
Received 21 March 2016

Accepted 21 June 2016

Empirical Comparison of Differential Evolution Variants for
Industrial Controller Design

Tony Wong 1 ∗, Pascal Bigras 1, Vincent Duchaîne 1, Jean-Philippe Roberge1

1 Department of Automated Manufacturing Engineering, École de technologie supérieure,
1100 Notre-Dame West,

Montréal, Québec, Canada, H3C 1K3
E-mail: {tony.wong,pascal.bigras,vincent.duchaine,jean-philippe.roberge}@etsmtl.ca

Abstract

To be cost-effective, most commercial off-the-shelf industrial controllers have low system order and a
predefined internal structure. When operating in an industrial environment, the system output is often
specified by a reference model, and the control system must closely match the model’s response. In
this context, a valid controller design solution must satisfy the application specifications, fit the con-
troller’s configuration and meet a model matching criterion. This paper proposes a method of solving
the design problem using bilinear matrix inequality formulation, and the use of Differential Evolution
(DE) algorithms to solve the resulting optimization problem. The performance of the proposed method is
demonstrated by comparing a set of ten DE variants. Extensive statistical analysis shows that the variants

and are effective in terms of mean best objective function
value, average number of function evaluations, and objective function value progression.

Keywords: Performance Measures, Differential Evolution Variants, Fixed-order Structured Controller,
Model Matching, Optimization, Statistical Comparison.

1. Introduction

Traditional control design requires a full order con-

troller: the order of the controller must always be

greater than or equal to the dimension of the process

model. This can be a severe restriction, especially

when the process model dimension is high and the

controller is an embedded device with limited mem-

ory and processing power. Moreover, traditional

design techniques are unable to take into account

the fixed structure of commercially available con-

trollers, such as the popular PID (proportional, inte-

gral, derivative) feedback compensator. For the class

of control problems that minimize a model match-

ing criterion, a specific model is given and the de-

sign of the controller has to ensure that the compen-

sated process meets the specific model’s behavior. If

the controller’s structure is fixed, then the problem

becomes one of finding its gains while minimizing

the model matching error. Consequently, the design

of low-order and fixed structure controllers with a

model matching criterion poses a challenging prob-

lem with many practical consequences. Fortunately,

the problem can be reformulated as a bilinear ma-

trix inequality (BMI) problem, with linear matrix in-

equality (LMI) subproblems associated to the lower
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and upper bound estimations. The resulting non-

convex problem can be solved by the application of

a branch and bound (BB) algorithm. Although BB is

known to be optimal, it also has a very slow conver-

gence speed.1 Therefore, determining an effective

alternative solution method is an ongoing research

subject.

The differential evolution (DE) algorithm is

a well-known population-based evolutionary opti-

mizer designed for real-valued optimization pur-

poses. Note that for simplicity’s sake we will use

“DE” to refer to “differential evolution algorithm”

throughout this paper. A DE has four controlling

parameters: the mutation factor (F), the crossover

probability (CR), the population size (NP), and the

maximum number of generations (gmax). There

are at least ten basic variants, and new variants

and extensions are constantly being developed by

researchers.2 The aim here is to propose an evalua-

tion procedure that can determine which DE variants

are suitable as alternatives to the BB algorithm.

From a practical point of view, the outcome of an

evaluation procedure should accurately indicate the

set of DE optimizers that are effective for the partic-

ular engineering problem at hand. This indication

is usually deduced from measurements made dur-

ing and after algorithm executions. These measure-

ments should cover both the efficacy and efficiency

of the DEs. Here, “efficacy” is the ability to produce

a desired result, and “efficiency” is the ability to pro-

duce a desired result with minimum wasted effort.

Obviously, it is best to seek out DEs that are both

efficacious and efficient. Since DEs are stochastic

optimizers, the measurements are random variables

and multiple trial runs are needed to estimate their

underlying statistics. Thus, the relevant statistics are

presented along with their confidence intervals, and

conclusions are inferred by statistical tests.

The outline of this paper is as follows. Section 2

surveys recent experimental work on DE, with em-

phasis on the comparable methodological elements.

Section 3 reviews different DE variants and their

operating principles. Section 4 formalizes the non-

convex optimization problem resulting from a BMI

formulation of a structured controller with a match-

ing model criterion. Section 5 details the perfor-

mance measures and setup used during the exper-

iments. Section 6 provides an extensive statistical

analysis of the obtained results. Section 7 concludes

the paper.

2. Related Works

Empirical comparison is a methodology of applied

inductive research and development. Its goals are

to discover knowledge through experimentation, to

develop efficient solutions for a specific environ-

ment, and to validate performance claims.3 Thus, an

empirical comparison should have a stated goal, a

reproducible experimental setting, a set of perfor-

mance measures, and an explicit data analysis pro-

cedure. Each of these elements contributes to the

inductive process that leads to the drawing of con-

clusions. This is the perspective adopted in the brief

review of literature that follows.

In Ref. 4, Mezura-Montes et al. compared eight

DE variants on 30 test functions with known opti-

mal values. The DE parameters included a range

of values for the mutation factor F ∈ [0.3,0.9], the

crossover probability CR ∈ {0.0,0.1,0.2, . . . ,1.0},

the population size NP = 60, the maximum number

of generations gmax = 2000, and the total number

of trial runs NT = 100. The reported performance

measures are the mean best objective function val-

ues (BOFV) and the average number of objective

function evaluations (NOFE) to reach the optimum,

along with their respective confidence intervals (CI),

which were computed by random sampling with re-

placement. In their work, unsuccessful trial runs are

excluded from the results. It can be argued that the

number of unsuccessful trial runs should not matter

since the goal is to produce the best objective func-

tion value. This may be true in terms of solution

accuracy, but from an efficiency point of view the

success ratio is also an important performance mea-

sure.

To take into account unsuccessful trial runs,

Auger et al.5 divided the average number of evalua-

tions for successful runs by the ratio of successful

runs to the total number of trial runs. They con-

sidered two deterministic optimization algorithms:

BFGS (Broyden–Fletcher–Goldfarb–Shanno quasi-
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Newton method), and Powell’s NEWUOA trusted

region method. These algorithms were each com-

pared with a DE variant ( ),

CMA-ES (Covariance Matrix Adaptation Evolution

Strategy), and PSO (Particle Swarm Optimization)

on three test functions. Each of these optimization

algorithms has its own set of controlling parameters.

Auger et al. ran NT = 21 independent trials with

a maximum of 107 function evaluations for each of

the test functions. Part of their results showed that

NEWUOA outperformed all other algorithms on the

separable Ellipsoid function up to a condition num-

ber of 106. The BFGS method performed better than

PSO and CMA-ES, and the DE variant showed the

worst performance. Although this multi-algorithm

comparison is thoroughly comprehensive, it is diffi-

cult to make use of the findings because no relevant

statistical measures were reported in their wok.

In part of Ref. 6, Jeyakumar and Shanmugave-

layutham investigated the convergence nature of

fourteen DE variants with fourteen test functions in

30D. They used gmax = 3000 and NT = 100, and

the same values for NP, F and CR ranges as Ref. 4.

They also adopted the same performance measures

used in Ref. 5, with the addition of a population di-

versity measure defined as the Euclidean distance

between the center of a population and its farthest

individual.7 The performance measures are given

in terms of mean, standard deviation and variance.

This is a methodological improvement compared to

the preceding works; however, they based their ob-

servations on numerical inspection without statisti-

cal testing.

More recently, Sacco et al.8 applied DE opti-

mization to a nuclear core design problem. They

compared the performance of two DE extensions:

trigonometric mutation and opposition-based learn-

ing. Both algorithms were given the same NP, F and

CR. They found that the opposition-based learning

DE seemed to be more consistent and robust than the

trigonometric mutation one. Here, the same set of

parameter values should provide fairness and objec-

tivity in the comparison procedure, but their conclu-

sions were also based on simple numerical inspec-

tion.

Instead of relying on direct numerical compar-

ison, Li et al.9 used the Wilcoxon rank-sum test

to compare two new DE extensions, based respec-

tively on covariance matrix adaptation and cumula-

tive learning evolution (JADEEP and ),

against their original variants on twenty-eight test

functions of 30D, 50D and 100D. The Wilcoxon

rank-sum test is also a nonparametric test, but the

null hypothesis is that paired samples come from

the same population. Since the Wilcoxon rank-sum

test is designed for two related samples, it suffices

to compare each DE extension to its original DE

variant. Similarly, Fan et al.10 studied self-adaptive

crossover and mutation strategies using 25 test func-

tions and five DE variants. Their experimental set-

ting included NT = 30 independent runs, NP = 50,

and gmax = 1000. In their work, they applied the

improved DE variants to estimate the kinetic param-

eters of a mercury oxidation model. Fan et al. high-

lighted the differences between the simulation and

the actual values with graphical error bars. They also

applied the Wilcoxon rank-sum test to compare the

DE variants and the corresponding improved ver-

sions. Unfortunately, the Wilcoxon rank-sum test

is only appropriate when testing two DEs, of which

one may be an extension or an improved variant.

In order to compare more then two DEs, Apol-

loni et al.11 made use of Friedman’s rank test and

post hoc Holm’s correction to compare three vari-

ants of distributed DE on test functions of dimen-

sions 100 and 500. Friedman’s rank test is a non-

parametric version of ANOVA, with data grouped

in categorical factors or repeated measurements. In

this case the factors are the test functions’ dimen-

sions. If the null hypothesis (no difference between

the groups) is rejected, it is necessary to perform

post hoc tests to find out which of the DE vari-

ants are different. Holm’s correction is used in this

context to control rejection errors. Olguin-Carbajal

et al.12 also applied the Friedman and post hoc

tests to compare a micro DE with only five candi-

date solutions (NP = 5), an adjusted DE for high

problem dimensionality, and a standard DE variant

( ) using the same F for all algorithms.

Both of these works performed extensive empirical

comparisons. However, they both limited their ex-

periments to the use of a single performance mea-
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sure, namely the average difference between DE fit-

ness values and the test function’s optimal values.

In light of the preceding discussion, efficacy

and efficiency performance measures and appropri-

ate statistical analysis are needed to determine the

effectiveness of the DE variants.

3. Differential Evolution and its Variants

Like other evolutionary algorithms, DE’s main evo-

lutionary operations are mutation, crossover and se-

lection. The main difference between a DE and, for

example, a standard genetic algorithm is that in the

DE, the difference between two candidate solutions

produces a difference vector to explore the search

space. And whereas other advanced algorithms,

such as interactive genetic algorithms, include a pro-

vision for human decision-making in the evolution

process,13,14 DEs apply the usual evolution opera-

tions to generate new candidate solutions. In DEs,

mutation and crossover operations are responsible

for search space exploration and the selection pro-

cedure provides the exploitation properties for the

algorithm. Conceptually, the perturbation of a can-

didate solution, by mutation and crossover, is done

by probabilistically replacing it with another solu-

tion. The latter is created by adding, to a randomly

selected candidate solution, a change that is propor-

tional to the difference between two other randomly

selected solutions. Then the selection is done by

a competition between the parent and its offspring.

That is, the better of the two solutions moves on to

the next generation.

Let D be the number of decision variables

and NP the number of candidate solutions in the

population. The candidate solution population

at the g-th generation can be written as k(g)
j =[

k(g)1, j k(g)2, j . . . k(g)D, j

]T
, j = 1,2, . . . ,NP. Each candi-

date solution in the initial population is assumed

to be randomly distributed on the intervals [kL
i ,k

U
i ],

i = 1,2, . . . ,D, where kL
i and kU

i are the lower and

upper bounds, respectively, of the i-th decision vari-

able. Each of the NP candidate solutions undergoes

mutation, crossover and selection operations. In a

basic DE mutation operation, three candidate solu-

tions, k(g)
r1 , k(g)

r2 and k(g)
r3 , are randomly selected from

the current population such that indices j, r1, r2 and

r3 are distinct. A new solution v(g+1)
j is created by

adding the weighted difference defined by

v(g+1)
j = k(g)

r1 +F × (k(g)
r2 −k(g)

r3 ), (1)

where F is the mutation factor and is a constant from

[0,2]. Solution v(g+1)
j , which is called the donor vec-

tor in the literature, is used in the crossover opera-

tion. Of course, there are many possible variations

based on Eq. 1.

Similarly, the crossover operation incorporates

the current solution k(g)
j and the donor vector to form

another solution u(g+1)
j . The latter is called the trial

vector and is developed from the components of the

current target solution and the donor vector v(g+1)
j .

Components of the donor vector enter the trial vec-

tor with probability CR. The result is the so-called

binomial recombination scheme:

u(g+1)
i, j =

{
v(g+1)

i, j if r �CR∨ i = c

k(g)i, j if r >CR∨ i �= c
,

i = 1,2, . . . ,D.

(2)

In Eq. 2, r ∼ U(0,1) is a uniformly distributed ran-

dom number, and c is a random variable follow-

ing the discrete uniform distribution over the set

{1,2, . . . ,D}. The use of c is to ensure that u(g+1)
j �=

k(g)
j and because of this, Eq. 2 is an approximation

of the binomial distribution.

Another commonly used DE crossover operation

is to first choose an integer n with a discrete uniform

distribution over the set {1,2, . . . ,D}. This integer

acts as a starting point in the current target solution

k(g)
j , from which the crossover or exchange of com-

ponents with the donor vector begins. Then choose

another integer l from the set {1,2, . . . ,D} denoting

the number of components the donor vector actually

contributes to the target vector. After choosing n and
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l the trial vector is obtained as

u(g+1)
i, j =

⎧⎪⎨⎪⎩ v(g+1)
i, j

for i = 〈n〉D,〈n+1〉D, . . . ,
〈n+ l −1〉D

k(g)i, j forallother i ∈ {1, . . . ,D},
,

i = 1,2, . . . ,D.
(3)

In Eq. 3, 〈n〉D is the modulo operation with modu-

lus D.2 To select L ∈ 1,2, . . . ,D, start with l = 1 and

increase its value incrementally until U(0,1) > CR
or l > D. Eq. 3 represents the exponential crossover

operation. Finally, for the DE selection operation,

the target solution k(g)
j is compared to the trial vec-

tor u(g+1)
j , and the one with the lowest objective

function value is admitted to the next generation:

k(g+1)
j =

{
u(g+1)

j if f (u(g+1)
j )� f (h(g)

j )

k(g)
j otherwise

,

j = 1,2, . . . ,NP.

(4)

From Eq. 4 it is clear that the selection procedure is

a greedy one and may enable fast convergence.

3.1. Basic DE Variants

The identification scheme referencing the different

DE variants is fairly consistent.2,7 A basic DE de-

scriptor is a triplet where the first

two elements describe the mutation type and the last

element indicates the crossover type. In this descrip-

tor, is the source vector for perturbation from the

current population. Therefore, = best means using

the best candidate solution, = rand signifies a can-

didate solution is randomly chosen by the algorithm,

and = rand-to-best is a combination of = rand and

= best. The second element denotes the

number of weighted difference vectors used in the

mutation operation. The last element in-

dicates whether the type of crossover is binomial (as

in Eq. 2), or exponential (as in Eq. 3).

3.1.1. best/1/{bin, exp}

These variants use the best candidate solution in

the current population, and one weighted difference

vector for mutation. In this operation, two randomly

selected candidate solutions are needed, such that

v(g+1)
j = k(g)

best +F × (k(g)
r1 −k(g)

r2 ). (5)

3.1.2. rand/1/{bin, exp}

These variants use a random candidate solution in

the current population, and one weighted difference

vector for mutation. In this operation, three ran-

domly selected candidate solutions are needed, such

that

v(g+1)
j = k(g)

r1 +F × (k(g)
r2 −k(g)

r3 ). (6)

3.1.3. rand-to-best/1/{bin, exp}

This mutation operation uses the best candidate so-

lution as well as two randomly selected candidate

solutions in the current population, such that

v(g+1)
j = k(g)

j +F ×(k(g)
best−k(g)

j )+F × (k(g)
r1 −k(g)

r2 ).
(7)

3.1.4. best/2/{bin, exp}

This mutation operation uses the best candidate so-

lution in the current population and one weighted

difference vector. There are four randomly selected

candidate solutions involved, where

v(g+1)
j = k(g)

best +F × (k(g)
r1 −k(g)

r2 +k(g)
r3 −k(g)

r4 ). (8)

3.1.5. rand/2/{bin, exp}

These variants use a random candidate solution in

the current population and one weighted difference

vector for mutation. A total of five randomly se-

lected candidate solutions are needed, and

v(g+1)
j = k(g)

r5 +F × (k(g)
r1 −k(g)

r2 +k(g)
r3 −k(g)

r4 ). (9)

In summary, the basic crossover operations are

formulated in Eqs. 2–3. Eq. 4 describes the selec-

tion operation, which is the same for all DE vari-

ants. Finally, Eqs. 5–9 define the different mutation

operations.
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4. Controller Design Problem

Continuous linear time-invariant feedback control

systems are generally characterized by a plant, sen-

sors, and a feedback controller. In this work, it is as-

sumed that the controller is structured (a constraint

on the form of the controller) and has a fixed order.

The gain adjustment that minimizes the difference

between a reference model and the closed loop of the

feedback control system results in a non-convex op-

timization problem. The block diagram correspond-

ing to this system is illustrated by Fig. 1.

Controller Plant

Sensors

Reference
model

Weight
model

e

yp

ys

u

yr

r +

Fig. 1. Block diagram of the feedback control system in-

cluding a reference model and a weight model.

Note that there exists a weight error model be-

tween the reference model and the closed loop sys-

tem, which provides a more flexible control system.

In Fig. 1 the reference model is described in state-

space form by

ẋr = Arxr +Brr,
yr = Crxr,

(10)

where xr ∈ R
nr , yr ∈ R

ny , and r ∈ R
ny . The plant

model is itself described by

ẋp = Apxp +Bpu,
yp = Cpxp,

(11)

where xp ∈ R
np , yp ∈ R

np , and u ∈ R
nu . Similarly

the sensor’s model is described as

ẋs = Asxs +Bsyp,

ys = Csxs +Dsyp,
(12)

with xs ∈ R
ns and ys ∈ R

ny . The weight error model

is given by

ẋw = Awxw +Bwε,
e = Cwxw,

(13)

and ε = yr − yp = Crxp,xw ∈ R
nw and e ∈ R

ny . Fi-

nally the structured controller model is described by

ẋc = Ac(k)xc +Bc(k)(r−ys),

u = Cc(k)xc +Dc(k)(r−ys),
(14)

where xc ∈ R
nc . As shown in Ref. 1, the structured

controller can be rearranged as

[
Ac(k) Bc(k)
Cc(k) Dc(k)

]
=

[
Ac0 Bc0

Cc0 Dc0

]
+ΘΘΘLKs(k)ΘΘΘR,

ΘΘΘLKs(k)ΘΘΘR =
nk

∑
i=1

ΘΘΘLikiΘΘΘRi ,

(15)

where k ∈ R
nk is the gain vector, and ΘΘΘLi ∈ R

nu×nki

and ΘΘΘRi ∈ R
nki×ns are full rank matrices. The sys-

tem described by Eqs. 10, 11, 13, 14 and 15 can be

rewritten in a single state-space model as

ẋ = (A +BuKs(k)Cu)x+(Br +BuKs(k)Du)r,
e = C x,

(16)

with

A =

⎡⎢⎢⎢⎢⎣
Ar 0 0 0 0
0 Ac0 −Bc0Cs 0 −Bc0DsCp

0 0 As 0 BsCp

BwCr 0 0 Aw −BwCp

0 BpCc0 −BpDc0Cs 0 Ap −BpDc0DsCp

⎤⎥⎥⎥⎥⎦,

and

x=

⎡⎢⎢⎢⎢⎣
xr

xc

xm

xw

xp

⎤⎥⎥⎥⎥⎦ ,Bu =

⎡⎢⎢⎢⎢⎣
0 0
I 0
0 0
0 0
0 Bp

⎤⎥⎥⎥⎥⎦ ,Br =

⎡⎢⎢⎢⎢⎣
Br

Bc0

0
0

BpDc0

⎤⎥⎥⎥⎥⎦ ,

Du =

[
0
I

]
,C T

u =

⎡⎢⎢⎢⎢⎣
0 0
I 0
0 −CT

s DT
c

0 0
0 −CT

p DT
s

⎤⎥⎥⎥⎥⎦ ,C T=

⎡⎢⎢⎢⎢⎣
0
0
0

CT
w

0

⎤⎥⎥⎥⎥⎦ .
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4.1. Minimization Problem

For the closed loop system described by Eq. 16, the

goal is to find the controller gain vector k that mini-

mizes the error e. This optimization problem can be

formulated as

k = argmin‖Hεr‖2, (17)

where

Hεr(s) = C (sI− (A +BuKs(k)Cu))
−1(Br +BuKs(k)Du),

and ‖ H ‖2 is the 2-norm of system H that exists

only if H is Hurwitz-stable. Accordingly, ‖ H ‖2 is

defined by

‖H‖2
2 =

1

2π
trace

∫ ∞

−∞
H( jω)H( jω)∗dω.

In order to avoid the integral evaluation, the mini-

mization problem given by Eq. 17 can be rewritten

as

k = argmin(trace(L1(Br +BuKs(k)Du,P))),
(18)

where P, a symmetric semi-positive definite matrix,

is the solution of the following equation:

L2((A +BuKs(k)Cu),P)+CTC = 0, (19)

where

L1(B,P) = BTPB, (20)

and

L2(A,P) = PA+ATP. (21)

The optimization problem represented by Eqs. 18 –

21 is non-convex. The conventional solution tech-

nique for this problem involves the use of BB global

search. However, the convergence speed is usually

very slow because the BB’s upper and lower bounds

are difficult to obtain, and most estimations are con-

servative ones.

5. Performance measures and experiment
settings

As presented in Section 2, comparison reports us-

ing various performance measures are typical in the

literature. Depending on their intent and design,

performance measures can be computed during the

DE’s trial run, after a trial run, or after all trial runs

are completed. Several of these measures evaluate

the DE’s ability to find an optimal solution. In prac-

tice, finding an optimal solution requires appropri-

ate computation resources. Thus, there exist perfor-

mance measures that are used to gauge the required

computation resources for the DE to achieve its goal.

The following subsections define and classify the

performance measures related to this work.

5.1. Efficacy Measures

Let f ∗ be the best known objective function value

of a problem, Oi the best objective function value

found by a DE variant during the i-th trial run, and

O(g)
i the best objective function value obtained by

a DE variant at generation g of the i-th trail run.

Also, let ns be the number of successful trials; that

is, ns = ∑NT
i=1 [| f ∗ −Oi|< ε], where ε is a small pos-

itive integer. The notation [· ] is the Iversion bracket

such that

[P] =
{

1 ifP is true;

0 otherwise.

It is thus possible to define the success ratio α of a

particular DE as

α =
ns

NT
. (22)

The values of success ratio α lie between [0,1] with

1 signifying 100% success. In practice, not all trial

runs converge to the same objective function value,

and the mean best objective function value must be

computed to show a DE’s average accuracy. The

mean best objective function value (BOFV) can be

computed as

BOFV =
∑NT

i=1 Oi

NT
. (23)

Since Oi is a random variable and usually of un-

known distribution,3 BOFV is estimated using the

bootstrap method. To describe the relative likeli-

hood that Oi will take on a given value, it is de-

sirable to estimate its empirical probability density

function. In other words, the probability of Oi to

fall within a particular range of values is given by
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the area under the density. A kernel smoothing den-

sity function estimator is used instead of the stan-

dard histogram approach, because the latter has a

disproportionate effect caused by the choice of bin-

ning. A kernel estimator acts to smooth out the con-

tribution of each observed data point over a local

neighbourhood of that data point. The contribution

of data point di to the estimate at some point d de-

pends on the distance between di and d. The extent

of this contribution is dependent upon the shape of

the kernel function adopted and the width accorded

to it. If we denote the kernel function as K and its

width as h, the estimated density at any point d is

f̂ (x) = 1
NT

∑NT
i=1 K(d−di

h ), where
∫

K(t)dt = 1 to en-

sure that the estimate f (x) integrates to 1. The ker-

nel function K is usually chosen to be a smooth uni-

modal function with a peak at 0. In this work, the

Gaussian kernel is used in the estimate of Oi.

It is often useful to measure a DE’s optimization

effort over time. This dynamic information can pro-

vide hints as to the convergence characteristics of an

algorithm. A DE’s optimization effort can be mea-

sured by its output, or by BOFV as a function of

generation count. Thus, the generational mean ob-

jective function values can be computed as

O(g)
=

∑NT
i=1 O(g)

i

NT
, g = 1,2, . . . ,gmax , (24)

where gmax is the maximum number of generations

allowed. Again, O(g)
i is a random variable of un-

known distribution, and its average O(g)
is obtained

by bootstrap estimation. Since the mean objective

function values are shown over many generations,

it is more informative to represent O(g)
graphically

and to include error bars representing the variable’s

standard error.

5.2. Efficiency Measures

For all successful trial runs, the average number of

objective function evaluations, NOFE, measures the

average length of time for a DE to reach the best

known objective function value. Define η as the

set of successful trial indices, η = {i : | f ∗ −Oi| <
ε}, i = 1,2, . . . ,NT . Then the average number of ob-

jective function evaluations is

NOFE =
∑i∈η ci

|η | , (25)

where ci is the number of objective function evalu-

ations for trial i. Once more, ci is a random vari-

able, so Eq. 25 and its 95% confidence interval are

estimated by bootstrapping. Complementary to the

NOFE is the mean best objective function value pro-

gression BOFVP , defined by as3

BOFVP =
∑i∈η log(

√
O(0)

i −O(ĝ)
i )

|η | , (26)

where ĝ is the generation in which the best solu-

tion is within ε of the best known objective function

value f ∗. This measure considers the difference be-

tween the initial objective function value at g = 0,

and the best objective function value found at g = ĝ.

The measure BOFVP indicates how “far” a DE has

to travel in order to reach its goal.

Lastly, it is possible to combine an efficiency

measure with an efficacy measure to obtain a hy-

brid measurement. The Q-measure is designed to

produce a scalar indicating the quality of a DE. As

defined in Ref. 7, the Q-measure is the number of

objective function evaluations divided by the DE’s

success ratio,

Q =
NOFE

α
. (27)

5.3. Statistical tests

The performance data generated by a DE variant

are essentially samples taken from random variables

with unknown distributions. To verify this affir-

mation in practice, all samples are subjected to the

Shapiro-Wilk’s test for normality.15 Its null hypoth-

esis is that the performance data sample is from a

population with normal distribution. If the null hy-

pothesis is rejected, statistics of performance mea-

sures are then estimated by using the bootstrap re-

sampling method. To provide further information

on the estimation, its 95% confidence interval (CI)

is estimated by the bootstrap bias-corrected and ac-

celerated method (BCa). The BCa confidence in-

terval is a percentile method adjusted for the skew-

ness in the bootstrap sampling distribution.16 When
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not overlapping, the CIs can be used to determine

the mean difference between two samples. How-

ever, overlapping CIs do not indicate anything that

is statistically significant.17 So, to compare DE per-

formances, the Kruskal-Wallis rank test (or nonpara-

metric one-way ANOVA test) with a 5% signifi-

cance level is conducted in order to accept or reject

the hypothesis that the mean ranks of the groups are

the same, i.e., that the samples produced by the DE

variants are the same for a given performance mea-

sure. It is important to select a statistical test that

accounts for unequal sample sizes (when not all trial

runs are successful) and to be able to test for several

unmatched samples at once (since there are ten DE

variants). If the null-hypothesis is rejected, then an

all-possible pairwise comparison with Dunn–Sidàk

significance level correction is applied to determine

which DE variants are different. Dunn–Sidàk cor-

rection is known to be conservative under a de-

pendence assumption, meaning that the actual cor-

rected significance level is less than the prescribed

5% level.

5.4. Parameter settings

All trial runs are executed using MATLAB 8.4 on

a 3 GHz PC computer. The best known controller

gains (k∗), and hence the best known objective func-

tion value f ∗, are first obtained by a BB algorithm

applied to the structured controller design problem

instance that is specified in Fig. 2.

1

e

yp

ys

u

yr

r +

0.4

0.4s +
1

0.004s +

4

1

( 1)s +

2

(0.01 1)
d p ik s k s k

s s

+ +
+

Fig. 2. An instance of the structured controller design prob-

lem.

In this problem instance, the controller has

an imposed PID structure and the plant has a

higher order than both the controller and the

reference model. It took BB global search

54400 objective function evaluations to obtain

k∗ = [0.38940428 1.2219238 2.1276856]T and f ∗ =

0.0489462. The DE parameters and experiment

variables are summarized in Table 1 and Table 2. In

Table 1, D, (xL,xU), NT , NP and gmax are DE con-

trolling parameters. The same values are used for

all ten variants. The best known objective function

value f ∗ is obtained by a BB algorithm, and ε deter-

mines the closeness tolerance of an objective func-

tion value to f ∗. The population size NP, mutation

factor F , and crossover rate CR are taken from nu-

merical suggestions found in Ref. 2 and Ref. 18, and

are manually tuned to one significant digit. The mu-

tation factor and crossover rate are replaced by 1−F
and 1−CR for DE variants that were unable to reach

the vicinity of f ∗ during initial testing. Each DE

variant has NT = 100 trial runs with gmax = 100. The

aim is to determine, using these experiment settings,

which of the ten DE variants is capable of solving

the proposed problem instance efficaciously and ef-

ficiently.

Table 1. DE controlling parameters.

Parameter Value

Problem dimension D = 3

Decision var bounds xL = [000]T,xU = [101010]T

Nb of trials NT = 100

Population size NP = 20

Max nb of generations gmax = 100

Best known obj value f ∗ = 0.0489462

Obj function tolerance ε = 10−6

6. Results Analysis

In Table 3, α is the success ratio, BOFV is the mean

best objective function value, NOFE is the average

number of objective function evaluations, BOFVP

is the average objective function value progression,

and Q means the average Q-measure. Under the

header of each column is the p-value computed from

Kruskal-Wallis rank tests. A p-value smaller than

0.05 (5%) indicates strong evidence against the null

hypothesis, which considers the corresponding re-

sults to be the same for all ten variants. A mul-

tiple comparison test is then applied to determine

which of the DE variants are different. As a visual

cue, the bolded numbers in Table 3 designate vari-

ants with no significant differences, and the numbers
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Table 2. Mutation and crossover values for all ten DE variants.

Parameters

F 0.8 0.8 0.8 0.2 0.2

CR 0.8 0.8 0.8 0.2 0.2

Table 3. Results produced by DE variants.

Variant
Efficacy Efficiency

α
BOFV

(p = 4.5×10−16)

NOFE

(p = 2.5×10−156)

BOFVP

(p = 0.49

Q

(p = 6.3×10−158)

1 0.0489408 784.773 1.85763 784.773

[0.0489396, 0.0489417] [768.137, 801.197] [1.76135, 1.97109] [84.394, 785.154]

1 0.0489406 791.886 1.88391 791.886

[0.0489394, 0.0489416] [776.216, 808.144] [1.79263, 1.98321] [791.541, 792.291]

0.98 0.0489515 1426.54 1.86809 1455.66

[0.0489429, 0.0489916] [1387.2, 1466.08] [1.75783, 1.99515] [1454.8, 1456.51]

0.99 0.0554089 1401.83 1.79189 1415.99

[0.0489406, 0.0879436] [1369.14, 1433.4] [1.68266, 1.91362] [1415.21, 1416.73]

1 0.0489405 797.472 1.87847 797.472

[0.0489395, 0.0489415] [782.384, 813.515] [1.76633, 1.99613] [797.121, 797.82]

1 0.0489407 802.695 1.73067 802.695

[0.0489395, 0.0489418] [786.579, 820.561] [1.63834, 1.83781] [802.302, 803.091]

0.99 0.0489413 1113.63 1.77178 1124.88

[0.0489401, 0.0489423] [1080.58, 1150.75] [1.67938, 1.86596] [1124.13, 1125.62]

1 0.0489409 1098.76 1.79183 1098.76

[0.0489398, 0.0489419] [1063.55, 1137.12] [1.70561, 1.87789] [1097.94, 1099.6]

0.6 0.0580368 1954.74 1.91234 3257.91

[0.0540585, 0.065564] [1922.92, 1975.12] [1.78742, 2.08857] [3257.01, 3258.82]

0.52 0.0581408 1928.73 1.78287 3709.1

[0.054442, 0.0642187] [1890.51, 1958.08] [1.65803, 1.94014] [3707.8, 3710.53]

within brackets are the 95% confidence intervals that

were computed by the BCa method. Results from

multiple comparison tests for all four performance

measures are shown in Fig. 3. It is used to deter-

mine which DE variants performed differently from

others in terms of BOFV, NOFE, BOFVP, and Q.

Fig. 4 gives the relative likelihood that the DE vari-

ants will reach their mean objective function values,

and Fig. 5 presents the the mean objective function

value convergence in terms of BOFV and the gener-

ation count.

As shown in Table 3, all DE variants are able

to produce results close to or better than the best

known objective function value f ∗. Moreover, eight

out of ten DE variants have a success ratio close to

1. Variants are the only ones

with a lower success ratio, scoring 0.6 and 0.52 re-

spectively. According to column BOFV in Fig. 3a

and Table 3, in terms of objective function accuracy

there are no statistically significant differences be-

tween , ,

and . Also, for these vari-

ants the empirical probability densities are located in

the vicinity of f ∗ (Fig. 4a). For the remaining two

DEs, their BOFV probability densities are scattered

among several values (Fig. 4b).

In terms of efficiency, the

and have the low-

est average number of objective function evalua-

tions (Table 3, column NOFE, and Fig. 12b). These

four variants required on average 68 times less ob-

jective function evaluations than the BB algorithm.

For a given computing system, the average num-

ber of evaluations NOFE shows the average length

of time for a DE to reach f ∗. This temporal effi-

ciency measure is complemented by the average ob-

jective function value progression BOFVP, which

measures the “distance” traveled by the objective

function value from its initial value at g = 0. In

the case of this structured controller design prob-

lem instance, BOFVP has no significant difference

among all DE variants (Fig. 12c). In other words,
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Fig. 3. Results from multiple comparison tests using

Dunn–Sidàk significance level correction.
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Fig. 4. Empirical probability density estimation of the mean

objective function values.
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Fig. 5. Mean objective function value convergence.

all variants have more or less the same travel dis-

tances. Consequently, it is possible to discern fast

and slow convergence within the variants. This is

confirmed by inspecting Fig. 5. After ten genera-

tions, the BOFVP of variants and

is already about half of

that found for the variants.

best/1/{bin, exp}

rand-to-best/1/{bin, exp}

rand/1/{bin, exp}

best/2/{bin, exp}

ra
nd
/2
/{
bi
n,

ex
p}

Efficacy

Efficiency

Fig. 6. DE variants classification for the structured con-

troller design problem instance.

For this optimization instance, variants

and

needed an average of 40 generations or 794 objective

function evaluations to reach the best known objec-

tive value, whereas 95 generations were needed for

. When considering both efficacy

and efficiency measures, variants

and are equally applica-

ble. Fig. 6 summarizes the classification of the DE

variants in terms of efficacy and efficiency. For the

structured controller design problem instance, vari-

ants and

are both efficacious and efficient. Variants

and are effi-

cacious, and variants are neither

efficacious nor efficient.

7. Conclusion

In this paper, ten DE variants were used to design a

low-order and fixed structure controller. Their per-

formances were compared in terms of efficacy and

efficiency measures. Bootstrap estimation was used

to estimate success ratio, mean best objective func-

tion values, empirical probability density, average

number of objective function evaluations, and mean

objective function value progression.

Inference using nonparametric multiple compar-

ison tests indicated that variants

and have the best suc-

cess ratios, mean objective function accuracies, and

average number of objective function evaluations.

The probability density estimations of their out-

puts also revealed their ability to reach the best
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known objective function values with high proba-

bility. Variants and

produced the same mean objective function ac-

curacies, but have a higher-than-average number of

objective evaluations. Finally, variants

showed lower objective function accuracies

and higher requirements for the number of objective

evaluations.

This work has shown that the proposed solu-

tion method is effective for low-order fixed structure

controller design. Higher order controllers should

become cost-effective in the near future, as new

reconfigurable embedded hardware promises more

data throughput and an increase in computing power.

Thus, further research is needed to ascertain the im-

pact on BMI formulation and DE optimization for

high-order controller design. More work is also

needed to overcome the difficulties of DE parame-

ter tuning. As with other evolutionary algorithms,

DEs are sensitive to control parameter changes and

must be tuned. One way to alleviate the problem

is to apply adaptive control mechanisms. The pa-

rameters to be adapted can be encoded directly in

each individual and undergo mutation and crossover

operations.19 Good control parameter values will

bring forth better individuals and propagate them to

future generations. Another adaptive approach is to

obtain feedback information from the search and up-

date control parameters accordingly. Lastly, an in-

teresting technique is to compute a population di-

versity measure and use it to adapt F and CR at each

generation.20
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