
Received 4 July 2015

Accepted 4 March 2016

Adopting Relational Reinforcement Learning in Covering Algorithms for Numeric and Noisy
Environments

Hebah ElGibreen, Mehmet Sabih Aksoy

College of Computer and Information Sciences, King Saud University,
Riyadh 11415, Saudi Arabia

E-mail: {hjibreen, msaksoy}@ksu.edu.sa

Abstract

Covering algorithms (CAs) constitute a type of inductive learning for the discovery of simple rules to predict future
activities. Although this approach produces powerful models for datasets with discrete features, its applicability to
problems involving noisy or numeric (continuous) features has been neglected. In real-life problems, numeric
values are unavoidable, and noise is frequently produced as a result of human error or equipment limitations. Such
noise affects the accuracy of prediction models and leads to poor decisions. Therefore, this paper studies the
problem of CAs for data with numeric features and introduces a novel non-discretization algorithm called RULES-
CONT. The proposed algorithm uses relational reinforcement learning (RRL) to resolve the current difficulties
when addressing numeric and noisy data. The technical details of the algorithm are thoroughly explained to
demonstrate that RULES-CONT contribute upon the RULES family by collecting its own knowledge and
intelligently re-uses previous experience. The algorithm overcomes the infinite-space problem posed by numeric
features and treats these features similarly to those with discrete values, while incrementally discovering the
optimal rules for dynamic environments. It is the first RRL algorithm that intelligently induces rules to address
continuous and noisy data without the need for discretization or pruning. To support our claims, RULES-CONT is
compared with 7 well-known algorithms applied to 27 datasets with four levels of noise using 10-fold cross-
validation, and the results are analyzed using box plots and the Friedman test. The results show that the use of RRL
results in significantly improved noise resistance compared with all other algorithms and reduces the computation
time of the algorithm compared with the preceding version, which does not use relational representation.

Keywords: Covering Algorithm, RULES Family, Continuous Features, and Relational Reinforcement Learning.

1. Introduction

Currently, intelligent machines can be found in almost
every home around the world. Data are collected by
these machines, and decisions are made depending on
user behavior. Machine learning (ML) is one of the
tools that can be used for this purpose1, and a significant
amount of research has focused on the concept of
classification learning. Although statistical methods are
widely used in ML, various studies2, 3 have shown that
these methods are very difficult to understand and act as
black boxes. Another subset of ML techniques, called
covering algorithms (CAs)4, possess several

characteristics that make them more attractive than
statistical ML methods. The basic purpose of a CA is to
learn a set of rules from a given set of instances and
create a classifier that can predict new situations. This
approach is interesting because of its simplicity and
direct representations, which are unambiguous and can
be easily updated, understood and validated.5-7

Unfortunately, CAs face one major hurdle that makes it
difficult to apply them to real-life problems.

CAs are essentially designed to address discrete and
clean values, whereas problems involving noise or
quantities that can take any values in an infinite space
have been neglected. However, the ability to handle

International Journal of Computational Intelligence Systems, Vol. 9, No. 3 (2016) 572-594

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

572

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

numeric (continuous)1 features is important for
addressing complex real-life problems. In the literature
regarding CAs, several attempts have been made to
solve this problem, but suitable solutions are still
lacking. ElGibreen and Aksoy8 investigated the problem
in various inductive learning (IL) families. According to
the summary of the state of the art presented in that
paper, numeric features were originally handled by
means of discretization; the deficiencies of these
approaches can be summarized as follows:

Offline Discretization: Future updates are a major
concern because it is difficult to update the intervals
of older rules; this difficulty reduces their accuracy.
Online Discretization: More accurate than offline
discretization, but its time and computational costs
are very high because a large number of evaluations
must be performed during the learning stage.
Within the past few years, another approach has

been developed by a small group of researchers. It is
called non-discretization because it does not involve the
discretization of features and addresses both numeric
and discrete values in the same manner. Although this
approach overcomes some of the problems with
discretization, it also encounters new issues, as follows:

Non-discretization: This approach overfit its
training sets, resulting in a reduced level of noise
tolerance. Current methods attempt to address this
problem using pruning techniques, but this increases
the complexity of the algorithm, and it is difficult to
determine the appropriate pruning technique to use.
To address the issues discussed above, this paper

focuses on the problem of noise tolerance in a dataset
with numeric features. The primary goal is to generalize
the performance of CAs for application to numeric
datasets such that good results can be obtained even if
noise is introduced. This objective was chosen because
it is important to build a repository that can address real-
world problems, especially considering that noise is
typically present in the data collected to address such
problems. Whether these data are collected from users
or gathered through sensors, noise is frequently
produced as a result of limitations in the measurement
equipment or through human error. Such noise affects
the accuracy of prediction models, which can cause
agents to make poor decisions.

1 Through this document, the term ‘numeric’ corresponds to numeric
and continuous values.

This paper contributes to the field of CAs by
introducing the use of relational reinforcement learning
(RRL) in a CA family called RULES9. A novel non-
discretization approach using RRL is proposed, and
based on this approach an algorithm called RULES with
continuous attributes (RULES-CONT) is developed.
This algorithm scales to any type of data, fills the gaps
in CA applications, and discovers simple and strong
knowledge that can be used by both expert systems and
decision-makers.

Unlike other versions of RULES, the proposed
algorithm uses the concept of knowledge transfer 10, 11in
order to incrementally update its repository. It re-uses
past rules discovered in previous steps to incrementally
update the repository when a new patch of data is
provided as input. Transferred knowledge that covers
any of the new examples is stored in the new repository,
and the covered example is flagged for no further
processing. This increases the speed of the algorithm
and takes advantage of historical experience. The
induction procedure is different from that of all other
algorithms in the family; although it induces one rule at
a time, induced rule is discovered using RRL procedure.
In RULES-CONT, the RRL process is adjusted to
discover the optimal rules using a reward function. The
features and their possible values are stored in logical
representations, and the agent continuously learns the
best optimal rule values via trial-and-error interactions.

To the best of our knowledge, no one has previously
exploited RRL to solve the problem of applying CAs to
data with numeric features. The RRL elements are
adapted to the problem of rule induction in CAs and to
discover the best actions to induce the optimal rule for
every seed example. Through the use of RRL, the
algorithm is endowed with several appealing properties
in addition to the ability to solve problems with numeric
features. Because RRL has the property of continuous
learning, the extracted knowledge can be easily updated
without the need for additional procedures. Thus, it
becomes possible to automatically update the repository
if incremental induction is applied.

To test the performance of RULES-CONT, the
KEEL tool12, 13 was used for 10-fold cross-validation.
The proposed algorithm was compared with seven
different algorithms applied to 27 real-life benchmarks.
The error rates of the algorithms at four levels of noise
were collected to assess the noise resistance in the case
of datasets with numeric features. Moreover, the total

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

573

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

resistance level was visualized using box plots, and the
total variance in the error rate over all levels of noise
was computed. Afterward, the Friedman test was
applied to determine whether there were significant
differences in performance and to rank the algorithms
using the CD diagram. Finally, to demonstrate how the
use of RRL representation reduces the computation time
of the algorithm, the speed of RULES-CONT was
compared with that of the preceding non-discretization
version, in which RRL is not applied. The results
confirm that the RRL approach offers significantly
improved noise resistance and that the use of the
relational representation reduces the computation time.

This paper is organized as follows: First, the
fundamentals of CAs and RRL elements are defined
followed by a discussion of related work on the problem
of numeric datasets. Then, the proposed algorithm is
discussed, along with its technical details. Next, the
performance of the algorithm is benchmarked, and the
empirical results are discussed. Finally, the paper
concludes with perspectives on future work.

2. Preliminaries

This section defines the CA problem and presents the
elements required to build RRL agent.

2.1. Covering Algorithms

CAs are often called separate-and-conquer algorithms
because they separate each instance or example when
inducing optimal rules. The resulting rules are stored in
an ‘IF condition THEN conclusion’ structure. One
example (called a seed) is selected at a time to
incrementally build a rule, condition by condition.

Problem Statement - The problem of rule induction
in a CA can be mathematically expressed as in (1),
where the CA is described in terms of four
characteristics: E, A, V and CF. E represents the finite
set of examples (instances) provided as input to the
agent. A is the finite set of features (attributes)
possessed by each example. Note that the last feature is
the class and represents the output to be predicted in the
future. V denotes the infinite set of values that can be
taken by each feature in each example, which represents
a feature domain. This domain may consist of either
discrete or numeric values. Finally, CF is the classifier
that represents the conclusions drawn based on the
presented data, which are stored as rules in the CA.

= < , , , > (1)

For example, Table 1 shows a dataset that can be
given to a classifier for the construction of a model. The
contents of this table represent the problem of user
satisfaction with a purchased laptop, in which the
purpose is to predict whether users will be satisfied with
their laptops. The table contains three seed examples
and five features. In this example, E comprises each
row; A includes Disk Space, Battery Life, Price, RAM
and Satisfied, where Satisfied is the class; the values (V)
of the features are shown in each cell and include both
discrete (nominal) and continuous (numeric) values; and
CF is the set of rules induced from this table.

Table 1: CA data sample for user satisfaction on laptops

Disk Space Battery Price RAM Satisfied
3 High 5000 5i No
4 High 6000 7i Yes
6 Medium 3000 7i Yes

2.2. Relational Reinforcement Learning (RRL)

Reinforcement learning (RL) is inspired by the manner
in which a living being learns to behave through
interacting with its environment. Kaelbling et al.14 state
that RL is “the problem faced by an agent that must
learn behavior through trial-and-error interactions with
a dynamic environment”. The main goal of RL is to
reach a decision through a series of tasks involving trial-
and-error interactions with the environment.15 In RL,
learners are not told what to do but instead discover the
most rewarding actions by trying them.

Based on the concept of RL, an extension of RL
called RRL was developed for better space
representation16. It was developed to facilitate the
handling of a large number of states and actions by
grouping them into one object. In RRL tasks, relational
atoms are used to describe the environment16-18. One of
the best-known representations for this purpose is
relational factoring, which uses abstract qualities in
first-order logic (FOL). Mellor19 conducted several
studies and concluded that the primary advantage of this
approach is its simplicity due to static abstraction.

Definition – Given the following elements, the
objective
actions rA from the state space rS and maximizes the
total rewards16. Thus, any state is actually an r-state that
consists of multiple states connected by a logical

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

574

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

operation, and the action space is also an r-action space
that contains relevant actions within the state space.20

1. A set of states S rS is described in relational
language and belongs to the state rS.

2. A set of actions A rA is described in relational
language, and each state has its own set of actions.

3. A real-valued reward (r: S × A R) to determine
whether the agent has chosen a good action.

Example – Blocks World Problem: RRL elements
are obtained differently depending on the problem. In a
blocks world problem (Figure 1), each state represents a
certain set of positions of the blocks and the actions are
their movements. The relational representation allows
an agent to move more than one block at the same time,
instead of only one, because it represents several blocks
as a single state and handles them as one object. Actions
are transformed into predicates (On, Clear, Move), and
their domain is the set of block names (a, b, c, d, floor).
The policy that is discovered is the optimal movement
of the blocks to reach the goal, which is to stack the
blocks on top of each other. The reward is computed
such that the number of movements required to stack
the blocks is minimized. Hence, applying RRL avoided
the need to maintain a separate space for each block.

Statei = a, b, d On(a, b) (b, c) (d, a) Blocks (Stacked)

Figure 1: An example of RRL in the blocks world problem

From the above example, it can be concluded that
RRL elements are defined differently for each problem.
The states, actions, goal, reward, and policies are
determined depending on the problem to which RRL is
applied. For the problem of addressing numeric features
in a CA, the RRL elements will represent the possible
values and conditions that can be applied until the
optimal policy is discovered. Using the discovered
policies, rules can be extracted without feature
discretization, as will be explained in section 4.1.

Motivation – RRL in Rule Induction: The primary
advantage of using RRL, as discussed in Ref. 21, lies in
the size reduction achieved by virtue of its rich
representation. This representation allows an entire rule
to be represented as one state instead of addressing each
feature separately. The actions are transformed into

predicates that take the features in their domain as
arguments, thereby reducing the space and preserving
the relationships between features and their values as
well as their relationships to other examples in the
dataset. Moreover, such a representation provides a
spontaneous means of using and managing knowledge.
It simplifies the transfer of knowledge to more complex
tasks. It also preserves the structural aspects of action-
state pairs, unlike the attribute-value representation.

3. Related Work on Numeric Features Problem

Various improvements have been made to CAs to allow
them to handle an infinite space of numeric values.
These algorithms can be characterized, based on their
approach to discretization, as offline, online, or non-
discretization. Each approach has its own shortcomings
that can motivate future directions of research.

3.1. Offline Discretization

Offline discretization is a pre-processing step in which
numeric ranges are split into a fixed number of
intervals. The basic idea is to apply some discretization
technique, such as EqualWidth or ChiMerge 22, to the
data before performing rule induction. Various
discretization techniques have been adopted, yielding
CAs such as SIA23, ESIA24, covering and evolutionary
algorithms25, RULES-3+26, and the Prism family5, 27.
Although offline discretization reduces the time
required for rule induction, it can severely affect the
quality of the induced rules.28 In particular, there is a
considerable trade-off between the number of intervals
used and the consistency of the rules. Choosing a small
number of split points increases the interval size, which
results in inconsistent rules; and choosing a large
number of split points reduces the interval size which
gives an overspecialized rules model.

As a result, several attempts have been made to
create overlapping intervals based on fuzzy set theory.29

FURIA30, 31 is a fuzzy unordered rule induction
algorithm. This algorithm is an extension of Ripper,
with several modifications. It induces fuzzy rules that
are not ordered as a list. However, lists are important for
ranking rules and choosing the strongest when a conflict
arises. Thus, regardless of its good performance, FURIA
presents a serious problem when multiple rules for
different classes match the same example. Another
attempt has been made in RULES family (FuzzySRI32)
to address numeric features using fuzzy theory. This

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

575

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

approach uses offline entropy-based discretization to
discretize the features into crisp intervals. Then, it uses
fuzzy theory to induce fuzzy rules based on the crisp
values. However, the accuracy improvement achieved
through the use of fuzzy theory is obtained at the cost of
complexity. Furthermore, the accuracy of the algorithm
is highly dependent on the membership function chosen
by the user. Hence, its performance is not guaranteed,
and user interaction is required.

Ultimately, in offline discretization, future cases are
not considered and the intervals are fixed prior to rule
induction. Important data and measures extracted during
induction are not considered. Thus, this approach can
lead to serious problems, when it is possible that the
values of forthcoming data might not retain the same
distribution as the training set. It is difficult to update
the intervals of older rules, and as a result, the accuracy
of these rules will be reduced in the future.

3.2. Online Discretization

In online discretization, a fixed number of intervals are
assigned during the learning process. This approach
attempts to solve the problems faced by offline
discretization by allowing greater flexibility. The REP-
based family of algorithms (Slipper33 and Ripper34)
introduced the concept of online discretization. These
methods identify the best split points during incremental
learning by repeatedly sorting all numerical values of
the features. Although they offer good performance,
they require intensive computations involving every
feature in each example. They perform extensive sorting
and need at least three tables for every feature. These
tables are processed and re-sorted in every loop. Thus,
in addition to the computational complexity, this
approach incurs high memory requirements.

A new CA family, called Ant-Miner, was developed
in Ref. 35 to perform global searches over a dataset. This
method was built based on an evolutionary algorithm
called Ant Colony Optimization. Several improvements
have been made to deal with numeric features online,
either partially36 or fully37, 38. These methods are
applicable only to datasets with solely numeric features.
They also must represent the features in a tree before
extracting rules. They are optimized over the training
sets that result in artificial performance and are neither
scalable nor incremental by nature. Several values must
be computed and stored to optimize the results. Thus,

this approach is highly complex and has high memory
requirements during learning.

Another online discretization approach has been
applied in the RULES family by integrating it into the
RULES-SRI classifier.39 Instead of examining all
individual values, this method examines only the
boundary values of each numeric feature during
learning. Split points are added when adjacent values of
the same feature are identified, where each belongs to a
different class. Such points will differ from one rule to
another, depending on the classes’ frequencies and the
distribution of numeric values covered by a given rule.
Regardless of the accuracy improvement, the execution
time of this algorithm is tremendously increased by the
need to re-compute the boundaries for each rule.
Another version, called RULES-840, has also been
developed to discretize numeric features online during
learning. In this algorithm, the examples are re-sorted
based on the seed attribute-value pair for split point
selection. Although this method is robust to noise, it still
suffers from the same shortcomings as the REP-based
family due to re-sorting with every feature selection.

Ultimately, online discretization can be more
accurate than offline discretization methods. The
resulting intervals depend on the rule that is being
processed during learning. Hence, they are context-
dependent, thus enabling the management of bias in the
data. However, the computational cost of this approach
is very high because of the large number of evaluations
required to re-evaluate the intervals at every step.

3.3. Non-discretization

Once the shortcomings of discretization were
recognized, a third approach, known as non-
discretization, was developed. However, this approach
is still not well recognized because it is often confused
with online discretization. In general, both approaches
address numeric features during the induction process.
However, in online discretization, fixed intervals are
selected for each group of values and all groups are
updated with every change. By contrast, in non-
discretization methods, an alternative threshold is
chosen for each value in each seed to induce the best
rule without requiring continuous updates. Hence, in
non-discretization, numeric features are not assigned to
particular ranges; instead, different ranges are
determined for each value during the learning process.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

576

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

Several attempts have been made to handle numeric
features in CAs without discretization. A modified
version of AQ, called Continuous AQ (CAQ), was
developed in Ref. 41 to handle both numeric and discrete
features. It was proven that treating numeric features as
real numbers instead of forcing them into discrete
representations would produce more effective results.
However, CAQ does not obtain appropriate ranges
because it operates only on the current example without
considering the data as a whole.

RULES-528 was designed to define the interval of
each feature during rule construction based on the
distribution of the examples. For each seed example, an
interval is chosen such that the value of the most similar
negative example is excluded. This algorithm was found
to offer improved performance compared with the rest
of the RULES family, and a further improved version
called RULES-5+42 was later proposed to reduce the
reliance on statistical measures by applying a new
knowledge representation. However, the number of
rules discovered by this algorithm is too large, leading
to overspecialization and, thus, sensitivity to noise.
Therefore, its performance is not guaranteed.

RULES-IS43 also incorporates a procedure for
handling numeric values without discretization. This
algorithm was inspired by the immune system domain.
It regards every example as an antigen and creates an
antibody (rule) for each antigen. The antibody-antigen
pairs are stored in short-term memory, in which its size
is determined based on the function of the immune
system; thus, 5% of the oldest antibody-antigen pairs
are removed from memory at each round. During rule
generation, a range is created for every numeric feature
to cover the positive examples. However, this algorithm
must match every antigen with all possible antibodies,
which increases its time and computational costs.

In addition, Brute44 system has been developed that
uses a measure of variance to select the boundaries on
numeric values. It reduces the number of rules by
repeatedly applying rule induction over different
overlapping examples. Another version of this approach
was developed in Ref. 45 by introducing a similarity
measure to represent the similarity between rules.
However, it increased the computational cost due to the
reproduction of rules. Moreover, it is questionable
whether the system can produce stable rules from small
datasets. Hence, its performance is uncertain in the case
of either very large or very small training sets.

Another rule-based algorithm, called uRule46, was
developed to handle uncertain numeric features. This
method is based on the REP-based family of algorithms,
specifically Ripper47, and uses new heuristics to
optimize and prune the discovered rules, identify the
optimal thresholds for numeric data, and handle
uncertain values. During the learning process, the
threshold that best divides the training data is
determined based on extended information gain
measures. In Ref. 48, the empirical results revealed that
uRule can successfully handle uncertainties in numeric
and discrete features. However, it is time-consuming
because of its rule pruning complexity.

Ultimately, the non-discretization approach
overcomes the difficulties encountered in discretization
approaches. However, this approach is not yet mature
and suffers from shortcomings in several aspects. In
particular, the application of non-discretization
algorithms to noisy data remains a major problem and
an open area of research. Any bias in the data should be
handled by considering the relationships between the
examples and their classes in addition to the dataset.

4. RULES-CONT Algorithm

Motivated by the importance of numeric data and the
deficiencies of current CA approaches, a new algorithm
called RULES-CONT is proposed in this section. This
algorithm is designed to serve as an improved CA for
application to features that take values on an infinite
space. It is inspired by the RULES family9 and the trial-
and-error interactions in RRL. It attempts to learn from
scratch and build its experience to address numeric
values in a manner similar to discrete ones.

The basic idea of RULES-CONT is to address
numeric features without discretization or fuzziness
during rule induction. From Figure 2, RULES-CONT
begins by reading the training set and initializing the
parameters. In the first step, the initial RRL state space
is defined to include the states that represent null rules
for every class. In the second step, if the training set
belongs to a previous patch of incremental examples,
the incremental procedure is activated to transfer the
agent’s previous knowledge, similarly to RULES-TL49,
and flag examples in advance to reduce the search
space. Hence, if there is a rule that cover a seed example
(step 3), then that example is flagged as covered (step 4)
and the rule is stored in the final rule set.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

577

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

Figure 2: RULES-CONT learning approach

The RRL procedure is executed afterward (step 5 &
6) to discover new rules to flag uncovered examples.
This search procedure addresses numeric values while
discovering the best policy to represent the optimal rule.
The search will proceed without prior assumptions for
every seed such that all features are encompassed in a
single state. When the goal state is found, it will be
transformed into an if-then statement and applied to
cover any matching examples. The details of this
procedure will be explained later in section 4.2. The
discovered rules are then stored in the final rule set. If
the goal state has not yet been found (step 7),
inconsistent rules that are near the goal will be selected
as the final rule set using a beam width search. Finally,
in step 8, identical rules are removed. The resulting rule
set can then be used to classify future examples.

To understand how RULES-CONT manages
numeric features, the details of the RRL environment
and learning procedure are important. Therefore, in the
following subsections, the RRL elements and technical
details will first be explained, and the learning and
prediction procedures will subsequently be presented.

4.1. RRL Elements and Environment

RRL elements need to be defined specifically for the
numeric features problem. To understand how RRL is
applied, this section presents the RRL elements for the
CA problem for the agent to begin its learning.

4.1.1. RRL Environment

In RULES-CONT, the RRL environment is unknown
and is built throughout the lifespan of the agent; the
state space differs depending on the training set, and its
actions change from one seed example to another to find

the most appropriate value to cover the examples. This
dynamicity is introduced to reduce the state and action
spaces, in which only needed objects are stored.
Moreover, because RRL is applied, a single state (rS)
contains a number of states, and the same applies for the
actions (rA). The algorithm searches for the most
consistent state by applying different actions, and thus,
different condition values (A rA) are added to obtain
a consistent state rS with reward = 1.

4.1.2. rState Space

In RULES-CONT, each state contains several
predicates that change based on its actions. The
predicates represent all possible actions that can be
applied over the features. These predicates are {Equal,
Less, Greater, LessEqual, GreaterEqual} and are
chosen to select the best alternatives for a feature value.
The domain of these predicates includes the feature
names and values. Note that predicates (or sub-states)
containing either numeric or discrete values may be
grouped together by the AND logical expression.

For example, Figure 3 shows the rules discovered
from a dataset about item identification to demonstrate
how RULES-CONT can represent these rules in the
state space. In this dataset, an item can be identified as a
toy, motorcycle, or car depending on its properties. Four
discovered rules are presented in Figure 3.a, and
RULES-CONT manages these rules as shown in Figure
3.b. If a new action {Less (tier, 5)} is discovered and
added to rS3, then a new state { body, tier Equal (body,
Metal) (tier, 3) (tier, 5) item
Equal(item, Car)} will be stored as rS4.

(a) Rules discovered from item identification dataset
If (body = plastic) THEN (class = toy)
If (tier = 0) THEN (class = toy)
If (body = metal) and (tier = 3) THEN (class = motorcycle)
If (body = metal) and (tier > 3) THEN (class = car)
(b) Relational state space: 3 states
rS1 { body, tier Equal(body, Plastic) (tier, 0)

item Equal(item, Toy)}
rS2 { body, tier Equal(body, Metal) (tier, 3)

item Equal(item, Motorcycle)}
rS3 { body, tier Equal(body, Metal) (tier, 3)

item Equal(item, Car)}
Figure 3: An example of an RRL state space in RULES-
CONT containing three states

Note that the first and second rules are combined
using OR because each contains only one feature; the
NOT logical expression can also be added, depending

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

578

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

on the technique used. Currently, RULES-CONT uses
only the AND operation because it induces one rule at a
time for each uncovered seed example. Moreover, it
checks for conflicts and tests only actions that are
applicable to the current state. For example, if the Equal
(tier, 3) action is applied over rS3, then the predicate
{Greater (tier, 3)} will be replaced to obtain a new
state; the new action will not be added to rS3 because
this predicate conflicts with the logical meaning of rS3.

Every rS is associated with metadata to represent the
logical meaning of the state and to indicate which seed

example has visited the state, in addition to its most
similar examples from every class. For example, the
state { body, tier Equal (body, Metal)
GreaterEqual(tier, 4) (tier, 7) item
Equal(item, Car)} can be represented as shown in
Figure 4. The action values for discrete features are the
same as those for the seed, whereas the ranges for
numeric features are created based on the most similar
negative examples, as will be explained in the following
sub-section.

S rS1 GreaterEqual(tier, 4) Less(tier, 7) Equal(body, Metal)
A rA1 Greater(tier, 3) LessEqual(tier, 6)

Metadata body, tier item Equal(item, Car)
Initial Q(rS, A) A rA(rS).
Index of visited seeds and most similar negative examples from every class.
Flag represents whether each A rA has been tested yet.

Figure 4: An example of how state-space metadata are represented

4.1.3. rAction Space: Missing/Numeric Features

In RULES-CONT, both discrete and numeric features
can be grouped together by logical operations. The sub-
actions in every rA represent the possible values for
every sub-state. For a feature (i), rA[i] represents the
possible actions that can be assigned to one sub-state to
transition to another state, regardless of that feature’s
type. These actions are created based on the visited state
and seed examples. Thus, the action space is also
unknown and dynamic; it depends on the learning
process. This increases the flexibility of the algorithm to
address numeric features more accurately. In particular,
when a seed example visits an rS, the most similar
negative examples from every class are selected using
(2), where the distance between discrete features is
computed using (3). C and D are the lists of all numeric
and discrete features of the data, respectively. Vi

E1 and
Vi

E2 are the values of attribute (i) in examples E1 and
E2, whereas Vi

min and Vi
max are the minimum and

maximum values of feature (i). This measure, as
explained by Pham et al.28, is a distance measure that
can be used to compare any type of examples and all
types of data.

(,) =

() + _ (,) (2)

_ (,) =
0 =

1
 (3)

After the most similar negative examples are
selected, actions that belong to state rS are created from
one of the cases presented in Figure 5. Note that Ei
denotes feature i for the current seed example, Neg(i)
denotes feature i for the most similar negative example,
and the Min/Max functions return the minimum or
maximum value of feature i from among all of the
examples covered by the current state rS.

1.If (Ei.value = Neg(i).value) OR (Ei.value is null) OR
(Neg(i).value is null) THEN return null.

2.Else if (Ei discrete), THEN rA[i].add(‘Equal (Ei, Ei.value)’).
3.Else if (Ei numeric), THEN

a.If (Neg(i).value greater than Ei.value) THEN
rA[i].add(‘GreaterEqual (Ei, Min(rS, i)) (Ei,
Neg(i).value)’)

b.Else if (Neg(i).value smaller than Ei.value) THEN
rA[i].add(‘Greater(Ei, Neg(i).value) (Ei,
Max(rS, i))’).

Figure 5: The rAction creation cases: (1) feature is empty, (2)
feature is discrete, or (3) feature is numeric

As shown in Figure 5, the actions represent the
possible values of numeric and discrete features.
Through the RRL learning process, the best actions are
chosen based on their Q values. To avoid discretization
problems, fixed ranged are not applied; instead, new

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

579

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

actions are created depending on the current seed.
Moreover, as shown in step one in Figure 5, missing
values are handled automatically by considering no
actions for a missing value. The discovery of negative
or overlapping rules is also avoided by neglecting
identical negative examples. Note that the Q value of
each discovered action is initialized to a non-zero value
using (4), to start with the strongest actions. In equation
(4), P(rA) is the number of positive examples (examples
with values in the same range as action A), whereas
E(rS) is the total number of examples covered by rS.

Initial Q(rS, A) =
()

()
, A rA (4)

4.1.4. Rule Quality and Reward Function

In the RULES family, the rule quality is usually referred
to as “search heuristics” and is used to automate the
learning task.50 In IL, various measures can be applied
to measure the quality of the discovered rules and to
determine when rule learning should stop. These
measures can be used to reduce excessive searching
while preserving performance. For this purpose, various
measures were tested with RULES-CONT, including
the IREP value matrix51, the Hellinger measure52, the m-
estimate53, and the S-measure54. It was found that RRL
handles numeric features more effectively when the rule
consistency is monitored. Thus, the reward is computed
using (5), where n is the number of negative examples
covered by rS. The reward value lies in the interval [-1,
0] when the goal state has not yet been reached and
becomes equal to one only upon reaching the goal.

() =

= ;

= ; (5)

By means of this reward function, RULES-CONT
assigns the maximum penalty to null states to avoid
rules with no conditions, which cannot be used in a
classification model. The reward will be equal to one if
the state does not cover any negative examples. In this
case, the discovered rule is the desired one, and the
search should stop. If the current state is neither the goal
nor the null state, then the agent will be guided toward
the goal based on the computed percentage of negative
covered examples. A negative value is assigned because
a rule that covers fewer negative examples is better.

Thus, high rewards move the agent closer to the goal
until n = 0 (i.e., r = 1).

4.1.5. Control Method

To apply RRL, a control method must be chosen to
decide which action should be applied in a given state.
One of the simplest and best-known control methods for
RRL is called rQ-Learning18, 20, in which actions are
repeatedly applied given the current state to learn a
policy. When the agent visits a state, it selects an action
based on a certain policy, such as the greedy policy.
Then, the reward of the selected action is collected.
Afterward, the action value is calculated in a greedy
way, i.e., the optimal action value is selected. These
steps are repeated until the stop condition is reached.
The action value can be calculated using (6), where rS is
the current state, rS’ is the new state, rA is the set of
actions applied to transition from rS to rS’, r is the
reward for applying rA over rS, and () and (

1) are the learning and discount factors,
respectively. This equation is one of the simplest ways
to compute the action value.55

Q(rS, rA) =

Q(rS, rA) + [r + max () Q(rS , A) Q(rS, rA)] (6)

4.1.6. Policy

In RULES-CONT, the optimal policy is that which
discovers the most rewarding state within the fewest
number of actions. Thus, the algorithm attempts to
apply actions that will reach the goal state as rapidly as
possible in the smallest number of steps. In general,
every policy represents a rule, and the optimal one is the
consistent rule with the fewest conditions.

4.1.7. Goal

The goal of RULES-CONT is to reach a consistent state
with a reward equal to one. In this way, the discovered
state can be translated into a rule that has overlapping
conditions while avoiding conflict with other rules by
virtue of its consistency. For example, if the goal state
discovered is { body, tier Equal(body, Metal)
Greater(tier, 3) item Equal(item, Car)}, then this
logical expression can be translated into the rule {If
(Body = Metal) AND (Tier>3) THEN (Item = Car)}.
This translation is possible because one of the main
advantages of a CA is its ability to directly translate its
discovered knowledge into any FOL expression.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

580

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

4.2. RRL Learning Procedure

After building the initial RRL space and transferring
knowledge of past rules, RULES-CONT initiates the
RRL procedure to discover the best alternative values
and induce the best rule for every uncovered example.
As shown in Figure 6, to save computation time by
starting from previously discovered states, the state rS
with the highest reward that covers the current seed is
chosen as the initial state. Then, the algorithm enters a
loop in which it updates the environment and searches
for the goal state. It does not stop until it finds the goal
or when learning cannot be further improved. RULES-
CONT attempts to avoid an exhaustive search by
stopping the search even if the goal has not yet been
found. Stopping the search in this way will not cause a
problem in the future because it will later be possible to
find the goal while iterating on a subsequent seed
example using the knowledge extracted in a previous
step. Thus, RULES-CONT might stop at a local
minimum with the understanding that it will reach a
global minimum in the future, instead of mistakenly
regarding the local minimum as the global one.

RRL_Learning (E, , , Train) //RRL procedure
Input: Seed (E), alpha and gamma (,), training set (Train)
Output: Best rules (BestR)
1. rS = most rewarding relational state based on E in the

RRL state space //using Eq. (5)
2. finished = false
3. While () && (not finish) //while goal not

reached (for each iteration)
a. A = most rewarding actions in rA(rS) created based on

initial Q value
b. //for each step in the iteration

i. A.tested = true //change action status to tested to
avoid infinite loop

ii. Apply all a A over rS and observe rS’ and r
//rS’.value = rS.value + A

iii. if (rS’.reward > rS.reward) && (rS’)
THEN
1. if rS’ is not in the RRL space THEN update the

state space with rS’
2. Update Q(rS,rA) based on the chosen action A
3. rS = rS’

iv. if (rS’.reward = 1) THEN //If goal state is reached
1. bestR = rS’
2. rS = rS’

c. Else //if no further improvement can be achieved
i. finish = true & bestR = null

4. If () THEN rule = ConvertToRule (bestR)
ELSE rule = null

5. return rule

Figure 6: A Pseudo code illustrating how RRL is used to
induce new rules from a numeric environment

In RULES-CONT, the RRL search begins with an
update to the action space of the current state and the
selection of the best action based on its strength (step
3.a). Based on the initial Q value defined in (4) and the
actions’ reward, the best non-tested condition is chosen.
Note that the score represents the reward obtained by
adding an action A that belongs to rA to the incomplete
state of rS, not the final expected rule. Thus, the
algorithm operates on the current state to determine the
best possible actions. In step 3.a, if a feature has a
missing value, the RRL agent will automatically address
it during action generation. If no actions are found or
the actions of all features have already been tested at
least once in the current state, then no further
improvement can be achieved using the current state. In
this case, the stop condition will be activated without
the optimal rule being found, as stated in step 3.c. Note
that the algorithm will not stop after testing only one
action; instead, all features will be tested unless the goal
is found beforehand. However, stopping the search at
this point prevents an infinite loop.

When the stop condition is triggered without the
goal state having been found, the local optimum
discovered in this step will not be considered. Instead,
the discovered information will be stored in the state
space for later use. In this way, the global optimum can
be sought while taking advantage of the information
discovered throughout the lifespan of the RRL agent.
When a new action is found, as in step 3.b, the
algorithm first marks the action as tested. Then, the new
state obtained after applying the action is observed, and
its reward is computed. If the new state is better than the
previous one but still is not the goal, then the algorithm
updates the action value function of rS and continues to
search for new states. The state space is also updated
with the newly discovered state, as in step 3.b.iii.
However, if the reward of the new state is equal to one
(step 3.b.iv), then the goal has been reached and the
search is stopped for the current seed.

Finally, after the goal state is found (step 4), the
value of the goal state is converted into a rule
represented as an ‘if-then’ statement instead of a logical
expression. The best rule is then returned as the
discovered rule. For example, a rule can be represented
in the form {(A1, “K”) ^ (A2, (1,5]) (class, T)}. This
string can be stored in the final rule set (knowledge
repository) to be used for future predictions.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

581

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

4.3. Prediction Procedure

After the best rules are discovered and the agent’s
repository is produced, the resulting model should be
used to predict classes. In RULES-CONT, three cases
may arise when classifying an example, as follows:

One Rule: When only one rule covers the example,
this rule is used for prediction.
No Rule: When no rules are found to match the
example, the most similar rule is chosen based on its
distance from the example. The distance between a
rule and an example is computed using (7), (8), and
(9), where C and D are the lists of all numeric and
discrete features of the data, respectively. Vi

E and Vi
R

are the values of feature (i) in example E and rule R,
respectively; Vi

R.max and Vi
R.min are the maximum

and minimum values, respectively, of the rule’s
condition range; and Vi

min and Vi
max are the maximum

and minimum values, respectively, of the numeric
features in the training set. Note that if more than
one rule has the same distance from the example,
then the strongest one is used.
Conflicting Rules: When multiple rules with
different classes cover an example, the most similar
rule is chosen to classify the example using (7).

_ (,) =

_ (,) + _ (,) (7)

_ (,) =
= ;

 (8)

_ (,) =

;

 (| . |,| . |) (9)

5. Experiment

To assess the performance of the proposed algorithm,
the KEEL tool was used to conduct 10-fold cross-
validation experiments on a PC with a 2.40 GHz Intel®
Core™ i7 CPU and 16 GB of RAM. First, the technical
setup of the experiments in relation to RULES-CONT is
presented. Then, the accuracies of RULES-CONT and
seven other algorithms applied to datasets with numeric
features are investigated at different levels of noise.
Afterward, the total resistance level is visualized and the
significance of the differences between the algorithms is
statistically investigated using box plots and the

Friedman test. Finally, the effect of the relational
representation on the speed of RULES-CONT is
discussed in comparison with its preceding version.

5.1. Experimental Setup

The experiment involved certain common elements that
must be explained to understand the analysis details,
including the parameters, algorithms, and dataset.

5.1.1. Algorithm Parameters

To initiate RULES-CONT, various parameters must be
set to certain values. First, because a local beam search
is applied when no solution is found, the beam width
size was set to three. This value is the default value that
has been found to be appropriate for the RULES family.
Second, the RRL parameters (alpha g)
were initialized to 0.5 based on the standard proposed
by Sutton and Barto55, in which equal weights are
assigned to past and current knowledge.

5.1.2. Comparative Algorithms

To demonstrate the improvement in rule induction
performance achieved by RULES-CONT, it was
compared with seven other algorithms, as follows:

RULES-5+: A fuzzy non-discretization RULES
algorithm that uses incremental post-pruning (IPP)
when noise is present in the data.
RULES-653 and RULES-SRI56: Two RULES
algorithms developed to scale over large datasets.
They handle numeric values by applying the offline
discretization algorithm of Fayyad and Irani57 and
use general rules for pruning instead of specialized
pruning techniques.
Slipper and Ripper: Algorithms from the REP-
based family that use reduce-error pruning. They
handle numeric values using online discretization.
Slipper, however, incorporates ensemble learning to
address conflicts.
C4.5RulesSA58: An extended version of C4.5 that
transfers knowledge from the decision tree into
rules. It uses simulated annealing to search for the
best split points during induction and applies back
pruning to remove weak branches.
DT_GA: A hybrid decision tree algorithm that
handles numeric values online during rule induction
using a genetic algorithm. An information-theory-
based pruning technique is applied to reduce the
number of conditions and achieve early termination.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

582

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

5.1.3. Dataset

To demonstrate the reliability of the proposed
algorithm, it was tested on 27 datasets. These datasets
were drawn from the KEEL dataset repository and
gathered as real-life samples. Each dataset has its own
characteristics, as summarized in Table 2.

Table 2: The benchmark dataset properties

Name #Examples #Features #Classes
Balance 625 4 3
Contraceptive 1473 9 3
Ecoli 336 7 8
Solar Flare 1066 11 2
Glass 214 9 7
Heart 270 13 2
Ionosphere 351 33 2
Iris 150 4 3
Led7digit 500 7 10
Newthyroid 215 5 3
Nursery 12960 8 5
Page-blocks 5473 10 5
Penbase 10992 16 10
Pima 768 8 2
Ringnorm 7400 20 2
Satimage 6435 36 7
Segment 2310 19 7
Shuttle 58000 9 7
Sonar 208 60 2
Spambase 4597 57 2
Splice 3190 60 3
Thyroid 7200 21 3
Twonorm 7400 20 2
Vowel 990 13 11
WDBC 569 30 2
Yeast 1484 8 10
Zoo 101 17 7

Dataset properties can affect the algorithm
performance. Thus, it was decided to characterize the
datasets based on the results of the algorithms.
Specifically, a dataset with fewer than 1000 instances is
considered to have a small number of examples,
between 1000 and 10,000 is considered a medium

number of examples, more than or equal to 10,000 and
fewer than 40,000 instance is considered a large number
of examples, and more than or equal to 40,000 is
considered a very large number of examples. Moreover,
a number of features less than or equal to 10 is small,
between 10 and 20 is a medium number of features,
more than or equal to 20 and fewer than 40 is a large
number of features, and more than or equal to 40 is a
very large number of features. Finally, a number of
classes less than or equal to 5 is small, between 5 and 10
is a medium number of classes, and more than 10 is a
large number of classes. Although in general, large
datasets typically contain millions of examples, these
characteristics were chosen for differentiating the
algorithms’ performance based on the sampled datasets.

5.2. Accuracy Investigation

This section considers the algorithms’ behavior at
different levels of noise and compares their performance
in the absence of noise. In particular, four levels of
noise were introduced into the datasets from the KEEL
repository59: 0%, 5%, 10%, and 20%. The accuracy of
the algorithms was compared based on their error rates
on every dataset. RULES-CONT does not include any
pruning technique since it was developed to be able to
accurately predict the classes of numeric and noisy data
while avoiding the need to apply additional techniques.

At 0% noise (Figure 7), RULES-CONT exhibits the
smallest error rate on most datasets. However, its
performance suffers for datasets that contain large
numbers of examples and features but a small number
of classes, such as the Splice and Solar Flare datasets; it
is also outperformed by other algorithms on datasets
with a large number of classes that contain relatively
few examples and features, such as the Led7digit
dataset. The accuracy of RULES-CONT, in general, is
similar to that of RULES-5+. The online-discretization-
based algorithms, including Slipper, Ripper, DT_GA,
and C4.5RulesSA, yield the next best error rates, and
the offline-discretization-based algorithms give the least
accurate results. Hence, the following conclusion can be
stated:

Conclusion #1: Addressing numeric features using a
non-discretization approach yields the most accurate
results, followed by online discretization and then
offline discretization-based algorithms.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

583

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

Figure 7: Error rates obtained in 10-fold cross-validation with 0% noise

When 5% noise is introduced (Figure 8), the
behavior of the algorithms changes accordingly. From
the figure, it is apparent that the accuracy of RULES-5+
is more affected by the noise than is that of RULES-
CONT or Slipper. RULES-CONT remains the most
accurate, but its performance becomes more similar to
that of Slipper than that of RULES-5+, indicating that it
is more resistant to noise than is its preceding version in
the family. When the dataset properties are considered,
it appears that RULES-CONT is more resistant to noise
when the numbers of examples and features are large
than when the number of classes is large. The other
algorithms are also affected by the presence of noise; all
of them exhibit increases in error rate, except for
RULES-6. This algorithm maintains similar
performance to that achieved on non-noisy data;

however, considering that its performance was poor
from the start, this resistance is not particularly
beneficial. It sacrifices its current accuracy for increased
variance and resistance to future noise. In fact, RULES-
CONT and RULES-6 are the most noise-resistant
algorithms, but whereas the former exhibits the best
accuracy, the accuracy of the second is the worst. The
conclusion yielded by these observations can be
summarized as follows:

Conclusion #2: Unlike the preceding offline-
discretization-based algorithm in the same family,
RULES-CONT achieves both current and future
accuracy in a noisy environment rather than sacrificing
one for the other.

Figure 8: Error rates obtained in 10-fold cross-validation with 5% noise

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

RULES-6 RULES-SRI C4.5RulesSA DT_GA Ripper Slipper RULES-5+ RULES-CONT

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90

RULES-6 RULES-SRI RULES-5+ Slipper Ripper C4.5RulesSA DT_GA RULES-CONT

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

584

Upon an increase in the noise to 10% (Figure 9),
RULES-CONT retains its ranking with respect to the
other algorithms, producing the lowest error rates on
most datasets, while RULES-6 and RULES-SRI
continue to exhibit the worst error rates on most
datasets. Whereas the error rate of RULE-SRI increases
with increasing noise, RULES-6 maintains a similar
accuracy, indicating that RULES-6 is more resistant to
noise than is RULES-SRI. The gap between RULES-6
and the other algorithms, with the exception of RULES-
CONT, decreases with an increasing noise percentage.
Hence, increasing the noise percentage increases the
error rates of both online and previous non-
discretization-based algorithms, indicating that these
algorithms sacrifice their future accuracy for current
accuracy. By contrast, even as the level of noise in the

data increases, the effect on RULES-CONT is less
severe than the effect on the other algorithms. With an
increasing level of noise, RULES-CONT becomes the
best-performing algorithm for almost all datasets. Its
accuracy is obviously affected only on the Led7digit
dataset, which contains small numbers of examples and
features but a large number of classes. This is because
the dataset does not provide sufficient information about
the problem but requires predictions for a large number
of classes. Based on these observations, the following
conclusion can be stated:

Conclusion #3: The implementation of RRL in the
RULES family increases noise resistance while allowing
numeric features to be accurately addressed without the
need for discretization or complex fuzzy theory.

Figure 9: Error rates obtained in 10-fold cross-validation with 10% noise

To ensure that RULES-CONT can maintain this
behavior even as the noise is further increased, another
test was conducted with 20% noise. Figure 10 shows
that the error rate of RULES-6 does not significantly
change upon increasing the noise percentage to this
level. The error rates of the other algorithms, except for
RULES-CONT, shift away from that of RULES-CONT
and become more similar to that of RULES-6 when the
noise is increased to 20%. By contrast, the behavior of
RULES-CONT in terms of accuracy remains similar to

that at 10% noise; its error rate is still obviously higher
than those of several other algorithms on Led7digit, and
a slight increase is also observed on the Satimage
dataset. Therefore, RULES-CONT is less affected by an
increase in noise than are the other algorithms.
Consequently, the following conclusion can be stated:

Conclusion #4: Although RULES-CONT does not apply
any special pruning technique, it achieves the best
performance at all levels of noise.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

RULES-6 RULES-SRI RULES-5+ Slipper Ripper C4.5RulesSA DT_GA RULES-CONT

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

585

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

Figure 10: Error rates obtained in 10-fold cross-validation with 20% noise

All of the above results clearly demonstrate the
noise resistance achieved by using RRL. However, it is
also important to statistically study the significance of
the differences between the algorithms. The following
section presents such an analysis and visualizes the
behavior of the algorithms in all noise cases.

5.3. Noise Resistance

In addition to the accuracy, it is also important to
measure to what extent each algorithm can resist noise.
Therefore, this section presents visualizations of the
accuracy of the algorithms to present the total resistance
level of all algorithms. The Friedman test is also applied
to demonstrate that the difference in error rate becomes
more significant as the noise level increases.

5.3.1. Overall Resistance Level

To visualize and confirm the overall noise resistance of
RULES-CONT, box plots were constructed to represent
the error rate results, as shown in Figure 11. In this plot,
the boxes represent the distributions of the results for
each algorithm. The different algorithms are represented
on the X axis, and the error rate is displayed on the Y
axis. For each algorithm, the “+” sign indicates the
mean of the results, the horizontal line inside each box
represents the median, and the vertical lines above and
below the boxes point to the maximum and minimum
values. Note that outliers are represented by dots and
that the two areas inside the box represent the upper
quartile (above the median) and the lower quartile
(below the median). From this visualization, it is
possible to understand the distribution of the results and
to compare the algorithms total noise resistance.

From Figure 11, it is clear that in all four cases,
RULES-6 and RULES-CONT are the best to resist
noise, as the locations of their boxes do not visibly
change. However, as indicated by the fact that the box
for RULES-6 is located higher than that for RULES-
CONT and represents a larger range of results, the
accuracy of RULES-6 is very low in comparison with
that of RULES-CONT. Therefore, these two algorithms
can be used as references to analyze the behavior of the
other algorithms. In particular, when the box plot of an
algorithm is seen to approach that of RULES-6 with
increasing noise, it can be said to have low resistance
and to suffer from a worsening error rate with
increasing noise. By contrast, if the box plot approaches
that of RULES-CONT with increasing noise, this
algorithm can be said to resist noise and to be accurate
even when noise is introduced.

Unfortunately, however, the plots for all algorithms
considered here begin to approach that of RULES-6
with increasing noise, with their boxes moving upward
in the graphs. In the absence of noise (Figure 11.a),
RULES-CONT already exhibits the lowest error rate
compared with the other algorithms. Even the value of
the high-error outlier is still less than the maximum
values for RULES-6 and RULES-SRI. In fact, this
outlier is helpful for generalizing the results of RULES-
CONT to future cases. A comparison of RULES-CONT
with the other algorithms reveals that the mean and
median error rates for this algorithm are almost identical
to those for RULES-5+ and Slipper. These three
algorithms appear to be the best when comparing the
positions of their boxes with the others.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

RULES-6 RULES-SRI RULES-5+ Slipper Ripper C4.5RulesSA DT_GA RULES-CONT

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

586

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

(a
)E

rr
or

 R
at

e
(0

%
 n

oi
se

)
(b

)E
rr

or
 R

at
e

(5
%

 n
oi

se
)

(c
)E

rr
or

 R
at

e
(1

0%
 n

oi
se

)
(d

)E
rr

or
 R

at
e

(2
0%

 n
oi

se
)

Figure 11: Box plots representing the error rates for all algorithms over all folds in all datasets

RULES-6 RULES-SRI C4.5RulesSA DT_GA Ripper Slipper RULES-5+ RULES-CONT
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

RULES-6 RULES-SRI C4.5RulesSA DT_GA Ripper Slipper RULES-5+ RULES-CONT
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

RULES-6 RULES-SRI C4.5RulesSA DT_GA Ripper Slipper RULES-5+ RULES-CONT
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

RULES-6 RULES-SRI C4.5RulesSA DT_GA Ripper Slipper RULES-5+ RULES-CONT
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

587

However, when considering the upper and lower
quartiles of RULES-CONT with RULES-5+ and
Slipper, it is clear that RULES-CONT is superior. The
upper quartile of RULES-CONT ends at 0.15, whereas
that of RULES-5+ ends at 0.19 and that of Slipper ends
at 0.29. Moreover, 30% of the RULES-CONT results lie
below the median line, whereas only 25% and 10% of
the results lie below the median for RULES-5+ and
Slipper, respectively. Finally, RULES-CONT has the
lowest maximum value among the three algorithms. All
of these findings confirm that the use of RRL improves
the accuracy when applied to numeric features dataset.

In addition to the accuracy of RULES-CONT, its
noise resistance should also be studied based on Figure
11. At all levels of noise (Figure 11.b, c, d), the
RULES-CONT box remains lower than the rest, and the
minimum and maximum values are also lower than
those for the other algorithms. Upon an increase in the
noise level, the boxes for all algorithms (except for
RULES-6 and RULES-CONT) begin to move upward,
indicating that the error increases exponentially with
increasing noise. This effect is especially obvious for
the non-discretization algorithm RULES-5+ because of
its high overfitting of the data.

With regard to the mean and median error rates,
RULES-CONT has the lowest values at all non-zero
levels of noise. In the presence of noise, the minimum
error rate for RULES-CONT becomes lower than those
for the others, even though the minimum error rates of
several of the algorithms are equally low in the absence

of noise. Moreover, RULES-CONT maintains
approximately the same distribution of error rates, in
which 25% of the results lie below the median. Finally,
the median error rate for RULES-CONT actually
decreases with increasing noise, again indicating its
superiority compared with the other algorithms. All of
these findings confirm that RULES-CONT exhibits
better overall noise resistance while guaranteeing better
accuracy, even in the absence of noise.

In addition to the box plots, to compare the total
performance of the algorithms over all datasets, the total
error rate for each algorithm is summarized in Table 3.
The last row represents the variance increase in the error
rate to show how much the error rate increased in total.
This table shows that RULES-6 is almost unaffected by
noise, as the difference between the minimum and
maximum error rates is only 3%. However, its lowest
total error rate is still the worst after that of RULES-
SRI. Although it is not affected by noise, its accuracy in
general is insufficient, as it produces a high error rate
even in the absence of noise. RULES-CONT exhibits
the next best noise resistance after RULES-6, with a
difference in error rate of only 6%. Thus, its
performance is not strongly affected by the noise level.
In particular, the difference between the changes in
error rate for RULES-CONT and RULES-6 is 3%, and
at each noise level, the difference between the error
rates of these two algorithms is higher than their
differences from the others.

Table 3: Total error rates at different noise levels

Noise level CONT RULES-6 SRI RULES-5+ Slipper Ripper C4.5RulesSA DT_GA
0% 0.14 0.34 0.38 0.14 0.15 0.19 0.19 0.17
5% 0.15 0.34 0.41 0.19 0.17 0.21 0.21 0.23
10% 0.16 0.33 0.45 0.22 0.21 0.26 0.27 0.26
20% 0.20 0.36 0.48 0.28 0.26 0.31 0.31 0.31
Min-Max% 6% 3% 10% 14% 11% 12% 12% 14%

Compared with the other algorithms, RULES-
CONT generalizes better. When the noise level was
increased from 0% to 20%, the error rates increased by
10% for RULES-SRI, 14% for RULES-5+, 11% for
Slipper, 12% for Ripper, 12% for C4.5RulesSA, and
14% for DT_GA. Moreover, the results at every level
indicate that RULES-CONT always exhibits the best
performance. It produces the lowest error rate at all
levels of noise, with results equal to those of RULES-5+
at 0% noise. At every noise increment, the increase in

the error rate is smaller for RULES-CONT than for the
other algorithms. Consequently, even though pruning is
not applied in this algorithm, RULES-CONT is still
superior. Based on all of these observations, the
following conclusion can be stated:

Conclusion #5: RULES family with offline
discretization is resistant to noise, but introducing RRL
into the family improves its noise resistance and
accuracy without the need for discretization.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

588

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

5.3.2. Resistance Significance

To determine whether the improvement in noise
resistance offered by RULES-CONT is significant, the
statistical method proposed by Demsar60 was applied.
For all datasets, the results of all algorithms were
statistically compared using the XLSTAT tool61.
Following the Friedman test, the Nemenyi post hoc test
was also applied, and the results are presented as CD
diagrams in Figure 12. Such a diagram represents the
significance of the differences between the algorithms,
where the numbers on the vertical lines indicate the rank
and the thick lines indicate the groups, whereas the CD
line indicates the algorithms that exhibit a significant
difference from RULES-CONT.

As shown in Figure 12, RULES-CONT is superior
to the other algorithms at all levels of noise. It remains
highest ranked while the other algorithms decrease in
accuracy with increasing noise. At all noise levels,
RULES-SRI is ranked lowest, with a rank of
approximately 7.7. Its rank does not change, indicating
that it performs the same in all cases compared with the
other algorithms. By contrast, RULES-CONT is ranked
highest at all levels, but its rank in each case is better
than in the previous one, indicating that its performance
improves compared to the others when increasing noise.
Therefore, it can be concluded that the error rates of
most algorithms worsen with increasing noise, whereas
RULES-CONT is minimally affected by noise.

(a) Error Rate (0% noise) (b) Error Rate (5% noise)

(c) Error Rate (10% noise) (d) Error Rate (20% noise)

Figure 12: CD diagrams of the two-tailed Nemenyi post hoc test for all algorithms over all folds in all datasets

In more detail, when there is no noise (Figure 12.a),
RULES-CONT is ranked highest, with an accuracy
similar to those of Slipper and RULES-5+ and
significantly better than those of the other algorithms.
Algorithms that take a non-discretization approach
typically perform better on datasets with numeric
features. However, this no longer holds once noise is
introduced (Figure 12.b). In this case, RULES-5+
performs worse than Slipper, indicating that the
previous non-discretization algorithm in the RULES
family has difficulties with noisy data because it overfits
its training set. However, introducing RRL has solved
this problem, and RULES-CONT remains highest
ranked when 5% noise is introduced. It shows an
insignificant difference from Slipper, RULES-5+, and

C4.5RulesSA and a significant difference with respect
to the others.

With increasing noise, however, the significance
results change. When 10% noise or more is introduced
(Figure 12.c and d), the error rate of RULES-CONT
becomes significantly better than those of all other
algorithms and similar to that of Slipper. It has the
highest rank for both 10% and 20% noise. The
performance of RULES-5+, meanwhile, further
degrades with increasing noise, indicating that RRL is
indeed a good solution for handling numeric data and
predicting actions based on the rules induced from such
data. Consequently, RULES-CONT is superior to other
versions of RULES for addressing noisy and numeric
data.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

589

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

5.4. Process Time

In RULES-CONT, the time consumption of the
algorithm is reduced through the use of the relational
representation and re-use of past experience. However,
this claim must be verified; thus, the effect of
incorporating RRL on the speed of the algorithm must
be investigated in addition to the effects on accuracy
and noise resistance. This section presents an analysis of
the process time of RULES-CONT and compares it with
that of the preceding non-discretization RULES
algorithm without relational representation (RULES-5+)
to focus on the effect of the relational representation and
the difference in speed with and without RRL.

Figure 13 shows the process times of the RULES-
CONT and RULES-5+ algorithms at all levels of noise.
From all graphs, it is evident that the speeds of RULES-
CONT and RULES-5+ are similar, except on medium to
large datasets with a non-small number of attributes. In
particular, when the noise level is 0% (Figure 13.a) or
5% (Figure 13.b), the speed of RULES-CONT is
slightly better than that of RULES-5+ on the Penbase
dataset and significantly better on the Ring, Spambase,
and Twonorm datasets. However, on the Satimage and
Segment datasets, RULES-CONT is slightly slower
than RULES-5+. This increase in speed is due to the
dataset properties, as the Satimage and Segment datasets
include not only medium to large numbers of examples
and attributes but also a medium number of classes.

When the noise increases to 10% (Figure 13.c) or
20% (Figure 13.d), RULES-CONT and RULES-5+
again have similar process times; except on medium to
large datasets with a non-small number of attributes.
However, the RULES-CONT process time decreases
further compared with that of RULES-5+. In particular,
the RULES-CONT process time becomes less than that
of RULES-5+ on the Satimage and Segment datasets
and noticeably better on the Penbase dataset. Hence, an
increase in the level of noise has less effect on RULES-
CONT speed than on RULES-5+.

Ultimately, when the speeds are compared at all
levels of noise, the difference between RULES-CONT
and RULES-5+ increases with increasing noise. On the
Penbase dataset, the speed of RULES-CONT is only
slightly lower than that of RULES-5+ at 0% noise, but
the difference increases with increasing noise such that
this difference is clear to the naked eye at 20% noise.
On the Satimage and Segment datasets, at 0% noise,
RULES-CONT is slightly slower than RULES-5+, but it

becomes faster than RULES-5+ with increasing noise.
The relational representation therefore improves the
speed of RULES-CONT, and noise has a greater effect
on RULES-5+, despite the fact that RULES-CONT does
not prune and RULES-5+ does. All observations on the
process time can be summarized as follows:

Conclusion #6: Introducing RRL into the RULES family
reduces the time required to process noisy and numeric
data without the need for any special pruning technique.

6. Discussion

RULES-CONT has the ability to learn from scratch and
to re-use previously gathered knowledge to improve its
rule selection behavior. Because it uses the relational
representation, the algorithm can address multiple
features and values as a single entity, and missing
values are automatically handled when constructing
actions. RULES-CONT cumulatively learns throughout
its lifetime because one of the fundamental properties of
RRL is continuous learning. Hence, incremental
learning can be easily integrated with this method. The
history of the RRL agent is preserved during rule
induction; hence, it does not always need to start from a
null state but instead can start from previously
discovered ones. RULES-CONT temporarily stops its
search when the goal cannot be found for any reason.
However, once another seed example is discovered, the
algorithm continues its learning while taking advantage
of its past experience. Hence, it will sometimes stop at a
local minimum with the intent of reaching a global one.

From the practical tests, it was concluded that
RULES-CONT resolves the noise tolerance problem
recognized in the literature while also offering improved
accuracy. In particular, the following conclusions can be
drawn regarding RULES-CONT:

Handling numeric features using a non-discretization
approach yields the most accurate results.
RULES-CONT preserves both its current and future
accuracy and does not sacrifice one for the other.
The use of RRL in the RULES family increases
noise resistance while allowing numeric features to
be accurately addressed without discretization.
According to the Friedman test, RULES-CONT
maintains the highest ranking among comparable
algorithms at all levels of noise.
Introducing the relational representation into the
RULES family improves the speed and decreases the
effect of noise even when pruning is not applied.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

590

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

(a) 0% noise

(b) 5% noise

(c) 10% noise

(d) 20% noise

Figure 13: The process time for RULES-CONT and RULES-5+ at four levels of noise

0
2000
4000
6000
8000

10000
12000

RULES-5+
RULES-CONT

0
2000
4000
6000
8000
10000
12000

RULES-5+

RULES-CONT

0
2000
4000
6000
8000
10000
12000
14000

RULES-5+

RULES-CONT

0
2000
4000
6000
8000
10000
12000
14000

RULES-5+

RULES-CONT

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

591

Addressing infinite-space values using a non-
discretization approach that continuously learns from
experience can improve the performance of CAs.
RULES-CONT incorporates new properties into a CA
but also offers improved accuracy and noise resistance.
Updating the resulting quantization does not pose a
problem because the ranges for numeric features are not
fixed but rather are handled dynamically. RULES-
CONT does not suffer any trade-off in performance to
accurately address infinite-space values; instead, it
offers improved accuracy while also maintaining high
noise resistance.

7. Conclusion

This paper introduced a novel non-discretization
approach based on RRL. This approach was used to
develop an algorithm called RULES-CONT, which
addresses both numeric and discrete values in a similar
manner and attempts to discover the best values for a set
of features as a whole depending on their common
characteristics and their relationships with other
examples and classes. The results of experiments and
statistical tests verified that RULES-CONT fills the
existing performance gaps of CAs. It offers improved
accuracy and speed for a CA while maintaining a high
level of noise resistance. The problems faced by
discretization methods are avoided because it uses a
non-discretization approach. In the future, the effects of
pruning will be tested to compare the behavior of
RULES-CONT with that of other algorithms that apply
pruning. Additional logical expressions will also be
integrated to further scale the algorithm; for example,
the NOT and OR operations can be used to group
several states together and thus reduce the space to
enable the processing of terabyte datasets.

Acknowledgments - This research project was
supported by a grant from King Abdulaziz City for
Science & Technology. We also thank Dr. Samuel Bigot
for his cooperation in providing us with RULES-5+.

References

1. I. Birzniece, The Use of Inductive Learning in Information
Systems, in 16th International Conference on Information
and Software Technologies
95-101.

2. M. S. Aksoy, H. Mathkour and B. A. Alasoos,
Performance evaluation of RULES-3 induction system for

data mining, Int. J. Innov. Comput. I 6(8) (2010) 3339–
3346.

3. S. B. Kotsiantis, Supervised Machine Learning: A Review
of Classification Techniques, Informatica. 31(3) (2007)
249-268.

4. J. Fürnkranz, Separate-and-conquer rule learning, Artif.
Intell. Rev. 13(1) (1999) 3-54.

5. F. Stahl, M. Bramer and M. Adda, PMCRI: A Parallel
Modular Classification Rule Induction Framework, in
Machine Learning and Data Mining in Pattern
Recognition (Springer Berlin / Heidelberg, 2009), pp. 148-
162.

6. I. H. Witten, E. Frank and M. A. Hall, Data Mining
Practical Machine Learning Tools and Techniques
(Morgan Kaufmann, 2011).

7. L. A. Kurgan, K. J. Cios and S. Dick, Highly scalable and
robust rule learner: Performance evaluation and
comparison, IEEE Trans. Syst. Man Cybern. B. Cybern.
36(1) (2006) 32-53.

8. H. ElGibreen and M. S. Aksoy, Continuous features in
inductive learning and the effect of RULES family, Int. J.
Comput. 8 (2014) 66-75.

9. M. S. Aksoy, A review of rules family of algorithms,
Math. Comput. Appl. 13(1) (2008) 51-60.

10. T. T. Nguyen, T. Silander, Z. Li and T.-Y. Leong,
Scalable transfer learning in heterogeneous, dynamic
environments, Artificial Intelligence, Elsevier. (2015)

11. H. Chen, T. R. Li, C. Luo, S.-J. Horng and G. Y. Wang, A
Rough Set-Based Method for Updating Decision Rules on
Attribute Values’ Coarsening and Refining,
Knowledge and Data Engineering, IEEE Transactions on.
26(12) (2014) 2886-2899.

12. J. Alcalá-Fdez, L. Sánchez, S. García, M. J. d. Jesus, S.
Ventura, J. M. Garrell, J. Otero, C. Romero, J. Bacardit,
V. M. Rivas, J. C. Fernández and F. Herrera, KEEL: A
software tool to assess evolutionary algorithms to data
mining problems, Soft Comput. 13(3) (2009) 307-318.

13. J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac, S.
García, L. Sánchez and F. Herrera, KEEL data-mining
software tool: Data set repository, integration of
algorithms and experimental analysis framework, J. Multi-
Valued Log. S. 17(2-3) (2011) 255-287.

14. L. P. Kaelbling, M. L. Littman and A. W. Moore,
Reinforcement learning: A survey, J. Artif. Intell. Res. 4
(1996) 237-285.

15. D. E. Moriarty, A. Schultz and J. Grefenstette,
Evolutionary algorithms for reinforcement learning, J.
Artif. Intell. Res. 11 (1999) 241-276.

16.
reinforcement learning, Mach. Learn. 43(1) (2001) 7-52.

17. C. Rodrigues, P. Gérard and C. Rouveirol, Relational TD
reinforcement learning, Procs. EWRL. 8 (2008)

18. E. F. Morales, Scaling Up Reinforcement Learning with a
Relational Representation, in Workshop on Adaptability in
Multi-agent Systems (2003), pp. 15-26.

19. D. Mellor, A Learning Classifier System Approach to
Relational Reinforcement Learning, in Learning Classifier
Systems (Springer Berlin / Heidelberg, 2008), pp. 169-188.

20. E. F. Morales, Relational State Abstractions for
Reinforcement Learning, in Workshop on Relational
Reinforcement Learning of the Twenty-First International

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

592

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

Conference on Machine Learning (ICML-04) (Banff,
Canada, 2004), pp. 27-32.

21. N. Asgharbeygi, N. Nejati, P. Langley and S. Arai,
Guiding Inference Through Relational Reinforcement
Learning, in Inductive Logic Programming (Springer
Berlin / Heidelberg, 2005), pp. 20-37.

22.
A survey of discretization techniques: Taxonomy and
empirical analysis in supervised learning, IEEE Trans.
Knowl. Data Eng. (2012)

23. S. W. Wilson, Classifier systems and the animat problem,
Mach. Learn. 2(3) (1987) 199-228.

24. J. J. Liu and J. T.-Y. Kwok, An Extended Genetic Rule
Induction Algorithm, in Proceedings of the 2000 Congress
on Evolutionary Computation (La Jolla, CA, 2000), pp.
458- 463.

25. C. Chiu and N. S. Chiu, An adapted covering algorithm
approach for modeling airplanes landing gravities, Expert
Systems with Applications. 26(3) (2004) 443-450.

26. T. Pham and S. S. Dimov, An efficient algorithm for
automatic knowledge acquisition, Pattern Recognit. 30(7)
(1996) 1137–1143.

27. J. Cendrowska, PRISM: An algorithm for inducing
modular rules, Int. J. Man. Mach. Stud. 27(4) (1987) 349-
370.

28. D. Pham, S. Bigot and S. Dimov, RULES-5: A rule
induction algorithm for classification problems involving
continuous attributes, Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science. 217 (2003) 1273-1286.

29. L. Zadeh, Fuzzy sets, Information and Control. 8 (1965)
338–353.

30. J. Hühn and E. Hüllermeier, FURIA: An algorithm for
unordered fuzzy rule induction, Data Min. Knowl. Discov.
19(3) (2009) 293-319.

31. on the
Use of Multiobjective Genetic Algorithms for Classifier
Selection in FURIA-based Fuzzy Multiclassifiers,
International Journal of Computational Intelligence
Systems. 5(2) (2012) 231-253.

32. A. A. Afify, A novel algorithm for fuzzy rule induction in
data mining Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering
Science. 228 (5) (2014) 877-895.

33. W. W. Cohen and Y. Singer, A simple, fast, and effective
rule learner, in Sixteenth National Conference o
Intelligence (1999), pp. 335-342.

34. O. Dain, R. K. Cunningham and S. Boyer, IREP++, a
faster rule learning algorithm, in SIAM International
Conference on Data Mining - SDM (2004), pp. 138-146.

35. R. S. Parpinelli, H. S. Lopes and A. A. Freitas, An ant
colony algorithm for classification rule discovery, Data
Mining: A Heuristic Approach. 208 (2002)

36. S. Swaminathan, Rule induction using ant colony
optimization for mixed variable attributes, Computer
Science, Texas Tech University, Master (2006)

37. F. E. Otero, A. A. Freitas and C. G. Johnson, cAnt-Miner:
An Ant Colony Classification Algorithm to Cope with
Continuous Attributes, in Proceedings of the 6th
international conference on Ant Colony Optimization and
Swarm Intelligence (Brussels, Belgium, 2008), pp. 48-59.

38. K. M. Salama, A. M. Abdelbar, F. E. B. Otero and A. A.
Freitas, Utilizing multiple pheromones in an ant-based
algorithm for continuous-attribute classification rule
discovery, Appl. Soft Comput. 13(1) (2013) 667-675.

39. D. T. Pham and A. A. Afify, Online Discretization of
Continuous-Valued Attributes in Rule Induction,
Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science.
219(8) (2005) 829-842.

40. D. Pham, A novel rule induction algorithm with improved
handling of continuous valued attributes, School of
Engineering, Cardiff University, Doctor of Philosophy
(2012) p.159.

41. B. L. Whitehall, S. C. Y. Lu and R. E. Stepp, CAQ: A
machine learning tool for engineering, Artif. Intell. Eng.
5(4) (1990) 189–198.

42. S. Bigot, A new rule space representation scheme for rule
induction in classification and control applications,
Proceedings of the Institution of Mechanical Engineers,
Part I: Journal of Systems and Control Engineering.
(2011)

43. D. T. Pham and A. J. Soroka, An Immune-network
inspired rule generation algorithm (RULES-IS), in Third
Virtual International Conference on Innovative
Production Machines and Systems (WhittlesDunbeath,
2007), pp. n/a.

44. L. R. Waitman, D. H. Fisher and P. H.King, Bootstrapping
Rule Induction, in Third IEEE International Conference
on Data Mining (ICDM’03) (2003), pp. 677- 680.

45. L. Waitman, D. Fisher and P. King, Bootstrapping rule
induction to achieve rule stability and reduction, Journal
of Intelligent Information Systems. 27(1) (2006) 49-77.

46. B. Qin, Y. Xia, R. Sathyesh, S. Prabhakar and Y. Tu,
uRule: A Rule-based Classification System for Uncertain
Data, in IEEE International Conference on Data Mining
Workshops (ICDMW) (Sydney, NSW, 2010), pp. 1415-
1418.

47. E. Frank and I. H. Witten, Generating Accurate Rule Sets
Without Global Optimization, in Fifteenth International
Conference on Machine Learning (1998), pp. 144-151.

48. B. Qin, Y. Xia and S. Prabhakar, Rule induction for
uncertain data, Knowl. Inf. Syst. 29(1) (2010) 103-130.

49. H. ElGibreen and M. S. Aksoy, Multi model transfer
learning with RULES family, in International Conference
on Machine Learning and Data Mining MLDM´2013
(Springer Verlag, 2013), pp. 42-56.

50. B. Minnaert, D. Martens, M. Backer and B. Baesens, To
tune or not to tune: rule evaluation for metaheuristic-based
sequential covering algorithms, Data Min. Knowl. Discov.
(2013) 1-36.

51. W. W. Cohen, Fast Effective Rule Induction, in Twelfth
International Conference on Machine Learning (1995),
pp. 115-123.

52. C. Lee, Generating classification rules from databases, in
The 9th International Conference on Applications of
Artificial Intelligence in Engineering (1994), pp. 205-212.

53. D. T. Pham and A. A. Afify, RULES-6: A Simple Rule
Induction Algorithm for Supporting Decision Making, in
31st Annual Conference of IEEE Industrial Electronics
Society (IECON '05) (2005), pp. 2184-2189.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

593

H. ElGibreen, M.S. Aksoy / Adopting Relational Reinforcement Learning

54. S. Bigot, A study of specialisation and classification
heuristics used in covering algorithms, in IPROM2009
Innovative Production Machines and Systems Fifth
I*PROMS Virtual Conference (Cardiff, UK, 2009), pp.
n/a.

55. R. Sutton and A. Barto, Reinforcement Learning: An
Introduction (MIT Press, Cambridge, MA, 1998).

56. A. A. Afify and D. T. Pham, SRI: A Scalable Rule
Induction Algorithm, Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science. 220(4) (2006) 537-552.

57. U. M. Fayyad and K. B. Irani, Multi-interval discretization
of continuousvalued attributes for classification learning,
in 13th International Joint Conference of Artificial
Intelligence (1993), pp. 1022–1027.

58. J. R. Quinlan, C4.5: Programs for Machine Learning
(Morgan Kaufmann San Francisco, 1993).

59. KEEL: http://sci2s.ugr.es/keel/attributeNoise.php#subB
(2015).

60. J. Demšar, Statistical comparisons of classifiers over
multiple data sets, J. Mach. Learn. Res. 7 (2006) 1-30.

61. Addinsoft: http://www.xlstat.com/en/ (2014).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

594

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

