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Abstract. The positioning technology is of vital importance in Wireless Sensor Networks (WSNs), 

and its accuracy based on particle swarm optimization (PSO) is low. Therefore, this paper considers 

the problem of low positioning accuracy and slow speed of convergence by proposing a honeycomb 

shape localization algorithm based on Levy-PSO. First, the communication distance and ranging 

error analysis shows that there is an optimal length can improve localization accuracy. Then, the 

localization area is divided into several honeycomb sub-regions with the optimal length. The 

unknown node communicates with at least six beacon nodes to ensure the reliability of the results. 

And these honeycomb sub-regions develop their environmental parameters which are calculated 

from the least squares fitting method. Last, we develop the PSO algorithm with Levy flight 

mechanism. The simulation results are show the way this algorithm could improve the positioning 

accuracy in order to have better stability,  

1 Introduction 

With low cost and power consumption advantages, the distributed and self-organization, wireless 

sensor network has rapid development. Due to Wireless sensor network is an event monitoring 

network, self-localization of senor nodes is a highly desirable feature, where the collected data are 

insignificant without getting the location of these data [1]-[3]. Because the positional information 

are not only obtain where data are coming from, but track a moving target and predict it direction. 

It’s urgent to study how we can more accurately grasp the location of target. 

In the case of the node estimation mechanism, positioning algorithm has two categories: one is 

range-based, the other one is range-free [4], which are divided by whether the positioning process 

needs to measure the actual distance or angle between the nodes. In the range-based algorithm, the 

methods of measuring the distance or orientation between nodes are TOA (Time of Arrival), RSSI 

(Received Signal Strength Indication) and AOA (Angle of Arrival) [5-6]. In recent years, the 

researchers used the genetic algorithm, the least square method, the particle swarm optimization 

algorithm for the research of node localization technology in wireless sensor network [7-10]. Due to 

particle swarm optimization algorithm has problems of slow convergence speed, fall into local 

minimum point easily and premature convergence, which makes difficult for positioning 

performance promotion. 

2 The Improved Algorithm Designs 

From analyzing the triangle centroid algorithm, this algorithm concludes three stages: the analysis 

of communication distance and ranging error; the division of positioning area with optimal 

communication radius; the Levy-PSO localization. 

2.1 The Division of Positioning Area. The positioning area is divided into honeycomb regions, 

which beacon nodes are distributed on the vertex of sub-region. The layout shows in Figure 1. The 

coordinates of beacon nodes are set as (1) and (2), in which X is the value of horizontal axis and Y is 

the value of vertical axis. 
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We already know the communication distance has relation to ranging error, so the sub-regional 

length of honeycomb use the optimal value—5m. As a result, the unknown node communicates 

with at least six beacon nodes. 

 
Figure 1. The honeycomb shape layout of beacon nodes 

 
Figure 2. The nodes distribution of parameters fitting 

 As is shown in Figure 2, the environmental parameters of sub-region develop the least squares 

fitting. Where
0P is the unknown node, placed in the centroid position of honeycomb sub-region. The 

experimental data is the mean of RSSI value getting from beacon nodes
1 6~P P . Establish a table that 

is the relationship between beacon nodes and sub-regional environmental parameters. The steps of 

sub-regional fitting as follows: 

(1)  The number of sampling points sets m; sampling points are   , 1,2, ,i ix y i m ( iy is the RSSI 

value when x is ix ); 

(2) The fitting function  p x  contains a group of continuous functions 
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(3) Establish a bias squares function: 1 2( , , )sJ a a a ; 
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(4) There is a system of linear equations about 1 2, , sa a a .To solve function J of the minimum 

value is the equal of 1 2, , sa a a , which the partial derivative is zero.  
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So the final fitting function is ' '( ) 10 lg( )P x A n x  , where 'A  and 'n  are environmental parameters 

after fitting respectively. 

2.3 Levy-PSO Localization. Flight Levy mechanism is a kind of Markov chain, which 

characterizes the step size that should meet the Levy condition. Where n is the dimension of the 

solution, and the gamma function is
1

0
( ) exp( )* ( )bb t t d t


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On the basis of the particle swarm optimization algorithm, the random Levy flight mechanism is 

introduced in this paper to adjust the particle trajectory, which not only helps to get out of the local 

optimum, but also gets better convergence when the particles are in the global optimum. Its main 

function is that when the particles move in a small range near the local optimum, the jump of a large 

step can be given out. In the space of D dimension, the formula for the velocity V and the position X 

of the particle at the time of T is improved: ( 1) ( ) 1*( ( ) ( )) 2*( ( ) ( ))d d d dv t v t c Pi t x t c Pg t x t           (9) 

( 1) ( ) ( 1) * ( 0.5)* ( )d d dx t x t v t sign rand levy                                                 (10) 

The specific steps of the PSO algorithm with the Levy flight mechanism are as follows: 

(1) The initial solution and velocity value of each particle in the setting dimension are generated 

according to the size of the population; 

(2) According to the fitness equation, the fitness value of each particle is calculated, and the 

optimal value of each particle is selected, and the optimal value of the particle is compared; 

(3) Update the speed of each particle in accordance with the (9) formula given above, and limit 

the speed to a certain extent; 

(4) Update the position information of each particle in accordance with the (10) given above, and 

place the position limit in the definition of the fitness function; 

(5) When obtained fitness value is less than the required number of iterations and the number of 

iterations is not specific, and then return to step (2). 

3 Simulation and Test 

In order to describe the performance of the algorithm, we compare it with the standard PSO 

localization algorithm under different influences of communication distance and regional 

segmentation. In this simulation, the following testing conditions are assumed. The senor area is 

60m*60m and divided into several honeycomb regions. Senor nodes and anchors are distributed on 

the vertex of sub-region. The radius of honeycomb sub-region is set to 5m. The positioning interval 

of receiving node is 1sT  .  

3.1 The Selection of Parameters. The effect of inertia weight is to keep the particle's motion 

inertia. Small w value can make particles to find the optimal solution in local space, while larger 

particles can search bigger space to find the global optimal solution. Figure 3 describes the inertia 

weight of the influence of average position error (Gaussian random variable is , the maximum 

number of iterations is ). It shows that the average error is significant when w is ranging from 0.1 to 

0.5. When w belongs to 0.5-0.7, the average error is sharply decreasing. But when w value is over 
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0.7, the average error curve keeps smooth trend. Therefore, this paper uses the inertia weight w is 

0.7. 

 
Figure 3. Average ranging error according inertia weight w 

The appropriate iteration number is helpful to shorten the algorithm running time and improve 

the efficiency of positioning. But the maximum iteration number often makes the algorithm cycle 

operation until the maximum number of iterations, which has the optimal value already. It reduces 

the real-time performance of the algorithm. When Gaussian random variable is (0,9)N  , inertia 

weight w is 0.7, measure different situation in the different maximum iteration number. Figure 4 

shows that the average error is decreasing with the M value are ranging from 50 to 200. When M 

belongs to 200-500, the average error curve keeps smooth trend. Therefore, this paper uses the 

maximum iteration number M is 300. 

 
Figure 4. Average ranging error according max iteration number M 

3.2 Communication Distance. The standard PSO localization algorithm based on RSSI without 

considering the influence of the communication distance. As is shown in Figure 5, there exists the 

relationship between communication distance and ranging error. The optimal communication 

distance is 5m. Thus we compare PSO algorithm and this article algorithm under the numbers of 

network connectivity and beacon nodes ratio. 

 
Figure 5. Relationship between communication distance and ranging error 

 (1) In order to obtain the index of network connectivity, we can adjust the communication 

beacon radius of nodes under the same number of nodes. Measure the RSSI values in every case of 

10 times and average them. Because of the communication radius is changing randomly, the final 

result is the average positioning error ratio that is the mean divided by the average communication 
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radius.  

 
Figure 6. Average ranging error according network connectivity ratio 

A performance comparison between the two algorithms shows the average ranging error in 

Figure 6. When the network connectivity is ranging from 5 to 25, the average ranging error of two 

algorithms has a sharply decreasing with the increase of network connectivity. On the contrast, the 

proposed algorithm will keep its location error bounded in a lower level when the network 

connectivity is over 25. As a result, when the communication distance is over 5m, the curve of 

ranging error will tend to be smoothness. That is to show how too long communication distance 

cannot lower the ranging error. 

(2) Furthermore the influence of the beacon nodes ratio on the average ranging error was 

investigated. Keep the same nodes number and nodes radius, the ratio of beacon nodes is accounted 

for 20%, 22.5%, 25% ...... 50% to the total number. Test each case 10 times and the final result is 

the mean. Figure 7 presents the average ranging error drawn over the ratio of beacon nodes. 

 

Figure 7. Average ranging error according beacon nodes ratio 

Figure 7 presents the relationship between average ranging error and beacon nodes ratio. There is 

a sharp decrease from 30% to 50% when use the proposed algorithm. Due to the number of beacon 

nodes influence the hardware cost, the proposed algorithm is more adapted to the needs of indoor 

positioning. 

3.3 Regional Segmentation. For triangle centroid localization algorithm, unknown nodes must 

communicate at least with three beacon nodes. Calculate the estimated distance based on three 

reference nodes to achieve positioning. However, the proposed algorithm reduces the positioning 

error caused by disturbances, which uses sub-regional environmental parameters respectively. 

Figure 7 is a comparison of three cases: (1) The triangle centroid algorithm, which develops the 

classic environmental parameters without weighted operation; (2) The WTCLA algorithm, 

developing the local environmental parameters and weighting the RSSI values; (3) This article 

algorithm, using the sub-regional environmental parameters and weighting the RSSI values. 
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Figure 8.  Ranging error according regional segmentation 

From Figure 8, it can be observed that the regional segmentation has great influence on the 

localization performance of wireless senor nodes. When we developed the classical parameters in 

the whole testing area, the measured maximum is 1.38m and the average error is 1.23m; however, 

the measured maximum is 0.57m and the average error is 0.40m when used the local environmental 

parameters. The positioning accuracy is increasing by 67.15% compared with the WCTLA 

algorithm. This shows that the classical environmental parameters cannot be applied to all 

sub-regions. Hence using the independent environmental parameters have a very significant effect 

on positioning error reducing. 

4 Conclusions 

This paper has proposed a honeycomb shape localization algorithm based on Levy-PSO. In this 

algorithm, the communication region of beacon nodes is divided into honeycomb sub-regions. Then 

sub-regional parameters use the least squares fitting and calculated optimal localization by PSO 

method based on Levy flight mechanism. Comparing to standard PSO algorithm, the proposed 

technique has higher accuracy and energy efficiency. The performance analysis of the proposed 

positioning scheme is also provided in the paper. In the future, we plan to combine other range-free 

algorithms and explore them into the honeycomb algorithm based on Levy-PSO. 
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