tier, 4) (tier, 7) item 
Equal(item, Car)} can be represented as shown in 
Figure 4. The action values for discrete features are the 
same as those for the seed, whereas the ranges for
numeric features are created based on the most similar 
negative examples, as will be explained in the following 
sub-section.

S rS1 GreaterEqual(tier, 4) Less(tier, 7) Equal(body, Metal)
A rA1 Greater(tier, 3) LessEqual(tier, 6)

Metadata body, tier item Equal(item, Car)
Initial Q(rS, A) A rA(rS).
Index of visited seeds and most similar negative examples from every class.
Flag represents whether each A rA has been tested yet.

Figure 4: An example of how state-space metadata are represented

4.1.3. rAction Space: Missing/Numeric Features 

In RULES-CONT, both discrete and numeric features 
can be grouped together by logical operations. The sub-
actions in every rA represent the possible values for 
every sub-state. For a feature (i), rA[i] represents the 
possible actions that can be assigned to one sub-state to 
transition to another state, regardless of that feature’s 
type. These actions are created based on the visited state 
and seed examples. Thus, the action space is also 
unknown and dynamic; it depends on the learning 
process. This increases the flexibility of the algorithm to
address numeric features more accurately. In particular,
when a seed example visits an rS, the most similar 
negative examples from every class are selected using 
(2), where the distance between discrete features is 
computed using (3). C and D are the lists of all numeric
and discrete features of the data, respectively. Vi

E1 and 
Vi

E2 are the values of attribute (i) in examples E1 and
E2, whereas Vi

min and Vi
max are the minimum and 

maximum values of feature (i). This measure, as 
explained by Pham et al.28, is a distance measure that 
can be used to compare any type of examples and all 
types of data. 

( , ) =

( ) + _ ( , ) (2)

_ ( , ) =
0 =

1
             (3)

After the most similar negative examples are 
selected, actions that belong to state rS are created from 
one of the cases presented in Figure 5. Note that Ei 
denotes feature i for the current seed example, Neg(i)
denotes feature i for the most similar negative example,
and the Min/Max functions return the minimum or 
maximum value of feature i from among all of the
examples covered by the current state rS.

1.If (Ei.value = Neg(i).value) OR (Ei.value is null) OR 
(Neg(i).value is null) THEN return null.

2.Else if (Ei discrete), THEN rA[i].add(‘Equal (Ei, Ei.value)’).
3.Else if (Ei numeric), THEN

a.If (Neg(i).value greater than Ei.value) THEN 
rA[i].add(‘GreaterEqual (Ei, Min(rS, i)) (Ei,
Neg(i).value)’)

b.Else if (Neg(i).value smaller than Ei.value) THEN 
rA[i].add(‘Greater(Ei, Neg(i).value) (Ei,
Max(rS, i))’).

Figure 5: The rAction creation cases: (1) feature is empty, (2)
feature is discrete, or (3) feature is numeric

As shown in Figure 5, the actions represent the 
possible values of numeric and discrete features. 
Through the RRL learning process, the best actions are 
chosen based on their Q values. To avoid discretization 
problems, fixed ranged are not applied; instead, new 
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actions are created depending on the current seed. 
Moreover, as shown in step one in Figure 5, missing 
values are handled automatically by considering no 
actions for a missing value. The discovery of negative 
or overlapping rules is also avoided by neglecting 
identical negative examples. Note that the Q value of 
each discovered action is initialized to a non-zero value 
using (4), to start with the strongest actions. In equation
(4), P(rA) is the number of positive examples (examples
with values in the same range as action A), whereas
E(rS) is the total number of examples covered by rS.

Initial Q(rS, A) =
( )

( )
, A rA            (4)

4.1.4. Rule Quality and Reward Function

In the RULES family, the rule quality is usually referred 
to as “search heuristics” and is used to automate the 
learning task.50 In IL, various measures can be applied 
to measure the quality of the discovered rules and to 
determine when rule learning should stop. These 
measures can be used to reduce excessive searching
while preserving performance. For this purpose, various
measures were tested with RULES-CONT, including 
the IREP value matrix51, the Hellinger measure52, the m-
estimate53, and the S-measure54. It was found that RRL 
handles numeric features more effectively when the rule 
consistency is monitored. Thus, the reward is computed 
using (5), where n is the number of negative examples
covered by rS. The reward value lies in the interval [-1, 
0] when the goal state has not yet been reached and 
becomes equal to one only upon reaching the goal.

( ) =

= ;

= ;               (5)

By means of this reward function, RULES-CONT 
assigns the maximum penalty to null states to avoid 
rules with no conditions, which cannot be used in a
classification model. The reward will be equal to one if 
the state does not cover any negative examples. In this 
case, the discovered rule is the desired one, and the 
search should stop. If the current state is neither the goal 
nor the null state, then the agent will be guided toward 
the goal based on the computed percentage of negative 
covered examples. A negative value is assigned because 
a rule that covers fewer negative examples is better. 

Thus, high rewards move the agent closer to the goal 
until n = 0 (i.e., r = 1).

4.1.5. Control Method 

To apply RRL, a control method must be chosen to 
decide which action should be applied in a given state. 
One of the simplest and best-known control methods for 
RRL is called rQ-Learning18, 20, in which actions are 
repeatedly applied given the current state to learn a 
policy. When the agent visits a state, it selects an action 
based on a certain policy, such as the greedy policy. 
Then, the reward of the selected action is collected.
Afterward, the action value is calculated in a greedy 
way, i.e., the optimal action value is selected. These 
steps are repeated until the stop condition is reached. 
The action value can be calculated using (6), where rS is 
the current state, rS’ is the new state, rA is the set of 
actions applied to transition from rS to rS’, r is the 
reward for applying rA over rS, and ( ) and (

1) are the learning and discount factors,
respectively. This equation is one of the simplest ways 
to compute the action value.55

Q(rS, rA) =

Q(rS, rA) + [r + max ( ) Q(rS , A ) Q(rS, rA)] (6)

4.1.6. Policy

In RULES-CONT, the optimal policy is that which
discovers the most rewarding state within the fewest
number of actions. Thus, the algorithm attempts to 
apply actions that will reach the goal state as rapidly as 
possible in the smallest number of steps. In general,
every policy represents a rule, and the optimal one is the 
consistent rule with the fewest conditions. 

4.1.7. Goal 

The goal of RULES-CONT is to reach a consistent state 
with a reward equal to one. In this way, the discovered
state can be translated into a rule that has overlapping 
conditions while avoiding conflict with other rules by 
virtue of its consistency. For example, if the goal state 
discovered is { body, tier Equal(body, Metal)
Greater(tier, 3) item Equal(item, Car)}, then this 
logical expression can be translated into the rule {If 
(Body = Metal) AND (Tier>3) THEN (Item = Car)}.
This translation is possible because one of the main 
advantages of a CA is its ability to directly translate its 
discovered knowledge into any FOL expression.
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4.2. RRL Learning Procedure 

After building the initial RRL space and transferring 
knowledge of past rules, RULES-CONT initiates the 
RRL procedure to discover the best alternative values 
and induce the best rule for every uncovered example. 
As shown in Figure 6, to save computation time by 
starting from previously discovered states, the state rS 
with the highest reward that covers the current seed is 
chosen as the initial state. Then, the algorithm enters a
loop in which it updates the environment and searches
for the goal state. It does not stop until it finds the goal 
or when learning cannot be further improved. RULES-
CONT attempts to avoid an exhaustive search by 
stopping the search even if the goal has not yet been 
found. Stopping the search in this way will not cause a 
problem in the future because it will later be possible to 
find the goal while iterating on a subsequent seed 
example using the knowledge extracted in a previous 
step. Thus, RULES-CONT might stop at a local 
minimum with the understanding that it will reach a 
global minimum in the future, instead of mistakenly 
regarding the local minimum as the global one.

RRL_Learning (E, , , Train) //RRL procedure
Input: Seed (E), alpha and gamma ( , ), training set (Train)
Output: Best rules (BestR)
1. rS = most rewarding relational state based on E in the 

RRL state space //using Eq. (5)
2. finished = false
3. While ( ) && (not finish) //while goal not 

reached (for each iteration)
a. A = most rewarding actions in rA(rS) created based on 

initial Q value
b. //for each step in the iteration

i. A.tested = true //change action status to tested to 
avoid infinite loop

ii. Apply all a A over rS and observe rS’ and r
//rS’.value = rS.value + A

iii. if (rS’.reward > rS.reward) && (rS’ )
THEN
1. if rS’ is not in the RRL space THEN update the 

state space with rS’
2. Update Q(rS,rA) based on the chosen action A
3. rS = rS’

iv. if (rS’.reward = 1) THEN //If goal state is reached
1. bestR = rS’
2. rS = rS’

c. Else //if no further improvement can be achieved
i. finish = true & bestR = null 

4. If ( ) THEN rule = ConvertToRule (bestR)
ELSE rule = null

5. return rule

Figure 6: A Pseudo code illustrating how RRL is used to 
induce new rules from a numeric environment 

In RULES-CONT, the RRL search begins with an
update to the action space of the current state and the 
selection of the best action based on its strength (step 
3.a). Based on the initial Q value defined in (4) and the 
actions’ reward, the best non-tested condition is chosen. 
Note that the score represents the reward obtained by
adding an action A that belongs to rA to the incomplete 
state of rS, not the final expected rule. Thus, the 
algorithm operates on the current state to determine the 
best possible actions. In step 3.a, if a feature has a 
missing value, the RRL agent will automatically address 
it during action generation. If no actions are found or 
the actions of all features have already been tested at 
least once in the current state, then no further 
improvement can be achieved using the current state. In 
this case, the stop condition will be activated without 
the optimal rule being found, as stated in step 3.c. Note 
that the algorithm will not stop after testing only one 
action; instead, all features will be tested unless the goal 
is found beforehand. However, stopping the search at 
this point prevents an infinite loop. 

When the stop condition is triggered without the 
goal state having been found, the local optimum
discovered in this step will not be considered. Instead,
the discovered information will be stored in the state 
space for later use. In this way, the global optimum can 
be sought while taking advantage of the information 
discovered throughout the lifespan of the RRL agent. 
When a new action is found, as in step 3.b, the 
algorithm first marks the action as tested. Then, the new 
state obtained after applying the action is observed, and 
its reward is computed. If the new state is better than the 
previous one but still is not the goal, then the algorithm 
updates the action value function of rS and continues to 
search for new states. The state space is also updated 
with the newly discovered state, as in step 3.b.iii. 
However, if the reward of the new state is equal to one 
(step 3.b.iv), then the goal has been reached and the 
search is stopped for the current seed.

Finally, after the goal state is found (step 4), the 
value of the goal state is converted into a rule 
represented as an ‘if-then’ statement instead of a logical 
expression. The best rule is then returned as the 
discovered rule. For example, a rule can be represented 
in the form {(A1, “K”) ^ (A2, (1,5]) (class, T)}. This 
string can be stored in the final rule set (knowledge 
repository) to be used for future predictions.
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4.3. Prediction Procedure 

After the best rules are discovered and the agent’s
repository is produced, the resulting model should be 
used to predict classes. In RULES-CONT, three cases 
may arise when classifying an example, as follows:

One Rule: When only one rule covers the example,
this rule is used for prediction.
No Rule: When no rules are found to match the 
example, the most similar rule is chosen based on its 
distance from the example. The distance between a
rule and an example is computed using (7), (8), and 
(9), where C and D are the lists of all numeric and 
discrete features of the data, respectively. Vi

E and Vi
R

are the values of feature (i) in example E and rule R,
respectively; Vi

R.max and Vi
R.min are the maximum 

and minimum values, respectively, of the rule’s
condition range; and Vi

min and Vi
max are the maximum 

and minimum values, respectively, of the numeric 
features in the training set. Note that if more than 
one rule has the same distance from the example,
then the strongest one is used.
Conflicting Rules: When multiple rules with 
different classes cover an example, the most similar 
rule is chosen to classify the example using (7).

_ ( , ) =

_ ( , ) + _ ( , ) (7)

_ ( , ) =
= ;

           (8)

_ ( , ) =

;

 (| . |,| . |) (9)

5. Experiment 

To assess the performance of the proposed algorithm,
the KEEL tool was used to conduct 10-fold cross-
validation experiments on a PC with a 2.40 GHz Intel®
Core™ i7 CPU and 16 GB of RAM. First, the technical 
setup of the experiments in relation to RULES-CONT is 
presented. Then, the accuracies of RULES-CONT and 
seven other algorithms applied to datasets with numeric 
features are investigated at different levels of noise.
Afterward, the total resistance level is visualized and the 
significance of the differences between the algorithms is 
statistically investigated using box plots and the 

Friedman test. Finally, the effect of the relational 
representation on the speed of RULES-CONT is 
discussed in comparison with its preceding version.

5.1. Experimental Setup 

The experiment involved certain common elements that 
must be explained to understand the analysis details,
including the parameters, algorithms, and dataset.

5.1.1. Algorithm Parameters

To initiate RULES-CONT, various parameters must be 
set to certain values. First, because a local beam search 
is applied when no solution is found, the beam width 
size was set to three. This value is the default value that 
has been found to be appropriate for the RULES family. 
Second, the RRL parameters (alpha g )
were initialized to 0.5 based on the standard proposed
by Sutton and Barto55, in which equal weights are 
assigned to past and current knowledge. 

5.1.2. Comparative Algorithms 

To demonstrate the improvement in rule induction 
performance achieved by RULES-CONT, it was 
compared with seven other algorithms, as follows: 

RULES-5+: A fuzzy non-discretization RULES 
algorithm that uses incremental post-pruning (IPP)
when noise is present in the data.
RULES-653 and RULES-SRI56: Two RULES
algorithms developed to scale over large datasets. 
They handle numeric values by applying the offline 
discretization algorithm of Fayyad and Irani57 and 
use general rules for pruning instead of specialized
pruning techniques.
Slipper and Ripper: Algorithms from the REP-
based family that use reduce-error pruning. They 
handle numeric values using online discretization.
Slipper, however, incorporates ensemble learning to 
address conflicts.
C4.5RulesSA58: An extended version of C4.5 that
transfers knowledge from the decision tree into 
rules. It uses simulated annealing to search for the 
best split points during induction and applies back 
pruning to remove weak branches.
DT_GA: A hybrid decision tree algorithm that 
handles numeric values online during rule induction 
using a genetic algorithm. An information-theory-
based pruning technique is applied to reduce the 
number of conditions and achieve early termination.
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5.1.3. Dataset

To demonstrate the reliability of the proposed 
algorithm, it was tested on 27 datasets. These datasets 
were drawn from the KEEL dataset repository and 
gathered as real-life samples. Each dataset has its own 
characteristics, as summarized in Table 2.

Table 2: The benchmark dataset properties

Name #Examples #Features #Classes
Balance 625 4 3
Contraceptive 1473 9 3
Ecoli 336 7 8
Solar Flare 1066 11 2
Glass 214 9 7
Heart 270 13 2
Ionosphere 351 33 2
Iris 150 4 3
Led7digit 500 7 10
Newthyroid 215 5 3
Nursery 12960 8 5
Page-blocks 5473 10 5
Penbase 10992 16 10
Pima 768 8 2
Ringnorm 7400 20 2
Satimage 6435 36 7
Segment 2310 19 7
Shuttle 58000 9 7
Sonar 208 60 2
Spambase 4597 57 2
Splice 3190 60 3
Thyroid 7200 21 3
Twonorm 7400 20 2
Vowel 990 13 11
WDBC 569 30 2
Yeast 1484 8 10
Zoo 101 17 7

Dataset properties can affect the algorithm 
performance. Thus, it was decided to characterize the 
datasets based on the results of the algorithms. 
Specifically, a dataset with fewer than 1000 instances is 
considered to have a small number of examples,
between 1000 and 10,000 is considered a medium

number of examples, more than or equal to 10,000 and 
fewer than 40,000 instance is considered a large number 
of examples, and more than or equal to 40,000 is
considered a very large number of examples. Moreover, 
a number of features less than or equal to 10 is small,
between 10 and 20 is a medium number of features, 
more than or equal to 20 and fewer than 40 is a large
number of features, and more than or equal to 40 is a
very large number of features. Finally, a number of 
classes less than or equal to 5 is small, between 5 and 10 
is a medium number of classes, and more than 10 is a
large number of classes. Although in general, large 
datasets typically contain millions of examples, these 
characteristics were chosen for differentiating the 
algorithms’ performance based on the sampled datasets.

5.2. Accuracy Investigation 

This section considers the algorithms’ behavior at
different levels of noise and compares their performance 
in the absence of noise. In particular, four levels of 
noise were introduced into the datasets from the KEEL 
repository59: 0%, 5%, 10%, and 20%. The accuracy of 
the algorithms was compared based on their error rates
on every dataset. RULES-CONT does not include any 
pruning technique since it was developed to be able to
accurately predict the classes of numeric and noisy data
while avoiding the need to apply additional techniques.

At 0% noise (Figure 7), RULES-CONT exhibits the 
smallest error rate on most datasets. However, its 
performance suffers for datasets that contain large 
numbers of examples and features but a small number 
of classes, such as the Splice and Solar Flare datasets; it 
is also outperformed by other algorithms on datasets 
with a large number of classes that contain relatively 
few examples and features, such as the Led7digit 
dataset. The accuracy of RULES-CONT, in general, is
similar to that of RULES-5+. The online-discretization-
based algorithms, including Slipper, Ripper, DT_GA,
and C4.5RulesSA, yield the next best error rates, and 
the offline-discretization-based algorithms give the least 
accurate results. Hence, the following conclusion can be 
stated:

Conclusion #1: Addressing numeric features using a 
non-discretization approach yields the most accurate 
results, followed by online discretization and then 
offline discretization-based algorithms.
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Figure 7: Error rates obtained in 10-fold cross-validation with 0% noise

When 5% noise is introduced (Figure 8), the 
behavior of the algorithms changes accordingly. From 
the figure, it is apparent that the accuracy of RULES-5+ 
is more affected by the noise than is that of RULES-
CONT or Slipper. RULES-CONT remains the most 
accurate, but its performance becomes more similar to 
that of Slipper than that of RULES-5+, indicating that it 
is more resistant to noise than is its preceding version in 
the family. When the dataset properties are considered,
it appears that RULES-CONT is more resistant to noise 
when the numbers of examples and features are large 
than when the number of classes is large. The other 
algorithms are also affected by the presence of noise; all 
of them exhibit increases in error rate, except for 
RULES-6. This algorithm maintains similar 
performance to that achieved on non-noisy data;

however, considering that its performance was poor 
from the start, this resistance is not particularly 
beneficial. It sacrifices its current accuracy for increased
variance and resistance to future noise. In fact, RULES-
CONT and RULES-6 are the most noise-resistant 
algorithms, but whereas the former exhibits the best
accuracy, the accuracy of the second is the worst. The 
conclusion yielded by these observations can be 
summarized as follows:

Conclusion #2: Unlike the preceding offline-
discretization-based algorithm in the same family,
RULES-CONT achieves both current and future 
accuracy in a noisy environment rather than sacrificing
one for the other. 

Figure 8: Error rates obtained in 10-fold cross-validation with 5% noise
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Upon an increase in the noise to 10% (Figure 9),
RULES-CONT retains its ranking with respect to the 
other algorithms, producing the lowest error rates on
most datasets, while RULES-6 and RULES-SRI 
continue to exhibit the worst error rates on most 
datasets. Whereas the error rate of RULE-SRI increases
with increasing noise, RULES-6 maintains a similar 
accuracy, indicating that RULES-6 is more resistant to 
noise than is RULES-SRI. The gap between RULES-6
and the other algorithms, with the exception of RULES-
CONT, decreases with an increasing noise percentage. 
Hence, increasing the noise percentage increases the 
error rates of both online and previous non-
discretization-based algorithms, indicating that these 
algorithms sacrifice their future accuracy for current 
accuracy. By contrast, even as the level of noise in the 

data increases, the effect on RULES-CONT is less
severe than the effect on the other algorithms. With an 
increasing level of noise, RULES-CONT becomes the 
best-performing algorithm for almost all datasets. Its 
accuracy is obviously affected only on the Led7digit
dataset, which contains small numbers of examples and 
features but a large number of classes. This is because 
the dataset does not provide sufficient information about 
the problem but requires predictions for a large number
of classes. Based on these observations, the following 
conclusion can be stated: 

Conclusion #3: The implementation of RRL in the
RULES family increases noise resistance while allowing
numeric features to be accurately addressed without the 
need for discretization or complex fuzzy theory.

Figure 9: Error rates obtained in 10-fold cross-validation with 10% noise

To ensure that RULES-CONT can maintain this 
behavior even as the noise is further increased, another 
test was conducted with 20% noise. Figure 10 shows 
that the error rate of RULES-6 does not significantly 
change upon increasing the noise percentage to this 
level. The error rates of the other algorithms, except for 
RULES-CONT, shift away from that of RULES-CONT 
and become more similar to that of RULES-6 when the 
noise is increased to 20%. By contrast, the behavior of 
RULES-CONT in terms of accuracy remains similar to

that at 10% noise; its error rate is still obviously higher 
than those of several other algorithms on Led7digit, and
a slight increase is also observed on the Satimage 
dataset. Therefore, RULES-CONT is less affected by an
increase in noise than are the other algorithms. 
Consequently, the following conclusion can be stated: 

Conclusion #4: Although RULES-CONT does not apply
any special pruning technique, it achieves the best 
performance at all levels of noise. 
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Figure 10: Error rates obtained in 10-fold cross-validation with 20% noise

All of the above results clearly demonstrate the 
noise resistance achieved by using RRL. However, it is 
also important to statistically study the significance of 
the differences between the algorithms. The following 
section presents such an analysis and visualizes the 
behavior of the algorithms in all noise cases. 

5.3. Noise Resistance

In addition to the accuracy, it is also important to 
measure to what extent each algorithm can resist noise. 
Therefore, this section presents visualizations of the 
accuracy of the algorithms to present the total resistance
level of all algorithms. The Friedman test is also applied 
to demonstrate that the difference in error rate becomes 
more significant as the noise level increases.

5.3.1. Overall Resistance Level

To visualize and confirm the overall noise resistance of 
RULES-CONT, box plots were constructed to represent
the error rate results, as shown in Figure 11. In this plot,
the boxes represent the distributions of the results for 
each algorithm. The different algorithms are represented 
on the X axis, and the error rate is displayed on the Y
axis. For each algorithm, the “+” sign indicates the 
mean of the results, the horizontal line inside each box 
represents the median, and the vertical lines above and 
below the boxes point to the maximum and minimum 
values. Note that outliers are represented by dots and 
that the two areas inside the box represent the upper 
quartile (above the median) and the lower quartile 
(below the median). From this visualization, it is 
possible to understand the distribution of the results and 
to compare the algorithms total noise resistance.

From Figure 11, it is clear that in all four cases,
RULES-6 and RULES-CONT are the best to resist 
noise, as the locations of their boxes do not visibly
change. However, as indicated by the fact that the box
for RULES-6 is located higher than that for RULES-
CONT and represents a larger range of results, the 
accuracy of RULES-6 is very low in comparison with 
that of RULES-CONT. Therefore, these two algorithms 
can be used as references to analyze the behavior of the 
other algorithms. In particular, when the box plot of an 
algorithm is seen to approach that of RULES-6 with 
increasing noise, it can be said to have low resistance 
and to suffer from a worsening error rate with 
increasing noise. By contrast, if the box plot approaches
that of RULES-CONT with increasing noise, this 
algorithm can be said to resist noise and to be accurate 
even when noise is introduced.

Unfortunately, however, the plots for all algorithms 
considered here begin to approach that of RULES-6
with increasing noise, with their boxes moving upward 
in the graphs. In the absence of noise (Figure 11.a), 
RULES-CONT already exhibits the lowest error rate 
compared with the other algorithms. Even the value of 
the high-error outlier is still less than the maximum 
values for RULES-6 and RULES-SRI. In fact, this
outlier is helpful for generalizing the results of RULES-
CONT to future cases. A comparison of RULES-CONT 
with the other algorithms reveals that the mean and 
median error rates for this algorithm are almost identical 
to those for RULES-5+ and Slipper. These three 
algorithms appear to be the best when comparing the 
positions of their boxes with the others.
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Figure 11: Box plots representing the error rates for all algorithms over all folds in all datasets
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However, when considering the upper and lower 
quartiles of RULES-CONT with RULES-5+ and 
Slipper, it is clear that RULES-CONT is superior. The 
upper quartile of RULES-CONT ends at 0.15, whereas 
that of RULES-5+ ends at 0.19 and that of Slipper ends 
at 0.29. Moreover, 30% of the RULES-CONT results lie 
below the median line, whereas only 25% and 10% of 
the results lie below the median for RULES-5+ and 
Slipper, respectively. Finally, RULES-CONT has the 
lowest maximum value among the three algorithms. All 
of these findings confirm that the use of RRL improves 
the accuracy when applied to numeric features dataset.

In addition to the accuracy of RULES-CONT, its 
noise resistance should also be studied based on Figure 
11. At all levels of noise (Figure 11.b, c, d), the 
RULES-CONT box remains lower than the rest, and the 
minimum and maximum values are also lower than 
those for the other algorithms. Upon an increase in the 
noise level, the boxes for all algorithms (except for 
RULES-6 and RULES-CONT) begin to move upward, 
indicating that the error increases exponentially with 
increasing noise. This effect is especially obvious for 
the non-discretization algorithm RULES-5+ because of
its high overfitting of the data.

With regard to the mean and median error rates,
RULES-CONT has the lowest values at all non-zero 
levels of noise. In the presence of noise, the minimum 
error rate for RULES-CONT becomes lower than those 
for the others, even though the minimum error rates of 
several of the algorithms are equally low in the absence 

of noise. Moreover, RULES-CONT maintains 
approximately the same distribution of error rates, in 
which 25% of the results lie below the median. Finally,
the median error rate for RULES-CONT actually 
decreases with increasing noise, again indicating its 
superiority compared with the other algorithms. All of 
these findings confirm that RULES-CONT exhibits 
better overall noise resistance while guaranteeing better 
accuracy, even in the absence of noise.

In addition to the box plots, to compare the total 
performance of the algorithms over all datasets, the total 
error rate for each algorithm is summarized in Table 3.
The last row represents the variance increase in the error 
rate to show how much the error rate increased in total. 
This table shows that RULES-6 is almost unaffected by 
noise, as the difference between the minimum and 
maximum error rates is only 3%. However, its lowest 
total error rate is still the worst after that of RULES-
SRI. Although it is not affected by noise, its accuracy in 
general is insufficient, as it produces a high error rate 
even in the absence of noise. RULES-CONT exhibits 
the next best noise resistance after RULES-6, with a
difference in error rate of only 6%. Thus, its 
performance is not strongly affected by the noise level. 
In particular, the difference between the changes in
error rate for RULES-CONT and RULES-6 is 3%, and 
at each noise level, the difference between the error 
rates of these two algorithms is higher than their
differences from the others.

Table 3: Total error rates at different noise levels

Noise level CONT RULES-6 SRI RULES-5+ Slipper Ripper C4.5RulesSA DT_GA
0% 0.14 0.34 0.38 0.14 0.15 0.19 0.19 0.17
5% 0.15 0.34 0.41 0.19 0.17 0.21 0.21 0.23
10% 0.16 0.33 0.45 0.22 0.21 0.26 0.27 0.26
20% 0.20 0.36 0.48 0.28 0.26 0.31 0.31 0.31
Min-Max% 6% 3% 10% 14% 11% 12% 12% 14%

Compared with the other algorithms, RULES-
CONT generalizes better. When the noise level was 
increased from 0% to 20%, the error rates increased by 
10% for RULES-SRI, 14% for RULES-5+, 11% for 
Slipper, 12% for Ripper, 12% for C4.5RulesSA, and 
14% for DT_GA. Moreover, the results at every level
indicate that RULES-CONT always exhibits the best
performance. It produces the lowest error rate at all 
levels of noise, with results equal to those of RULES-5+ 
at 0% noise. At every noise increment, the increase in 

the error rate is smaller for RULES-CONT than for the 
other algorithms. Consequently, even though pruning is
not applied in this algorithm, RULES-CONT is still 
superior. Based on all of these observations, the 
following conclusion can be stated:

Conclusion #5: RULES family with offline 
discretization is resistant to noise, but introducing RRL 
into the family improves its noise resistance and
accuracy without the need for discretization.
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5.3.2. Resistance Significance

To determine whether the improvement in noise 
resistance offered by RULES-CONT is significant, the 
statistical method proposed by Demsar60 was applied. 
For all datasets, the results of all algorithms were
statistically compared using the XLSTAT tool61.
Following the Friedman test, the Nemenyi post hoc test 
was also applied, and the results are presented as CD 
diagrams in Figure 12. Such a diagram represents the 
significance of the differences between the algorithms,
where the numbers on the vertical lines indicate the rank 
and the thick lines indicate the groups, whereas the CD 
line indicates the algorithms that exhibit a significant 
difference from RULES-CONT.

As shown in Figure 12, RULES-CONT is superior 
to the other algorithms at all levels of noise. It remains 
highest ranked while the other algorithms decrease in 
accuracy with increasing noise. At all noise levels,
RULES-SRI is ranked lowest, with a rank of 
approximately 7.7. Its rank does not change, indicating 
that it performs the same in all cases compared with the 
other algorithms. By contrast, RULES-CONT is ranked 
highest at all levels, but its rank in each case is better 
than in the previous one, indicating that its performance 
improves compared to the others when increasing noise. 
Therefore, it can be concluded that the error rates of 
most algorithms worsen with increasing noise, whereas
RULES-CONT is minimally affected by noise.

(a) Error Rate (0% noise) (b) Error Rate (5% noise)

(c) Error Rate (10% noise) (d) Error Rate (20% noise)

Figure 12: CD diagrams of the two-tailed Nemenyi post hoc test for all algorithms over all folds in all datasets

In more detail, when there is no noise (Figure 12.a),
RULES-CONT is ranked highest, with an accuracy 
similar to those of Slipper and RULES-5+ and 
significantly better than those of the other algorithms. 
Algorithms that take a non-discretization approach
typically perform better on datasets with numeric 
features. However, this no longer holds once noise is 
introduced (Figure 12.b). In this case, RULES-5+ 
performs worse than Slipper, indicating that the 
previous non-discretization algorithm in the RULES
family has difficulties with noisy data because it overfits
its training set. However, introducing RRL has solved 
this problem, and RULES-CONT remains highest 
ranked when 5% noise is introduced. It shows an 
insignificant difference from Slipper, RULES-5+, and 

C4.5RulesSA and a significant difference with respect 
to the others. 

With increasing noise, however, the significance 
results change. When 10% noise or more is introduced 
(Figure 12.c and d), the error rate of RULES-CONT 
becomes significantly better than those of all other 
algorithms and similar to that of Slipper. It has the 
highest rank for both 10% and 20% noise. The 
performance of RULES-5+, meanwhile, further 
degrades with increasing noise, indicating that RRL is 
indeed a good solution for handling numeric data and
predicting actions based on the rules induced from such 
data. Consequently, RULES-CONT is superior to other 
versions of RULES for addressing noisy and numeric 
data.
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5.4. Process Time

In RULES-CONT, the time consumption of the 
algorithm is reduced through the use of the relational 
representation and re-use of past experience. However,
this claim must be verified; thus, the effect of 
incorporating RRL on the speed of the algorithm must 
be investigated in addition to the effects on accuracy 
and noise resistance. This section presents an analysis of 
the process time of RULES-CONT and compares it with 
that of the preceding non-discretization RULES 
algorithm without relational representation (RULES-5+)
to focus on the effect of the relational representation and 
the difference in speed with and without RRL. 

Figure 13 shows the process times of the RULES-
CONT and RULES-5+ algorithms at all levels of noise. 
From all graphs, it is evident that the speeds of RULES-
CONT and RULES-5+ are similar, except on medium to 
large datasets with a non-small number of attributes. In 
particular, when the noise level is 0% (Figure 13.a) or
5% (Figure 13.b), the speed of RULES-CONT is 
slightly better than that of RULES-5+ on the Penbase 
dataset and significantly better on the Ring, Spambase,
and Twonorm datasets. However, on the Satimage and 
Segment datasets, RULES-CONT is slightly slower 
than RULES-5+. This increase in speed is due to the 
dataset properties, as the Satimage and Segment datasets 
include not only medium to large numbers of examples
and attributes but also a medium number of classes. 

When the noise increases to 10% (Figure 13.c) or
20% (Figure 13.d), RULES-CONT and RULES-5+ 
again have similar process times; except on medium to 
large datasets with a non-small number of attributes.
However, the RULES-CONT process time decreases 
further compared with that of RULES-5+. In particular, 
the RULES-CONT process time becomes less than that 
of RULES-5+ on the Satimage and Segment datasets 
and noticeably better on the Penbase dataset. Hence, an
increase in the level of noise has less effect on RULES-
CONT speed than on RULES-5+.

Ultimately, when the speeds are compared at all 
levels of noise, the difference between RULES-CONT 
and RULES-5+ increases with increasing noise. On the
Penbase dataset, the speed of RULES-CONT is only
slightly lower than that of RULES-5+ at 0% noise, but 
the difference increases with increasing noise such that 
this difference is clear to the naked eye at 20% noise. 
On the Satimage and Segment datasets, at 0% noise,
RULES-CONT is slightly slower than RULES-5+, but it 

becomes faster than RULES-5+ with increasing noise. 
The relational representation therefore improves the 
speed of RULES-CONT, and noise has a greater effect 
on RULES-5+, despite the fact that RULES-CONT does 
not prune and RULES-5+ does. All observations on the 
process time can be summarized as follows: 

Conclusion #6: Introducing RRL into the RULES family 
reduces the time required to process noisy and numeric 
data without the need for any special pruning technique.

6. Discussion

RULES-CONT has the ability to learn from scratch and 
to re-use previously gathered knowledge to improve its 
rule selection behavior. Because it uses the relational 
representation, the algorithm can address multiple 
features and values as a single entity, and missing 
values are automatically handled when constructing 
actions. RULES-CONT cumulatively learns throughout 
its lifetime because one of the fundamental properties of 
RRL is continuous learning. Hence, incremental 
learning can be easily integrated with this method. The
history of the RRL agent is preserved during rule 
induction; hence, it does not always need to start from a 
null state but instead can start from previously 
discovered ones. RULES-CONT temporarily stops its
search when the goal cannot be found for any reason. 
However, once another seed example is discovered, the 
algorithm continues its learning while taking advantage 
of its past experience. Hence, it will sometimes stop at a
local minimum with the intent of reaching a global one. 

From the practical tests, it was concluded that 
RULES-CONT resolves the noise tolerance problem 
recognized in the literature while also offering improved
accuracy. In particular, the following conclusions can be 
drawn regarding RULES-CONT:

Handling numeric features using a non-discretization 
approach yields the most accurate results. 
RULES-CONT preserves both its current and future 
accuracy and does not sacrifice one for the other. 
The use of RRL in the RULES family increases 
noise resistance while allowing numeric features to 
be accurately addressed without discretization. 
According to the Friedman test, RULES-CONT 
maintains the highest ranking among comparable 
algorithms at all levels of noise. 
Introducing the relational representation into the
RULES family improves the speed and decreases the 
effect of noise even when pruning is not applied.
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(a) 0% noise

(b) 5% noise

(c) 10% noise

(d) 20% noise

Figure 13: The process time for RULES-CONT and RULES-5+ at four levels of noise
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Addressing infinite-space values using a non-
discretization approach that continuously learns from 
experience can improve the performance of CAs.
RULES-CONT incorporates new properties into a CA 
but also offers improved accuracy and noise resistance. 
Updating the resulting quantization does not pose a 
problem because the ranges for numeric features are not 
fixed but rather are handled dynamically. RULES-
CONT does not suffer any trade-off in performance to 
accurately address infinite-space values; instead, it 
offers improved accuracy while also maintaining high 
noise resistance. 

7. Conclusion 

This paper introduced a novel non-discretization 
approach based on RRL. This approach was used to 
develop an algorithm called RULES-CONT, which 
addresses both numeric and discrete values in a similar 
manner and attempts to discover the best values for a set 
of features as a whole depending on their common 
characteristics and their relationships with other 
examples and classes. The results of experiments and 
statistical tests verified that RULES-CONT fills the 
existing performance gaps of CAs. It offers improved 
accuracy and speed for a CA while maintaining a high 
level of noise resistance. The problems faced by
discretization methods are avoided because it uses a
non-discretization approach. In the future, the effects of 
pruning will be tested to compare the behavior of 
RULES-CONT with that of other algorithms that apply
pruning. Additional logical expressions will also be 
integrated to further scale the algorithm; for example, 
the NOT and OR operations can be used to group
several states together and thus reduce the space to 
enable the processing of terabyte datasets. 
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