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Abstract

Proximal support vector machine via generalized eigenvalue (GEPSVM) is a recently proposed binary
classification technique which aims to seek two nonparallel planes so that each one is closest to one of
the two datasets while furthest away from the other. In this paper, we proposed a novel method called
Manifold Regularized Proximal Support Vector Machine via Generalized Eigenvalue (MRGEPSVM),
which incorporates local geometry information within each class into GEPSVM by regularization tech-
nique. Each plane is required to fit each dataset as close as possible and preserve the intrinsic geometric
structure of each class via manifold regularization. MRGEPSVM is also extended to the nonlinear case
by kernel trick. The effectiveness of the method is demonstrated by tests on some examples as well as
on a number of public data sets. These examples show the advantages of the proposed approach in both
computation speed and test set correctness.

Keywords: Support vector machines; Generalized eigenvalues; Locality preserving projections; Manifold
regularization.

1. Introduction

Standard SVMs1, which are powerful tools for data

classification and regression, have come to play a

very dominant role in machine learning and pattern

recognition community. The approach is system-

atic and motivated by Statistical Learning Theory2,

which seeks the optimal separating hyperplane by

minimizing structural risk instead of empirical risk.

In binary classification, it assigns the point to one

of the two disjoint half spaces in either the original

input space or a higher dimensional feature space.

In order to find the optimal separating hyperplane,

SVMs need to solve a quadratic programming prob-

lem (QPP) which is time-consuming in large sized

samples.

Recently, several simpler classification methods

were proposed3,4. Opposite to SVMs, in binary

classification, they all aim at finding two planes so

that each plane was closest to the points of its own

class and furthest away from the points of the other

class. This idea not only leads to faster and sim-

pler algorithms than the conventional SVMs but also

avoids the unbalanced sample distribution problem

in SVMs. Among these methods, generalized eigen-

value proximal SVM (GEPSVM)5,6,7 does binary

classification by formulating two eigenvalue prob-

lems instead of quadratic programming problem to

generate two nonparallel planes which make it ex-

tremely fast in real-world applications. The eigen-

vectors corresponding to the smallest eigenvalues

determines the above two planes, as shown in Fig. 1.

∗ Corresponding author. E-mail:liangjun@ujs.edu.cn.

International Journal of Computational Intelligence Systems, Vol. 9, No. 6 (2016) 1041-1054

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1041



J. Liang et al. / Manifold Regularized GEPSVM

20 25 30 35 40 45
0

5

10

15

20

25

Class −1

Seperating Plane

Class +1

Margin

Bounding Planes

Fig. 1. The examples of standard SVM

The last decade has witnessed the emergence of

manifold learning as a vigorous paradigm for dimen-

sionality reduction and data visualization. The ba-

sic assumption of manifold learning is that though

probably each data point consists thousands of fea-

tures, it may actually be sampled from a low di-

mensional manifold embedded in a high dimen-

sional space. The popular manifold learning meth-

ods, including Locally Linear Embedding (LLE)8,

ISOMAP9, Laplacian Eigenmap10 and their various

extensions11,12, have gained successful applications

in many fields. In addition to the applications in di-

mensionality reductions, manifold regularization13

has been proposed as a new form of regularization

that allows us to exploit the geometry of the dis-

tribution of the data points. It has also been used

in SVMs, e.g., Laplacian SVMs14,15, to take advan-

tage of unlabeled data points. In the literature, man-

ifold learning, especially locality preserving projec-

tions criteria16, are widely used to reduce dimen-

sionality of the original data in feature extraction

or penalize classifier using unlabeled data samples

in semi-supervised learning. However, there is little

evidence which has shown whether supervised clas-

sifier can benefit from manifold structure directly

from labeled samples. Recently, the idea of mani-

fold learning has been applied in GEPSVM by con-

sidering the local information within each class to

eliminate the influence of outliers17.

With the geometric intuition of GEPSVM and

the essence of manifold learning, we argue that

manifold regularization is particularly suitable for

GEPSVM and its variants. In contrast with con-

ventional SVMs, GEPSVM and other recently pro-

posed classifiers, e.g., Twin SVMs4,18, are all based

on seeking planes best fitting the data points of the

same class rather than just separating points of dif-

ferent classes. Twin SVMs are non-parallel planar

classifiers whose target is to construct a classifica-

tion hyper plane for two kinds of data, which makes

the sample of each super plane distance as close as

possible, and the distance of the samples as far as

possible. In other words, they are not only “discrim-

inative” based approach but also “expressive” based

approach. Therefore, it’s natural to make attempts

to combine manifold structure with these methods.

Another reason is that the numerators of the objec-

tive functions of GEPSVM have similar formula-

tions as least square regression which is known to

tend to overfit data points. That’s why Tikhonov reg-

ularization terms19 are integrated in GEPSVM to en-

hance its generalization ability and avoid overfitting.

But they merely penalize the numerators whereas

ignoring the denominators. Furthermore, in many

cases, manifold regularization is more powerful as

it takes the intrinsic geometry structure of the data

points into account. In this paper, manifold regular-

ization, specifically locality preserving projections

(LPP)20,21, is firstly extended in our context and then

incorporated into classical GEPSVMs. Locality Pre-

serving Projections (LPP) are linear projective maps

that arise by solving a variation problem that opti-

mally preserves the neighborhood structure of the

data set22,23. LPP should be seen as an alternative

to Principal Component Analysis (PCA)—a classi-

cal linear technique that projects the data along the

directions of maximal variance. When the high di-

mensional data lies on a low dimensional manifold

embedded in the ambient space, the Locality Pre-

serving Projections are obtained by finding the opti-

mal linear approximations to the Eigen functions of

the Laplace Beltrami operator on the manifold24,25.

LPP shares many of the data representation proper-

ties of nonlinear techniques such as Laplacian Eigen

maps or Locally Linear Embedding. Yet LPP is

linear and more crucially is defined everywhere in

ambient space rather than just on the training data

points. LPP may be conducted in the original space

or in the reproducing kernel Hilbert space into which
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data points are mapped. This gives rise to kernel

LPP. We should emphasize that the purpose of man-

ifold regularization in our context is different from

the classical one whose primary aim is to utilize the

distribution information of unlabeled samples. Un-

like semi-supervised26 learning, the intention of the

proposed approach is to demonstrate how manifold

structure of labeled samples is also beneficial to su-

pervised learning even when unlabeled samples are

available. Twin SVM is a non-parallel planar classi-

fier shown in Fig. 2, its target is to construct a clas-

sification hyper plane for two kinds of data, which

makes the sample of each super plane distance as

close as possible, and the distance of the samples as

far as possible.
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Fig. 2. The examples of Twin SVM

In this paper, MRGEPSVM is derived by design-

ing a modified locality preserving projections crite-

ria and incorporating it into GEPSVM. Unlike con-

ventional LPP, we project the data points onto planes

and require the local geometry structure to be pre-

served. It demonstrates that manifold regularization

is suitable for GEPSVM and its variants.

The remainder of this paper is organized as fol-

lows: In section 2, we give a brief overview of

GEPSVM followed by the construction of local pre-

serving projections criteria in section 3. Section 4

presents manifold regularized GEPSVM based on

the novel regularization. In section 5, detailed exper-

imental results are given and we conclude this paper

in section 6.

2. A brief review of GEPSVM

Supposed we are given m1 training samples belongs

to class 1 and m2 training samples belongs to class 2

in the n-dimensional real space, with m1 +m2 = m.

Let A and B be two matrices whose rows are samples

of class 1 and class 2 respectively. Let w1 and w2 be

the normal to the two planes respectively, GEPSVM

seeks two nonparallel planes given by:

xT w1 +b1 = 0

xT w2 +b2 = 0
(1)

so that each one is close to the points of one class

but far away from the points of the other. This idea

yields the following optimization problems.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
w1,b1 �=0

‖Aw1 + e1b1‖2/‖w1‖2

‖Bw1 + e2b1‖2/‖w1‖2

min
w2,b2 �=0

‖Bw2 + e2b2‖2/‖w2‖2

‖Aw2 + e1b2‖2/‖w2‖2

(2)

where Bw1 + e2b1 �= 0, and Aw2 + e1b2 �= 0, while

e1 and e2 are vectors of ones of appropriate dimen-

sionality. In order to achieve good generalization,

Tikhonov regularization term 12 is introduced, lead-

ing to the following optimization problems.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
w1,b1 �=0

‖Aw1 + e1b1‖2 +‖[w1;b1]‖2

‖Bw1 + e2b1‖2

min
w2,b2 �=0

‖Bw2 + e2b2‖2 +‖[w1;b1]‖2

‖Aw2 + e1b2‖2

(3)

where Bw1 + e2b1 �= 0, and Aw2 + e1b2 �= 0. By

defining:

zT
1 =

[
wT

1 ,b1

]
zT

2 =
[
wT

2 ,b2

]
P = [Ae1]

T [Ae1]

Q = [Be2]
T [Be2]

(4)

The objective functions in (2) can be written as

the following Rayleigh quotient problems:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
z1 �=0

zT
1 (P+δ1I)z1

zT
1 Qz1

min
z2 �=0

zT
2 (P+δ1I)z2

zT
2 Qz2

(5)

The optimal z1 and z2, i.e. the coefficients of

the two planes, are determined by solving a pair of

generalized eigenvalue problems respectively. As to

the detailed algorithm of GEPSVM, please refer to

Ref. 3.

3. Local Preserving Projections on Plane

In this section, the idea of local preserving projec-

tions is extended in the case that we expect the in-

trinsic geometry structure of original data samples

of the same class can be preserved after they are pro-

jected to a plane.

Firstly, in order to preserve the original local

geometry structure within each class, we need to

construct a graph for each class, named as with-in

class graph G(c)(c = 1,2). Each vertex in G(c) cor-

respinds to a sample point which belongs to class c
and an edge between a vertex pair is added when the

corresponding sample pair is each other’s k-nearest

neighbors. After the structure of G(c) is fixed, we

need to determine its weight matrix S(c) . In the lit-

erature, there exist several methods for weight calcu-

lation, e.g., RBF kernel, inverse Euclidean distance.

In our experiments, RBF kernel is selected as fol-

lows: S(c)i j = exp

(
−
∥∥∥x(c)i − xc

j

∥∥∥2

/δ
)

if x(c)i and x(c)j

are neighbors and belonging to the same class c ,

otherwise S(c)i j = 0.

After with-in graphs have been constructed in in-

put space, we project the points of each class onto

their corresponding fitting planes and extend LPP

criteria under this condition. The detailed procedure

is given as follows.

Give an arbitrary point x in R
n and let y be its or-

thogonal projection onto the fitting plane wT x+b =
0 , we can obtain the following equality from Fig. 3.

�
�

�
�

�� � �

Fig. 3. Illustration of the geometry of projecting x onto

wT x+b = 0.

y+
w
‖w‖d = x (6)

After a simple calculation as described in

Ref. 15, the value of d can be expressed as:

d =
wT x+b
‖w‖ (7)

On substituting (7) into (6), the orthogonal pro-

jection of x can be formulated as:

y = x− w
‖w‖d

= x−
(
wT x+b

)
w

‖w‖2

= x− (wT x+b
)

w (8)

where w is defined as:

w =
w

‖w‖2
(9)

According to our idea, the local geometry struc-

ture within the points of each class should be pre-

served after the projection. Take class 1 for example,

this leads to the following optimization problem.

min
w1

m1

∑
i,i=1

∥∥∥y(1)i − y(1)j

∥∥∥2

S(1)i j (10)

where y(1)i is the orthogonal project of point x(1)j ,

i.e., i-th point of class 1, onto its corresponding fit-

ting plane wT
1 x+b1 = 0 . Following (8), y(1)i can be

expressed explicitly in the form:
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y(1)i = x(1)i −
(

wT
1 x(1)i +b

)
w1

‖w1‖2
= x(1)i −

(
wT

1 x(1)i +b
)

w1 (11)

where:

w1 =
w1

‖w1‖2
(12)

Thus, the objective function of (10) is reformulated as:

m1

∑
i,i=1

∥∥∥y(1)i − y(1)j

∥∥∥2

S2
i j

=
m1

∑
i,i=1

∥∥∥x(1)i −
(

wT
1 x(1)i +b

)
w1 − x(1)j +

(
wT

1 x(1)j +b
)

w1

∥∥∥2

S(1)i j

=
m1

∑
i,i=1

∥∥∥(x(1)i − x(1)j

)
−wT

1

(
x(1)i − x(1)j

)
w1

∥∥∥2

S(1)i j (13)

For the sake of simplicity, let us define:

d(1)
i j = x(1)i − x(1)j = AT ti −AT t j = AT (ti − t j) (14)

where li is m1-dimensional unit vector with the i-th element 1, 0 otherwise. Therefore, (13) can be expressed in

the form:

m1

∑
i, j=1

∥∥∥y(1)i − y(1)j

∥∥∥2

S(1)i j

=
m1

∑
i, j=1

∥∥∥d(1)
i j −wT

1 d(1)
i j w1

∥∥∥2

S(1)i j

=
m1

∑
i, j=1

(
d(1)

i j −wT
1 d(1)

i j w1

)T (
d(1)

i j −wT
1 d(1)

i j w1

)
S(1)i j

=
m1

∑
i, j=1

(
d(1)

i j
T −wT

1 d(1)
i j w1

T
)(

d(1)
i j −wT

1 d(1)
i j w1

)
S(1)i j

=
m1

∑
i, j=1

(
d(1)

i j
T

d(1)
i j −2wT

1 d(1)
i j d(1)

i j
T

w1 +
(

wT
1 d(1)

i j

)2

w1
T w1

)
S(1)i j (15)

By dropping the terms irrelative to optimize variables and making use of the expression of w1 and d(1)
i j , i.e.,

(12) and (14), (15) can be further formulated as following:
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m1

∑
i, j=1

∥∥∥y(1)i − y(1)j

∥∥∥2

S(1)i j

∝
m1

∑
i, j=1

(
−2wT

1 d(1)
i j d(1)

i j
T

w1 +
(

wT
1 d(1)

i j

)2

w1
T w1

)
S(1)i j

=
m1

∑
i, j=1

⎛
⎜⎝−2

(wT
1 d(1)

i j )
2

‖w1‖2
+

(
wT

1 d(1)
i j

)2

‖w1‖2

⎞
⎟⎠S(1)i j

=− 1

‖w1‖2

m1

∑
i, j=1

(
wT

1 d(1)
i j

)2

S(1)i j

=− 1

‖w1‖2
wT

1

(
m1

∑
i, j=1

d(1)
i j d(1)

i j
T

S(1)i j

)
w1

=− 1

‖w1‖2
wT

1 AT

(
m1

∑
i, j=1

(ti − t j)(ti − t j)
T S(1)i j

)
Aw1 (16)

where ei is a m1 dimensional unit vector with the i-th element 1, 0 otherwise. Now, let us derive a more explicit

expression for ∑m1

i, j=1 (ti − t j)(ti − t j)
T S(1)i j as:

m1

∑
i, j=1

(ti − t j)(ti − t j)
T S(1)i j

=
m1

∑
i, j=1

(ti − t j)
(
tT
i − tT

j
)

S(1)i j

=
m1

∑
i, j=1

(
titT

i − titT
j − t jtT

i + t jtT
j
)

S(1)i j

= 2

(
m1

∑
i=1

titT
i

m1

∑
j=1

S(1)i j −
m1

∑
i, j=1

titT
j S(1)i j

)

= 2
(

D(1)−S(1)
)

= 2L(1) (17)

where D(1) is a diagonal matrix with its entries being the row sums of S(1), i.e. D(1)
i j = ∑ j S(1)i j , and L(1) =

D(1)−S(1) is the Laplacian matrix of the data points of class 1. On substituting (17) into (16), we have:

m1

∑
i, j=1

∥∥∥y(1)i − y(1)j

∥∥∥2

S(1)i j ∝ − 2

‖w1‖2
wT

1 AT L(1)Aw1 (18)
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Considering minimization modus operandi in

(10), we finally obtain the following relationship.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
w1

m1

∑
i, j=1

∥∥∥y(1)i − y(1)j

∥∥∥2

S(1)i j

max
w1

2

‖w1‖2
wT

1 AT L(1)Aw1

(19)

Now we should compare our novel LPP criteria

(19) with the traditional one usually expressed in the

form, and X is the set of xi.

min
wT

1 XT LXw1

wT
1 XT DXw1

(20)

which is obtained by optimizing the vector w1 onto

which each point of is X projected meanwhile best

preserving the local structure within X . In our con-

text, X = A. We can gain some insights into the dif-

ference between (19) and (20), i.e., minimization is

converted to maximization. This phenomenon is ex-

plained as follows. First of all, it can be noticed that

w1 is merely the normal vector of the fitting plane.

Furthermore, our goal is to preserve local geome-

try information within original space after points are

projected onto the fitting plane instead of its normal

vector. After determining whether the normal vector

is orthogonal to its derived plane, it’s clear that we

reach that goal. A simple geometry example to vi-

sually illustrate this phenomenon is given in Fig. 4.

Aw

B

a
w

b

Tw x b Tw x b
Fig. 4. Illustration of the difference between LPP and the

proposed projections

It’s obvious that the best vector that preserves lo-

cal structure of data points corresponds to the worst

plane doing so. As Fig. 4 left shows, A, B are pro-

jected meanwhile best preserving the local structure.

However, in Fig. 4 right, a and b are projected, but

they do not preserve the local structure.

4. Incorporate local geometry structure into
GEPSVM

We are now in a position to introduce the new crite-

ria (18) into classical GEPSVM. As aforementioned,

GEPSVM aims to find two distinct planes which

are not parallel to each other so that each closest

to the points of one class and furthest away from

the other. Recalling the objective function (5) of

GEPSVM, it’s obvious that its numerator is similar

to least square regression, which tends to generate

overfitting solutions and that’s why we need regular-

ization technique to avoid it. In original GEPSVM,

Tikhonov regularization plays the role in tackling

this problem. In this paper, besides Tikhonov term,

manifold regularization, i.e., criteria (19), is also

used to handle it.

Our idea is to seek two planes so that each one

is required not only closest to the data set of its own

and furthest from the other data set but also to pre-

serve the local geometry structure of them, respec-

tively. To achieve this, (10) is used to penalize the

original GEPSVM, leading to the following modi-

fied objective functions for class 1.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
w1,b1

‖Aw1 + e1b1‖2/‖w1‖2

‖Bw1 + e2b1‖2/‖w1‖2

min
w1

m1

∑
i, j=1

∥∥∥y(1)i − y(1)j

∥∥∥2

S(1)i j

(21)

Making the result of (19), (21) can be expressed

as following:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
w1,b1

‖Aw1 + e1b1‖2/‖w1‖2

‖Bw1 + e2b1‖2/‖w1‖2

max
w1

2

‖w1‖2
wT

1 AT L(1)Aw1

(22)

We can view the second function as manifold

regularized and incorporated into the first function

as in (23). At the same time, in order to balance the

effect of the two objectives, trade-off factor δM is in-

troduced, which leads to the following optimization

problems.
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min
w1,b1

‖Aw1 + e1b1‖2/‖w1‖2

‖Bw1 + e2b1‖2/‖w1‖2 +δMwT
1 AT L(1)Aw1/‖w1‖2

= min
w1,b1

‖Aw1 + e1b1‖2

‖Bw1 + e2b1‖2 +δMwT
1 AT L(1)Aw1

(23)

Under the definition in GEPSVM, (23) can be written as:

min
w1,b1

‖Aw1 + e1b1‖2

‖Bw1 + e2b1‖2 +δM
[
wT

1 b1

][ATL(1)A 0n

0T
n 0

][
w1

b1

]

=
zT

1 Pz1

zT
1 Qz1 +δMzT

1 M(1)z1

=
zT

1 Pz1

zT
1

(
Q+δMM(1)

)
z1

(24)

where
[

ATL(1)A 0n
0T

n 0

]
and 0n is a vector of zero with

order n. By combining (24) with Tikhonov regular-

ization with appropriate trade-off factor δT , we ob-

tain the following optimization problems.

min
z1 �=0

zT
1 (P+δT I)z1

zT
1

(
Q+δMM(1)

)
z1

(25)

Then, the optimal z1, i.e. [w1;b1] , is the eigen-

vector corresponding to the smallest eigenvalue of

the following generalized eigenvalue problem.

(P+δT I)z1 = λ
(

Q+δMM(1)
)

z1 (26)

Following the similar procedure above, we de-

fine an analogous minimization problem to (25) for

determining Z2 = [w2;b2], i.e., the coefficient of the

second plane wT
2 x+b2 = 0 by:

min
z2 �=0

zT
2 (Q+δT I)z2

zT
2

(
P+δMM(1)

)
z2

(27)

where M(2) =

[
BTL(2)B 0n

0T
n 0

]
, and L(2) = D(2)−S(2).

The minimum of (27) is achieved at the eigen-

vector corresponding to the smallest eigenvalue of

the following generalized eigenvalue problem.

(Q+δT I)z2 = λ
(

P+δMM(2)
)

z2 (28)

Once we obtain the eigenvectors corresponding

to the smallest eigenvalues of (26) and (28), the two

planes are determined at the same time. Therefore,

for a new coming sample x, we first calculate the

distance from x to the two planes given by (29):

d1 = |xT w1 +b1|/‖w1‖2

d2 = |xT w2 +b2|/‖w2‖2
(29)

Then we classify x as belonging to class 1 if oth-

erwise d1 < d2 to class 2.

We now describe our simple algorithm as fol-

lows for implementing a linear MRGEPSVM.

Algorithm 1: Linear Manifold Regularized Proxi-
mal Support Vector Machine via Generalized Eigen-
value

Given m1 samples in R
n represented by A ∈

R
m1×n and m2 samples represented by B ∈ R

m2×n:

(i) Define the augmented matrix P, Q, M(1) and

M(2) in feature space

(ii) Solve the eigenvalue problems of (36) and

(38);

(iii) For the new coming sample x, compute the dis-

tances d1, d2, and classify it to the nearest one.
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Fig. 5. The “cross planes” learned by GEPSVM and

MRGEPSVM together with their correctness on the train-

ing data set

Originally, GEPSVM were proposed to tackle

XOR problems which is difficult for conventional

linear classifications such as SVMs, by which it can

obtain nearly 100% correct. A “cross planes” exam-

ple is show in Fig. 5 for GEPSVM and the proposed

MRGEPSVM. We observe that MRGEPSVM ob-

tains nearly the same accuracy as GEPSVM, which

implies the ability of GEPSVM to solve XOR prob-

lems is not depressed in MRGEPSVM by introduc-

ing manifold regularization technique.

5. Nonlinear MRGEPSVM

In this section, we extend our results to nonlinear

classifiers. Suppose that the Euclidean space R
n

is mapped to a Hilbert space H, named as feature

space instead of input space Rn, through a nonlinear

mapping function φ : Rn → H. Let K(xi,x j) be ker-

nel function in feature space satisfying K(xi,x j) =

φ(xi)
T φ(x j).The data samples A and B are mapped

to φ(A) and φ(B), respectively. Let the fitting planes

in feature space be denoted by:

φ
(
xT )w1 +b1 = 0

φ
(
xT )w2 +b2 = 0

(30)

therefore, (23) can be expressed in following

form in feature space.

min
w1,b1

‖φ(A)w1 + e1b1‖2

‖φ(B)w1 + e2b1‖2 +δMwT
1 φ(A)T L(1)φ(A)w1

(31)

A basic principle in feature space is that w1 can

be expressed as the linear combinations of all data

samples in H, leading to:

w1 = φ
(
CT )u1 (32)

where CT =
[
AT BT

]
, and u1 ∈ R

m.

Substituting (32) into (31), we obtain:

min
u1,b1

∥∥K
(
A,CT

)
u1 + e1b1

∥∥2

‖K(B,CT )u1 + e2b1‖2 +δMuT
1 K(C,AT )L(1)K(A,CT )u1

=
zT

1 Pz1

zT
1 Qz1 +δMzT

1 M(1)z1

(33)
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where:

P =
[
K
(
A,CT

)
e1

]T [K(A,CT
)

e1

]
Q =

[
K
(
A,CT

)
e2

]T [K(A,CT
)

e2

]
M(1) =

[
K
(
C,AT

)
L(1)K

(
A,CT

)
0m

0T
m 0

] (34)

Similarly, by combining (33) with Tikhonov reg-

ularization, we obtain:

min
z1 �=0

zT
1 (P+δT I)z1

zT
1

(
Q+δMM(1)

)
z1

(35)

By an entirely similar argument, we can define

an analogous minimization problem for the fitting

plane of class 2.

min
z2 �=0

zT
1 (P+δT I)z2

zT
2

(
Q+δMM(2)

)
z2

(36)

where:

M(2) =

[
K
(
C,BT

)
L(1)K

(
B,CT

)
0m

0T
m 0

]
(37)

After z1 and z2 are solved, two fitting planes in

feature space are determined. In order to derive the

decision rule in feature space, suppose we gave a

new data point x ∈ R
n to be classified. Then the dis-

tance between its image in feature space, i.e. φ(x),
and the fitting plane of class 1, i.e. φ

(
xT
)

w1 +b1 =
0, is given by:

d1 =
|φ (xT

)
w1 +b1|

‖w1‖2
(38)

By using (32), (38) can be expressed as:

d1 = |φ (xT )φ
(
CT )u1 +b1|/uT

1 φ (C)φ
(
CT )u1

= |K(xT ,CT )u1 +b1|/uT
1 K
(
C,CT )u1

(39)

Similarly, the distance between and the fitting

plane of class 2, i.e., φ
(
xT
)

w2 + b2 = 0, is given

by:

d2 = |K(xT ,CT )u2 +b2|/uT
2 K
(
C,CT )u2 (40)

The decision rule for nonlinear MRGEPSVM is

the same as its linear version, expect the distances

from x to fitting planes need to be calculated by (35)

and (36).

We now give an explicit statement for nonlinear

MRGEPSVM algorithm.

Algorithm 2: Nonlinear Manifold Regularized
Proximal Support Vector Machine via Generalized
Eigenvalue

Given m1 samples in R
n represented by A ∈

R
m1×n and m2 samples represented by B ∈ R

m2×n.

(i) Define the matrix P, Q, M(1) and M(2) in input

space;

(ii) Solve the eigenvalue problems of (26) and

(27);

(iii) For the new coming sample x, compute the dis-

tances d1, d2, and classify it to the nearest one.

6. Experimental Results

To demonstrate the performance of the proposed

method, we conducted experiments on several

benchmark datasets from UCI Repository 27. Opti-

mal values of all parameters involving each method

were obtained by using a tuning set comprising of 10

percent of the data set. Table 1 shows the compari-

son of MRGEPSVM, TSVM, GEPSVM and SVM.

From the experimental results listed in Table

1, we can see that MRGEPSVM gains superior

performance than GEPSVM on nearly all datasets.

We also performed experiments on several UCI

datasets using RBF kernel. The performances of

each method are shown in Table 2.

The aforementioned methods have been tested

on benchmark data sets that are publicly available.

Results regard their performance in terms of classi-

fication accuracy. The results regarding the linear

kernel have been obtained using the first two reposi-

tories. The third one has been used in the non-linear

kernel implementation. For each data set, the lat-

ter repository offers 100 predefined random splits

into training and test sets. For several algorithms,

results obtained from each trial, including SVMs,
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Table 1. Classification accuracy using linear kernel

MRGEPSVM TSVM GEPSVM SVM

Hepatitis 85.16±2.16 80.79±3.74 58.29±2.13 80.00±2.03

Ionosphere 87.47±3.38 88.03±4.69 75.19±3.43 86.04±5.91

Heart-statlog 84.82±1.98 84.44±2.62 84.81±3.11 84.07±4.56

Votes 95.40±1.62 96.08±2.73 91.93±3.08 94.50±2.79

Sonar 79.81±1.08 77.25±3.75 66.76±5.44 79.79±2.13

Pima 74.88±3.09 73.70±5.14 74.60±4.16 76.68±3.82

Table 2. Classification accuracy using nonlinear kernel

MRGEPSVM TSVM GEPSVM SVM

Hepatitis 81.94±3.14 82.67±5.03 78.25±4.86 83.13±3.56

BUPA 66.09±2.71 67.83±7.01 63.80±3.25 58.32±6.83

WPBC 79.72±2.14 81.92±4.17 62.70±3.36 79.92±3.16

are recorded. Execution times and the other accu-

racy results have been calculated using an Intel Core

i7 CPU 3.20 GHz, 8 GB RAM running Windows

8 with Matlab 2013b, during normal daylight op-

erations. In the case of nonlinear kernel, we ob-

serve there are still perceptible improvements com-

pared with GEPSVM. Meanwhile the accuracy of

MRGEPSVM is close to TSVM and SVM. It seems

that manifold structure didn’t greatly facilitate the

performance in feature space. A possible expla-

nation may lie in the higher dimensionality offset

the effect brought by manifold structure within data

samples after they are mapped.

Elapsed time are listed in Table 3 and Table 4,

by different methods with Gaussian and linear ker-

nel, respectively. In the linear one, MRGEPSVM

and GEPSVM outperform TSVM and SVM in all

cases. MRGEPSVM is at least twice faster than

GEPSVM. When the Gaussian kernel is used, SVMs

implementations achieve better performances with

respect to the eigenvalues based methods. In all

cases, MRGEPSVM is faster than GEPSVM.

USPS database is a handwritten numeral recog-

nition database provided by the United States postal

service, which includes 10 kinds of gray images

from 0 to 9, where the gray value has been nor-

malized, with each figure containing 1100 images

of 16× 16 pixels. Table 5 is the average accuracy

and standard deviation of different algorithms using

USPS dataset.

In this experiment, we randomly selected 110

image data sets from each class of samples, and

randomly selected 10% and 20% of the data as

the training set to verify the MRGEPSVM algo-

rithm. The penalty parameters C of SVM and

TWSVM, as well as the regularization terms of

MRGEPSVM and GEPSVM, are selected from the

collection {2i|−9, . . . ,9}. The value k of KNN is

selected from the collection {3,4, . . . ,20}.

The experimental set-up is meant to simulate a

real-world situation: we considered binary classifi-

cation problems due to the splits of the training data,

where all of one driver cases were labeled and all the

rest were left unlabeled. The test set is composed of

entirely new drivers, forming the separate group.

In Fig. 6, we compare the error rates of 30 binary

classification problems of GEPSVM, MRGEPSVM

algorithm. We train on the same driver from a train-

ing set of examples, and test on the remaining five

set of samples. We considered the task of classify-

ing the driver whether he meets obstacles as a binary

classification problem.
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Table 3. Elapsed time in seconds using Gaussian kernel

Dataset MRGEPSVM GEPSVM TSVM SVM

Votes 1.1473 5.8744 0.4523 0.2022

Sonar 3.8717 5.8947 0.1543 0.4080

Pima 0.0296 0.1143 0.0302 7.1968

Flare-solar 1.9839 16.1654 2.1429 4.4562

Waveform 0.5998 4.480 0.9016 0.2284

Thyroid 0.0246 0.1280 0.0503 0.0718

Heart 0.0361 0.2187 0.0278 0.1732

Banana 0.4989 3.1102 0.0346 1.3505

Breast-cancer 0.0688 0.3544 0.0429 0.1188

Table 4. Elapsed time in seconds using linear kernel

Dataset MRGEPSVM GEPSVM TSVM SVM

Votes 0.0119 0.0277 0.0024 0.0019

Sonar 0.0364 0.0854 0.0589 0.0395

Pima 0.0015 0.2858 0.6809 0.0013

Flare-solar 0.0158 0.1673 0.1092 0.0893

Waveform 0.0013 0.0934 0.0438 0.0472

Thyroid 0.0011 0.0183 0.00524 0.0018

Heart 0.0012 0.1091 0.0019 0.0011

Banana 0.0024 0.1578 0.0063 0.0038

Breast-cancer 0.0002 0.0158 0.0016 0.0009

Table 5. The average accuracy and standard deviation of differ-
ent algorithms in USPS dataset

SVM LPP TSVM GEPSVM MRGEPSVM

Num. Test±Std Test±Std Test±Std Test±Std Test±Std

(%) (%) (%) (%) (%)

l = 10 77.14±1.97 82.26±1.73 81.12±1.67 81.41±1.85 82.26±1.37

l = 20 84.67±0.93 89.19±1.00 89.40±1.09 87.78±1.34 89.97±1.06

l = 30 86.07±1.62 91.60±1.07 91.93±0.87 90.51±1.13 92.99±0.98

l = 40 88.13±1.13 93.22±1.02 93.49±0.95 91.88±0.99 94.33±0.93

l = 50 90.48±1.34 94.50±0.88 94.46±1.05 93.40±1.26 95.50±1.08
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Fig. 6. Error rates of 30 binary classification problems

7. Conclusions

In this paper, a novel proximal support vector ma-

chine, called manifold regularized GEPSVM, is pre-

sented. Our analysis allows us to see the role of

manifold regularization in proximal support vector

machine via generalized eigenvalue in a clear way.

MRGEPSVM is derived by designing a modified

locality preserving projections criteria and incorpo-

rating it into GEPSVM. Unlike conventional LPP,

we project the data points onto planes and require

the local geometry structure to be preserved. In

GEPSVM, we also solve a pair of eigenvalue prob-

lems to determine the two fitting planes. One ad-

vantage of MRGEPSVM is that it demonstrates that

manifold regularization is suitable for GEPSVM and

its variants. As to future work, we believe the pro-

posed regularization technique may be applied in

more powerful classifiers, e.g. Twin SVM, to further

boost its performance.
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