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Abstract-Using of SIFT algorithm in the image of teeth model, 
can detect the features of the teeth image effectively. In this 
approach, first, search over all scales and image locations by 
using a difference-of-Gaussian function to identify potential 
interest points that are invariant to scale and orientation. 
Second, select keypoints based on measures of their stability 
and a detailed model is fit to determine location and scale at 
each candidate location. Third, assign one or more orientations 
to each keypoint location based on local image gradient 
directions. Last,  measure the local image gradients at the 
selected scale in the region around each keypoint. And then use 
the KNN algorithm to match the features. Through lots of 
experiments and comparing with other feature extraction 
methods, this method can detect the features of the teeth model 
effectively, and offer some available parameters for 3D 
reconstruction of the teeth model. 
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I.  INTRODUCTION 

In oral medicine, it is a very attractive technology to 
simulate the results before the treatment, which acquire the 
parameters of the treatment from the stimulation of 
treatment automatically. If we use the computer technology 
in oral medicine and reconstruct the three-dimensional 
model of the teeth through three-dimensional computer 
technology, the patients can see the detail of their oral cavity 
and teeth from different angles. It is very helpful for the 
doctors

,
treatment that simulating the correction process.  

The indispensable part of the 3D reconstruction is that 
features extraction and matching. Features contain some 
important information of the image. For image matching 
and recognition, SIFT (Scale Invariant Feature Transform) 
features are first extracted from a set of reference images 
and stored in a database. A new image is matched by 
individually comparing each feature from the new image to 
this previous database and finding candidate matching 
features based on euclidean distance of their feature vectors. 
This paper will discuss fast nearest-neighbor algorithms that 
can perform this computation rapidly against large databases. 

II.  THE SIFT FEATURES EXTRACTION 

 
A. Detection of scale-space extrema 

The scale space of an image is defined as a function, 
( , , )L x y  , that is produced from the convolution of a 

variable-scale Gaussian, ( , , )G x y  , an input image, 
( , )I x y : 

( , , ) ( , , ) ( , )L x y G x y I x y                                     (1) 

where   is the convolution operation in x  and y , and 
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                                     (2) 

To efficiently detect stable keypoint locations in scale space, 
proposed using scale-space extrema in the difference-of-

Gaussian function convolved with the image, ( , , )D x y  , 

which can be computed from the difference of two nearby 

scales separated by a constant multiplicative factor k : 

( , , ) ( ( , , ) ( , , )) ( , )D x y G x y k G x y I x y      

            ( , , ) ( , , )L x y k L x y                (3) 

An efficient approach to the construction of ( , , )D x y  is 

shown in Figure 1. 
For each octave of scale space, the initial image is 

repeatedly convolved with Gaussians to produce the set of 
scale space images shown on the left of Figure 1. Adjacent 
Gaussian images are subtracted to produce the difference-
of-Gaussian images on the right of Figure 1. After each 
octave, the Gaussian image is down-sampled by a factor of 
2, and the process repeated. The accuracy of sampling 
relative to   is no different than for the start of the 
previous octave, while computation is greatly reduced. 

In order to detect the local maxima and minima of 
( , , )D x y  , each sample point is compared to its eight 

neighbors in the current image and nine neighbors in the 
scale above and below (see Figure 2). It is selected only if it 
is larger than all of these neighbors or smaller than all of 
them. The cost of this check is reasonably low due to the 
fact that most sample points will be eliminated following the 
first few checks. 
B. Accurate keypoint localization 

Once a keypoint candidate has been found by 
comparing a pixel to its neighbors, the next step is to 
perform a detailed fit to the nearby data for location, scale, 
and ratio of principal curvatures. This information allows 
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points that have low contrast (and are therefore sensitive to 
noise) or are poorly localized along an edge to be rejected. 

Using the Taylor expansion (up to the quadratic terms) 
of the scale-space function, ( , , )D x y  , shifted so that the 
origin is at the sample point: 
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TD D

D x D X X X
X X

 
  

 
                                (4) 

where D  and its derivatives are evaluated at the 
sample point and ( , , )TX x y   is the offset from this 
point. The location of  the extremum, X̂  , is determined by 
taking the derivative of this function with respect to X  and 
setting it to zero, giving 

2 1

2
ˆ D D

X
X X
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 

 
                                          (5) 

The difference-of-Gaussian function will have a strong 
response along edges, even if the location along the edge is 
poorly determined and therefore unstable to small amounts 
of noise. 

A poorly defined peak in the difference-of-Gaussian 
function will have a large principal curvature across the 
edge but a small one in the perpendicular direction. The 
principal curvatures can be computed from a 2 2  Hessian 
matrix, H , computed at the location and scale of the 
keypoint: 

xx xy

xy yy

D D
H

D D

 
  
 

                                          (6) 

The derivatives are estimated by taking differences of 
neighboring sample points. 

Let   be the eigenvalue with the largest magnitude 
and   be the smaller one. Then, we can compute the sum 
of the eigenvalues from the trace of H  and their product 
from the determinant: 

( ) xx yyTr H D D                                      (7) 

2( ) ( )xx yy xyDet H D D D                                 (8) 

In the unlikely event that the determinant is negative, 
the curvatures have different signs so the point is discarded 
as not being an extremum. Let r  be the ratio between the 
largest magnitude eigenvalue and the smaller one, so that 

r  . Then, 
2 2 2 2

2

( ) ( ) ( ) ( 1)

( )

Tr H r r

Det H r r

   

 

  
                        (9) 

which depends only on the ratio of the eigenvalues 
rather than their individual values. The quantity 

2( 1)r r  
is at a minimum when the two eigenvalues are equal and it 
increases with r . Therefore, to check that the ratio of 
principal curvatures is below some threshold, r , we only 
need to check 

2 2( ) ( 1)

( )

Tr H r

Det H r


                                     (10) 

C. Orientation assignment 
By assigning a consistent orientation to each keypoint 

based on local image properties, the keypoint descriptor can 
be represented relative to this orientation and therefore 
achieve invariance to image rotation.  

The scale of the keypoint is used to select the Gaussian 
smoothed image, L , with the closest scale, so that all 
computations are performed in a scale-invariant manner. For 
each image sample, ( , )L x y , at this scale, the gradient 
magnitude, ( , )m x y , and orientation, ( , )x y , is 
precomputed using pixel differences: 

2 2( , ) ( ( 1, ) ( 1, )) ( ( , 1) ( , 1))m x y L x y L x y L x y L x y                  

(11) 
1( , ) tan (( ( , 1) ( , 1)) ( ( 1, ) ( 1, )))x y L x y L x y L x y L x y                  

(12) 
D. The local image descriptor 

A keypoint descriptor is created by first computing the 
gradient magnitude and orientation at each image sample 
point in a region around the keypoint location. Figure 3 
illustrates the computation of the keypoint descriptor. First 
the image gradient magnitudes and orientations are sampled 
around the keypoint location, using the scale of the keypoint 
to select the level of Gaussian blur for the image. In order to 
achieve orientation invariance, the coordinates of the 
descriptor and the gradient orientations are rotated relative 
to the keypoint orientation. 

III.  FEATURES MATCHING 

The first step in the panoramic recognition algorithm is 
to extract and match SIFT features between all of the 
images. SIFT features are located at scale-space 
maxima/minima of a difference of Gaussian function. At 
each feature location, a characteristic scale and orientation is 
established. This gives a similarity-invariant frame in which 
to make measurements. Although simply sampling intensity 
values in this frame would be similarity invariant, the 
invariant descriptor is actually computed by accumulating 
local gradients in orientation histograms. This allows edges 
to shift slightly without altering the descriptor vector, giving 
some robustness to affine change. The vector of gradients is 
normalised, and since it consists of differences of intensity 
values, it is invariant to affine changes in intensity. 

Assuming that the camera rotates about it’s optical 
centre, the group of transformations the images may 
undergo is a special group of homographies. We 
parameterise each camera by 3 rotation angles 

1[ ]    ２ ３ and focal length f . This gives pairwise 
homographies i ij ju H u   

1T
ij i i j jH K R R K                                        (13) 

Where 

0 0

0 0

0 0 1

i

i i

f
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 
 
 
  

                                        (14) 

and (using the exponential representation for rotations) 

[ ]i

iR e   ， 
3 2

3 1

2 1

0

[ ] 0

0

i i

i i i

i i

 
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 


 
  
 
  

                        (15) 

However, for small changes in image position 
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or equivalently i ij ju A u  , where 

11 12 13

21 22 23

0 0 1
ij

a a a

A a a a

 
   
  

                                     (17) 

is an affine transformation obtained by linearising the 
homography about 0iu . This implies that each small image 
patch undergoes an affine transformation, and justifies the 
use of SIFT features which are partially invariant under 
affine change. 

Once features have been extracted from all n  images 
(linear time), they must be matched. Since multiple images 
may overlap a single ray, each feature is matched to it’s k  
nearest neighbours (we use k = 4). This can be done in 
O ( logn n ) time by using a k-d tree to find approximate 
nearest neighbours. 

IV.  THE RESULT OF THE  SIFT FEATURES EXTRACTION AND 

MATCHING 

Figure 4 shows the image of teeth models form three 
angles.  

Figure 5 shows the SIFT features of each images. There 
have 756 features in (a), 1034 features in (b) and 700 
features in(c). 

Figure 6 shows the features match between each images. 
There have 115 matches between(a)and(b), 33 matches 
between (a) and (c), 161 matches between (b) and (c). 

It can be seen from the result: the SIFT mothed can 
extract many features, and the matching method can match 

the features very well, there has little wrong matches, which 
can provide available parameters for the 3D reconstruction 
of the teeth. 

    

V. CONCLUSIONS  

This paper reported the using of the computer 
technology in oral medicine. Using the SIFT algorithm in 
the image of teeth model, which can detect the features in 
the teeth image effectively. Using the KNN algorithm to 
match the fetures, which can offer correct parameters for the 
three-dimensional reconstruction. 
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Figure1. the transformation from image space to scale space            Figure 2. the extremum detection of the DoG scale space 

 

Figure 3. the computation of the keypoint descriptor 
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(a)                                       (b)                                    (c) 

Figure 4. the image of teeth models form three angles 

 
(a)                                       (b)                                    (c) 

Figure 5. the SIFT features of each images 

 
(a,b)                                     (a,c)                                    (b,c) 

Figure 6. shows the features match between each images 
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