
Design and Implementation of Single-Phase Inverter Based on
Lightweight TCP/IP Protocol

Botao Zhang1, a and Hongwei Xiao1, b
1Department of Computer Science and Technology, Wuhan University of Science and Technology,

Wuhan, 430065, China

azhangbt2000@163.com, b850664316@qq.com

Keywords: Lightweight TCP/IP protocol stack; Linux; Embedded; CAN; Single-phase inverter

Abstract. As for resource-limited embedded devices, lightweight TCP/IP protocol (LwIP) is used

for communication in order to meet real-time requirements of embedded devices. This paper offered
and implemented a single-phase inverter solution based on lightweight TCP/IP protocol. The

designed hardware circuit of the master control board is equipped with the AM3352 as its core
while the hardware circuit of slave control board uses TMS320F28335 as its core. The master and

slave control boards are equipped with CAN communication module, digital and analog gathering
module, extended Ethernet, PWM module, RS232/485 and other peripheral interfaces. The master

control software completes tasks in the embedded Linux OS including setting the various system
parameters and processing and converting data. The slave control software receives data from

master control software, controls the single-phase inverter by using the PWM module, gathers the
voltage and current changes in the inverter. Finally, the gathered data are fed back to the master

control software. Test results show that the system enjoys the advantages of easy manipulation,
outstanding real-time performance and stable operation, which can satisfy practical application.

Introduction

With the extensive application and development of embedded technology and network technology

in the field of industrial control, more and more embedded devices are required to realize the
function of intercommunication with Internet

[1]
. Concerning the realization of the network

interconnection, the key step is to apply TCP/IP protocol stack to the embedded devices. However,
as resources are limited in embedded devices, the open source TCP/IP protocol stack is thus applied

in order to reduce the memory usage. As for the open source TCP/IP protocol, it is derived from
BSD TCP/IP

 [2]
, mainly including LwIP, uIP, uC/IP, TinyTcp, etc

 [3-4]
. Lightweight TCP/IP protocol

stack (LwIP)
[5]

 is an open source TCP/IP stack for embedded systems and can be transplanted into a
variety of embedded OS such as Linux and μCOS. It can also be run in an OS-free bare computer
[6]

.
[Reference 7] proposed the application of LwIP protocol in embedded remote monitoring

terminals. That is the transplanting of LwIP protocol into the real-time operating system μCOS-II to
realize the communication between the server-side and the gathering and controlling modules.

[Reference 8] proposed the application of LwIP protocol in the embedded power monitoring system,
namely, transplanting LwIP protocol into embedded OS μCLinux to realize the communication

between the power supply system's remote monitoring software and its control module. This paper
proposed a solution for controlling single-phase inverter based on LwIP protocol. Firstly, the ARM

processor was used as the core and the LwIP protocol was transplanted into the Linux system. Then,
the voltage and current data of single-phase inverter collected from the control module was sent,

through DSP processor and CAN module, to the ARM processor. Finally, the data were sent by the
LwIP protocol to the monitoring client.

7th International Conference on Education, Management, Computer and Medicine (EMCM 2016)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 59

11

System Framework Design

The system is mainly composed of the master control module, the slave control module, the
single-phase inverter module and the client computer. The system block diagram is shown in Fig. 1.

Master

Control

Module

Slave

Control

Module

Transducer

Single-phase

inverter

PWM

CANLwIP

AD

Client

Figure 1. System Block Diagram

The master controller and the slave controller serve as the core parts of the system. Firstly, the
controller outputs square waves through PWM module to control the single-phase inverter. Then,

detection data from the sensor are received and sent out through the CAN bus. The master control
board equipped with Linux system firstly runs the master control software to rece ive CAN data

packets from the slave controller. Then, the client receives the data of the main controller through
LwIP protocol to fulfill real-time data display and real-time setting of master control board's

parameters.

System Hardware Design

The chip of the system's main controller is TI's Cortex-A8 32-bit processor AM3352 with an
operating frequency up to 800MHz. It supports Linux OS and is outfitted with plenty peripheral

interfaces, featuring high reliability and low power consumption. Master controller's hardware
circuit mainly includes such modules as the clock circuit, reset circuit, power supply, RTC module,

Ethernet module, CAN module, AD acquisition module, RS485 interface and 128MB DDR2
SDRAM. Its block diagram is shown in Fig. 2.

CAN

Interface

MCU

AM3352

RS485

Ethernet

Interface

RTC

Interface

AD Collection

Module

DDR2

SDRAM

Power

Clock and

Reset

Module

Figure 2. Block Diagram of the Master Controller's Hardware

The slave controller's chip is TI's 32-bit floating-point DSP TMS320F28335 of C2000 series
with a frequency up to 150MHz, mainly used in areas of motor control and power equipment

control. Slave controller's hardware circuits consist mainly of the clock circuit, reset circuit, CAN
module, AD module, power supply, PWM module, and RS232 interface. Its block diagram is

shown in Fig. 3.

Advances in Computer Science Research, volume 59

12

CAN

Interface

MCU

TMS320F28

335

RS232

AD

Collection

Module

PWM

Module

Power

Clock and

Reset Module

Figure 3. Block Diagram of the Slave Controller's Hardware

Ethernet Module. Ethernet module uses MICREL's Gigabit Ethernet PHY chip KSZ9031RNI.

The chip supports 10M/100M/1000Mbps Ethernet transceiver and provides RGMII interfaces with
3.3V and 1.2V power supply. Its network socket is the built-in network transformer HY911130AE.

Ethernet module's principle is shown in Fig. 4.

AM3352

MII_MDC
MII_MDIO

GPMC_A0
GPMC_A1
GPMC_A2
GPMC_A3

GPMC_A4
GPMC_A5
GPMC_A6
GPMC_A7

GPMC_A8
GPMC_A9

GPMC_A10
GPMC_A11

nRSTOUT

TX_EN
RX_DV
TXD3
TXD2

TXD1
TXD0
TX_CLK
RX_CLK

RXD3
RXD2
RXD1
RXD0

MDIO
MDC
RESET_N

TXRXP_A

TXRXM_A

TXRXM_B
TXRXP_B

TXRXP_C
TXRXM_C
TXRXP_D

TXRXM_D

KSZ9031RNI

LED1
LED2

MX1+
MX1-
MX2+
MX2-

MX3+
MX3-
MX4+

MX4-

G-LEDN
Y-LEDN

HY91130AE

Figure 4. Diagram of Ethernet's Circuit Schematics

System Software Design

As shown in Fig 5, the process is specifically divided into three steps :(1) Transplanting of the

LwIP protocol into Linux OS. (2)Development of KSZ9031RNI's device driver. (3)Development of
the server-side program of the network's upper port.

Software Platform Transplanting. Before writing the system simulation layer of LwIP, a
header file cc.h shall be added to the source code. The cc.h mainly defines environment variables

and data type declaration files related to hardware platforms and compilers. Data types used by
LwIP are defined as u8_t, s8_t, u16_t, s16_t, u32_t, s32_t and mem_ptr_t. sys_arch.h and

sys_arch.c are added to the source code to implement the LwIP simulation layer. In both files, the
main fulfillments are the semaphore functions, message queue functions, timeout processing

functions and new-created thread functions.

Advances in Computer Science Research, volume 59

13

Upper Application

LwIP

Network Protocol Stack

Linux Operating System
KSZ9031RNI

System Driver

Clock AM3352 KSZ9031RNI

Hardware

Software

Figure 5 System Software's Architecture

Implementation of Semaphore Manipulation Functions.The Semaphore Manipulation

Functions needed to be implemented mainly include sys_sem_new () establish and echo a semaphor
-e; sys_sem_signal () send semaphore; sys_sem_free () release semaphore;sys_arch_sem_wait()

wait for the specified semaphore and block the thread.
In Linux, semaphore manipulation functions are also provided. Semaphore manipulation

functions of Linux are declared in sys/seem. Semaphore manipulation functions of Linux mainly
include:(1) the creation function of semaphore set: semget;(2) the initialization and deletion

function of semaphore set: semctl ;(3) the release and application function of semaphore set: semop.
The only effort needed is to package Linux semaphore manipulation functions into the

corresponding LwIP semaphore manipulation functions.
Mailbox Manipulation Functions.Mailbox is used to deliver messages. The user can implement

it as a queue, allowing both multiple messages and single message to be delivered to the mailbox.
Both ways can be run properly by LwIP. Message queue manipulation function of Linux can also

be used to achieve the mailbox manipulation function of LwIP. The message queue manipulation
function of Linux is declared in the sys/msg.h.

Mailbox manipulation functions of LwIP needed to be implemented mainly include:sys_mbox_
new () create an empty mailbox; sys_mbox_free() release a mailbox; sys_mbox_post() post

messages to the specified mailbox;sys_arch_mbox_fetch() receive messages in the specified
mailbox, this function will block the thread until it times out or the mailbox receives at least one

message.
Message queue manipulation functions of Linux are mainly:(1)Message queue creation function:

msgget;(2)Message queue deletion function: msgctl;(3)Message delivery function: msgsnd ;(4)
Message receiving function: msgrcv.

The same effort is also needed to package the message queue manipulation functions of Linux
into the corresponding mailbox manipulation functions of LwIP.

Thread Manipulation Functions.Linux provides a powerful thread manipulation function,
declared in pthread.h.

The thread mani pulation function's main task is to create a new thread for sys_thread_new().
sys_thread_new() calls the pthread_create () and the pthread_attr_setschedparam () to create a

new thread and to assign their priorities.
Implementation of the Timeout Function.LwIP provides a timeout attribute for each thread

connected with the network. After the specified time, the thread will call the sys_arch_timeouts()
function which is mainly used to obtain the pointer of the sys_timeouts structure used by the current

thread. The sys_arch_timeouts() first determines the priority of the thread and then judges whether
this priority is within a reasonable range. If it is, the pointer of the sys_timeouts structure used by

the current thread is returned.
Implementation of the KSZ9031RNI Network Interface Card Drivers.The implementation

of underlying drivers depends on the network interface card (NIC) chips used by the hardware. Chip

Advances in Computer Science Research, volume 59

14

manufacturers offer rich driver functions. For transplantation, you only need to encapsulate these

interface functions and encapsulate received data packets into data structures that LwIP protocol
stack is familiar with. This paper uses the KSZ9031RNI NIC chip. According to the driver file

reference template ethernetif.c given by the LwIP kernel file, the main job of driver transplantation
is to implement the ethernetif.c function.In LwIP, each network interface attribute corresponds to

one struct netif in which netif includes the attribute, receiving and sending functions, and
interruption handling function of that network interface. LwIP calls the netif methods netif->input()

and netif->output() to receive and send Ethernet packets.
The drivers work at the network interface layer of the IP protocol model. It provides interface

functions such as ethernetif_init(), ethernetif_input(), and ethernetif_output() for the IP layer to
complete initializing, receiving, sending, and interruption handling tasks.Fig. 6 shows the driver

interface data flow of LwIP.

netif_output netif_input

ethernetif_init

low_level_init

ethernetif_output

low_level_output

ethernetif_input

low_level_input

EMCInit EMACPacketSend EMACPacketReceive

Send
Receice

Figure 6. Driver interface data flow of LwIP

Ethernetif_init() is called when the network interface is established. It initializes the underlying

interface, sets the function pointer, calls low_level_init(). It also sets the MAC address to the netif->
hwaddr array, sets the MTU value, calls the EMACInit() function, and completes the KSZ9031RNI

chip initialization.When a network chip interruption occurs, the system enters into the interruption
handler function, sends a semaphore through sys_sem_signal() through the receiving handler thread

which, by using the low_level_input() function, calls pbuf_alloc to apply for a buffer of pbuf and
calls EMACPacketReceive() to copy the packet data from KSZ9031RNI's receiving buffer to the

buffer. Finally, it returns the pointer of pbuf to the ethernetif_input () function which then checks
whether the data packet type is ARP or IP. If it is IP, the ARP table is updated and the netif->input ()

of the driver interface transfers data to the transmission layer. The transmission layer then sends
data to the network layer through the netif->output() function.

Development of Upper Server Program.Network upper-layer server program allows a client to
be connected with the server through the LwIP protocol stack and receive data sent by the server.

The server-side task uses the tcp_new() function to establish a connection, the tcp_bind() function
to bind the IP address and server port number, and the tcp_listen() function to monitor and wait for

the connection. The tcp_accept() function waits for the semaphore of the connection. Once the
connection comes, the function will return the tcppcb structure. The tcp_recv () function obtains the

data pointer of the connection and uses tcppcb_data () to point data at the location of the data so that
the network data can be processed. After use, the tcppcb_delete () function deletes this data

structure and finally the tcp_close() closes this connection.

System Operational Results

The experiment tests the output current oI , reference voltage rU , and output voltage oU at full

load and half load.

At full load, the reference voltage and the output voltage collected by the voltage sensor are

Advances in Computer Science Research, volume 59

15

listed in Table 1. The output current collected by the current sensor is listed in Table 2. In the

experiment, there are 32768 reference values for the reference voltage, the output voltage, and the
output current collected by the voltage and current sensors. The tables give the typical data values.

Table 1 Reference values of the reference voltage and actual voltage

Reference values of voltage

 1 2 3 4 5

U r
 3900 4000 1000 -2000 -4000

U o
 3855 4080 1090 -2088 -4100

Table 1 lists the collected reference voltage and output voltage data at full load.The voltage
waveforms generated by MATLAB are shown in Fig. 7.

Figure 7. Waveforms of reference voltage and output voltage

Table 2 Actual current reference value

Reference value of current

 1 2 3 4 5

I o
 3982 4000 2680 -2980 -4000

Table 2 lists the output current data at full load. The current waveform generated by MATLAB is
shown in Fig. 8.

Advances in Computer Science Research, volume 59

16

Figure 8. Waveform of output current

At half load, the reference voltage and output voltage collected by the voltage sensor are listed in
Table 3 and the output current collected by the current sensor is listed in Table 4.

Table 3 Reference values of the reference voltage and actual voltage

Reference values of voltage

 1 2 3 4 5

U r
 -500 -4000 1000 4000 2000

U o
 0 -2988 -4000 1000 4000

Table 3 lists the collected reference voltage and output voltage data at half load. The voltage

waveforms generated by MATLAB are shown in Fig. 9.

Figure 9. Waveforms of reference voltage and output voltage

Table 4 Actual current reference value

Reference value of current

 1 2 3 4 5

I o
 -800 -2000 1800 2000 500

Table 4 lists the output current data at half load. The current waveform generated by MATLAB is

Advances in Computer Science Research, volume 59

17

shown in Fig. 10.

Figure 10. Waveform of output current

Summary

This paper implements control of single-phase inverter using the LwIP protocol stack. The whole
system shows good stability in communication and display. However, in terms of data packet

transmission, packet loss problem will arise which needs to be further and deeply studied in
follow-up work.

References

[1] Jie Zhang, Ming Fu, Transplanting and Implementation of LwIP Protocol Stack in Embedded

Linux [J]. Microcomputer Information(2011)94-96.

[2] Chuanxiong Guo, Shaoren Zheng. Analysis of Queuing at IP Layer of TCP/IP Network

Protocol in Linux Operating System[J].Chinese Journal of Computers(2001)860-865.

[3] Jianping Wang, Chenfei Zhou, Chenghui Zhu et al. A ZigBee-TCP/IP Seamless Gateway

Model[J].Journal of Hefei University of Technology(Natural Science)(2013)1058-1062.

[4] Huabing Chen. Study of Extension and Task Scheduling Algorithms Based on μC/OS-II

Module [D] .Wuhan University of Technology(2007).

[5] Deqiang Han, Qishan Yang, Zongxia Wang et al.. Transplanting and implementation of LwIP

protocol stack based on μC/OS-III[J]. Electronic Technology Application(2013)18-21.

[6] Zhongshu Yuan, Yang Lu. Analysis and Optimization of Lightweight TCP/IP Protocol Stack

Mechanism[J]. Computer Engineering(2015)317-321.

[7] Luoqing Gao, Yuanchang Zhuang. Research and Implementation of embedded Remote

Monitoring Terminals Based on LwIP Protocol[J]. Computer Technology and Application
(2015)49-51.

[8] Lixia Wang, Design of Embedded Power Source Monitoring Systems based on Ethernet
[J].Chinese Journal of Power Sources(2014)973-974.

[9] Guoping Liu, Jiao Sun, Yunbo Zhao. Design Analysis and Real-time Implementation of
Networked Predictive Control Systems[J]. Acta Automatica Sinica(2013)1769-1777.

[10] Yun Li, Xiaojuan Zhao, Bo Zhang, Improvement of TCP Performance in Long Term Evolution
[J]. Computer Application(2012)3474-3477.

Advances in Computer Science Research, volume 59

18

