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Abstract—Simulation based decision making tools, such as 
simulation cloning, “what-if” analysis, and etc., has being a 
beneficial way to analyzing of multiple alternative scenarios, 
however, there is no guarantee that a simulator could obtain a 
feasible scenario meeting the flood mitigation requirements, let 
alone an optimal one. Motivated by J. R. Marden and his 
colleague’s work “cooperative control and potential games”, a 
novel technique, the alternative scenario selection game, was 
proposed in this paper to solve the flood mitigation optimization 
problem, in which the alternative scenario selection problem was 
modeled as a potential game with appropriately defined players’ 
utilities. A SAP (Spatial Adaptive Play) based learning algorithm 
for the potential game with suboptimal Nash equilibria was 
introduced to help all players to converge to a consensus after 
finite iteration steps. Case study and performance evaluation 
shows that the proposed technique is feasible and stable, within a 
few iteration steps, all players could quickly reach the goal of the 
expected flood peak point. 

Keywords-flood mitigation optimization; alternative scenario 
selection; potential game; consensus; cooperative control 

I. INTRODUCTION 

Cooperative flood mitigation has being a beneficial way to 
cut down the economic loses for a large-scale flood control 
zone, especially for hydraulic structure highly controlled river 
networks, such as the Huaihe River.  

The task for cooperative flood mitigation is to design or 
select a suitable operation pattern for hydraulic structures, such 
as reservoirs, cross-river sluices, floodways, flood storage areas, 
and etc., to meet the requirements of flood peak and economic 
lose cutting. Any parameter pattern of each hydraulic structure 
is called an alternative flood mitigation scenario. From the 
view of modelling and simulation of unsteady flow in river 
networks, the scenario is used as the boundary conditions. 

Although there exist many emerging simulation techniques, 
e.g., simulation cloning[1]~[6], exact-differential simulation [7], 
and etc., which in fact provide a feasible way to analyze large-
scale flood mitigation systems by simulation with various 
patterns scenarios or parameters, however, there is no 
guarantee that a simulator could obtain a feasible operation 
scenario meeting the aforementioned requirements, let alone an 
optimal one. 

Nevertheless, it has been seen that, an alternative approach 
proposed and discussed in [8], namely the consensus problem 

used for cooperative control, which was perfectly solved by 
modelling the problem as a potential game with appropriately 
defined players’ utilities. Motivated by this idea, we propose a 
novel technique, the alternative scenario selection game, for the 
flood mitigation optimization problem. The main idea of the 
technique is that, (1) the flood mitigation optimization problem 
was modeled as a potential game in the consensus style, in 
which each player was defined as an unsteady flow simulator 
with a scenario; (2) multiple alternative scenarios were 
randomly chosen by players in the first stage, which was 
updated by each player through learning from others in the 
game; (3) after a finite iteration of learning, we hope that all 
players can reach a consensus, i.e., a feasible and optimal flood 
mitigation scenario. 

From the case study and performance evaluation, we can 
see that, the proposed technique was feasible, the appropriately 
designed potential game coupled with a SAP based learning 
algorithm can obtain an optimal scenario. 

The contribution of our work is: (1) Formulating the 
alternative scenario selection problem for flood mitigation 
optimization as the consensus problem, which was solved by a 
potential game. (2) Designing a SAP based learning algorithm 
for each player to update its scenario, which guarantees that the 
player’s behavior converges to a Nash equilibrium. 

II. FLOOD MITIGATION OPTIMIZATION AND MULTIPLE 

ALTERNATIVE SCENARIOS SELECTION 

A. The Flood Mitigation Problem 

Suppose there is a flood control zone with one flood storage 
area, two flood detention areas, one floodway and a number of 
side or cross-river regulating sluices (Figure I.), whose inflow 
except the lateral flow of upper watershed can be regulated by 
the operation of upper reach reservoirs, and the outflow can be 
regulated by a cross-river sluice. 

When a flood peck is approaching to the control zone, the 
following operations should be taken according to the real-time 
water regime (see Figure II.): 

 Pre-regulating the inflow by a cooperative operation of 
upper reach reservoirs; 

 Enablement the floodway and increasing the outflow of 
the downstream sluice; 
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 Alternant enablement of flood storage area (I), flood 
detention area (II) and (III) to cut down the flood peck 
if they are needed. 

 
FIGURE I.  ILLUSTRATION OF A FLOOD CONTROL ZONE WITH 

MULTIPLE FLOOD RETARDING HYDRAULIC STRUCTURES 

The objective of these operations is to cut down a flood 
peck (Figure II.) that ensures to keep the water level at each 
flood control point to be lower than the controlled water level. 

 
FIGURE II.  CUTTING A FLOOD PEAK BY INFLOW, OUTFLOW AND 

BOUNDARY STORAGERS OPERATION 

B. Flood Mitigation Optimization and Alternative Scenario 
Selection Problem 

A “what-if” style analysis coupled with an unsteady flow 
simulation tool for solving the flood mitigation problem may 
has following main steps (Please see [2] for details.): 

 Configure the operation scenario according to the real-
time water regime, which includes the value of Ha, 
Qin_max, Qs_max, Qout_max, and when/how to 
operate a concrete hydraulic structure. 

 Performance a numerical simulation of the operation of 
reservoirs to obtain the minimized inflow Qin(t). 

 Performance the unsteady flow simulation to get the 
parameters H(t), Qs(t) and Qout(t). 

 If  H(t), Qs(t) and Qout(t) satify all subjective 
constrains then output the feasible operation scenario, 
else goto “Configure the operation scenario” and repeat 
the rest steps. 

This kind of approach is efficient when a few of hydraulic 
boundaries was considered in cooperative flood mitigation for a 
flood control zone. While the number of hydraulic boundaries 
is too large, an alternative approach, e.g., the “parallel cloning 
simulation” [3] technique should be used to reduce the 

redundant computation in repeated analysis of similar scenarios. 
Nevertheless, there is no guarantee that a feasible scenario will 
be obtained, let alone the optimal one, since there is no global 
judgement rules for measuring the feasibility of a scenario. 

III. THE ALTERNATIVE SCENARIO SELECTION GAME FOR 

FLOOD MITIGATION OPTIMIZATION 

In this section, we will first illustrate that the alternative 
scenario selection problem can be modeled as a potential game. 

A. Potential Games 

In game theory, a game is said to be a potential game if the 
incentive of all players to change their strategy can be 
expressed using a single global function called the potential 
function. Let N and n be the set and the number of players, A 
the set of action profiles over the action sets Ai of each player i 
(iN), and U be the payoff function. A game G = (N, 
A=A1×…×Ai×…×An, U: A→R) is an exact potential game if 

there is a function RA： such that a-iA-i, ai, aiAi, 
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Where ai Ai. It is easy to see that, in potential games, any 
action profile maximizing the potential function is a pure Nash 

equilibrium, i.e., ),...,,...,,(),...,,( **
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1 niini aaaaUaaaU  , for i = 1, 

2, …, n. Every potential game possesses at least one such 
equilibrium, however, there may also exist suboptimal pure 
Nash equilibria that do not maximize the potential function. 

B. Alternative Scenario Selection for Flood Mitigation 
Optimization Problem Modeled as a Potential Game 

The basic idea is: 

 A global objective function, i.e., the potential function, 
was established to capture the notion of consensus [8]. 

 Local objective functions assigned to players so that 
the resulting game is, in fact, a potential game. 

 A player in the game was defined as an unsteady flow 
simulator with a selected action scenario. 

A player’s action scenario can be updated through learning 
from others in iterative steps. 

Hence, an action (i.e., scenario selection) taken by player i 
will has a simulating result, denoted Qi(t), i =1, 2, ..., n. The 
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goal of the game is to find an action profile a, for any player i, 
Qi(t) = Qe(t). 

Consider a flood mitigation optimization problem with n-
player set N, where each player i (iN) has a finite action set 
Ai, which could represent the finite set of scenarios that a 
player could select. 

The potential function was formulated as follow: 
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where NNi  is player i’s neighbor set ( ji NiNj 
), Qi(t) 

and Qj(t) denote the unsteady flow simulation results of player 

i and j, a ( Aa ) denotes an action profile, )(a represents the 
collective error between a’s simulation results Qa(t) and Qe(t) 
at time step t (Figure II. ). 

 
FIGURE III.  THE FLOOD MITIGATION OPERATION SCENARIO OF A 

HYDRAULIC BOUNDARY SELECTED BY PLAYER I AND J 

In the case when player i’s neighbor j shares a common 
scenario part (Figure III.), i.e., the interaction graph induced by 

neighbor sets  niNi ,...,2,1|   is connected [8], the potential 
function will archives the value of 0 if and only if action profile 

Aa constitutes a consensus, in other words, the simulation 
result of any player i at time step t Qi(t) = Qe(t), 
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The payoff function for each player is: 
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Since the potential function can be expressed as 

 



 









ij iNk

tQtQ

Nj

ji

j

kj

i

tQtQ(a)

\
2

)()(

)()(


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It is said that player payoff functions (5) constitute a 
potential game with potential function (3). 

It is straightforward to see that any consensus point is a 
Nash equilibrium of the game characterized by player payoff 
functions (5). 

C. The SAP Learning Algorithm for the Alternative Scenario 
Selection Game 

Let the strategy for player i at time t be denoted by 

probability distribution )()( ii ADtp  , where )( iAD denotes the 

probability distribution over set iA . Using this strategy, player i 

randomly selects an action from iA at time t according to )(tpi .  

At each time t >0, player Ni is randomly chosen (with 
equal probability for each player) and allowed to update its 
action, all other players must repeat their actions, i.e., 

)1()(   tata ii . At t+1, player i select an action ia  according 

to the following probability distribution, where )()1( tata ii  . 
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for some exploration parameter 0 . Constant β 
determines how likely player i is to select a suboptimal action. 

If 0 , player i will select any action ii Aa  . As  , 
player i will select action from its best response set 
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with arbitrarily high probability. 

In a repeated potential game in which all players adhere to 

SAP, the stationary distribution )(AD  of the joint action 
profile is given in [9] as 
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In the alternative scenario selection game modeled as the 
consensus problem, the joint actions that maximize the 
potential function (3) are precisely the consensus points, 
provided that each scenario shares a common part (Figure III.). 
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Therefore, if all players update their actions using the learning 
algorithm SAP with sufficiently large β, then the players will 
asymptotically reach a consensus with arbitrarily high 
probability [8]. 

IV. CASE STUDY AND PERFORMANCE EVALUATION 

The flood control zone in the upper-middle reach of Huaihe 
River was depicted in Figure IV. , whose upper stream inflow 
was regulated by 9 large-scale reservoirs, and downstream 
outflow was regulated by a cross-river sluices located at 
Bengbu city. In the control zone, there have 3 flood storage 
areas and 4 flood detention areas. Hence, there are 21 hydraulic 
boundaries for operation OPENs or CLOSEs at suitable times. 

 
FIGURE IV.  THE FLOOD CONTROL ZONE IN THE UPPER-MIDDLE 

REACH OF HUAIHE RIVER. 

The initial boundary conditions were listed in TABLE I.  

TABLE I.  THE INITIAL BOUNDARYCONDITIONS OF RESERVOIRS 

Reservoir H0(m) H1(m) H2(m) H3(m) Q (m3/s)

Banqiao 108.35 108.04 117.50 102.00 2800.00
Boshan 105.60 105.80 121.20 92.00 2000.00
Suyahu 53.28 53.15 56.42 50.50 1800.00

Nanwang 102.04 103.30 108.90 88.00 800.00
Nianyushan 104.78 106.82 111.10 84.00 2000.00

Meishan 122.78 127.57 139.17 107.07 600.00
Xianghongdian 117.41 122.35 139.10 108.00 2500.00

Mozitan 177.33 177.44 197.54 163.00 3300.00
Foziling 113.00 113.54 128.64 108.76 2500.00

Note: H0 is the initial water level; H1 is the end water level; H2 is the lowest controlled water level; H3 
is the highest controlled water level; Q is the maximum flood discharge capacity. 

The forecasted and expected discharge hydrograph at flood 
control point 51033 were depicted in Figure V. . 

 
FIGURE V.  THE FORECASTED AND EXPECTED DISCHARGE 

HYDROGRAPH 

Figure VI. describes the evolution of simulated flood peak 
discharge aligning to the expected discharge flood peak (Figure 
V. ) in the learning process of player i. From which, we can see 
that the learning algorithm has a good performance, after a few 

iteration steps, )(tQi reaches the expected goal of )(tQi . 

 
FIGURE VI.  THE EVOLUTION OF SIMULATED FLOOD 

PEAK )(tQi ALIGNING TO )(tQe AT TIME SETEP t  

V. RELATED WORK 

Our work was motivated by the idea “Consensus problem 
modeled as a potential game” in [8], some useful mathematical 
formulas were directly adopted, such as the SAP and potential 
games, but the potential and payoff function of the potential 
game were redesigned to align to the flood mitigation problem. 
There is a difference between the proposal and our approach. In 
our work, the expected discharge hydrograph was considered 
as a consensus point. 

VI. CONCLUSION 

In this paper, we present the alternative scenario selection 
game for flood mitigation optimization. The main idea of the 
technique is that, (1) the flood mitigation optimization problem 
was modeled as a potential game in the consensus style, in 
which each player was defined as an unsteady flow simulator 
with a scenario; (2) multiple alternative scenarios were 
randomly chosen by players in the first stage, which was 
updated by each player through learning from others in the 
game; (3) after a finite iteration of learning, we hope that all 
players can reach a consensus, i.e., a feasible and optimal flood 
mitigation scenario. 

From the case study and performance evaluation, we can 
see that, the proposed idea was feasible, and the appropriately 
designed potential game coupled with a SAP (Spatial Adaptive 
Play) based learning algorithm can obtain an optimal scenario. 

The contribution of our work is: (1) Formulating the 
alternative scenario selection problem for flood mitigation 
optimization as the consensus problem, which was solved by a 
potential game. (2) Designing a SAP based learning algorithm 
for each player to update its scenario, which guarantees that the 
player’s behavior converges to a Nash equilibrium. 

The expected discharge 
hydrograph Qe(t) 

The forecasted discharge 
hydrograph 
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