
Review of Verification Methodologies for Dynamic Reliability Block
Diagram

Jiacong Zhao1, a *, Dongzhao Zhou1, b, Shuang Gao and Yao Li1, c
1Dalian Neusoft University of Information, Dalian, China

azhaojiacong@neusoft.edu.cn, bzhoudongzhao@neusoft.edu.cn, cgaoshuang@neusoft.edu.cn,
liyao@neusoft.edu.cn

Keywords: Dynamic reliability block diagrams; Markov chain; Object-Z; Colored petri nets;
Verification methodology

Abstract. Reliability modeling tool Dynamic Reliability Block Diagrams (DRBD) is widely used in

modeling reliability of large and complex system. It gains highly achievement of dynamic behaviors

like dynamics, dependencies, redundancy and load sharing. In order to guarantee the modeling

results of DRBD are correct, widely used verification methodologies like Markov chain, Binary

Decision Diagrams (BDD), Object-Z and Colored Petri Nets (CPN) are introduced to verify the

DRBD model. The achievement of behavioral properties of DRBD, states and events modeling,

whether the method is user-friendly to all kinds of system, whether the modeling process is

productive, formal and automatic, whether there are formal tools to check the verification result of

DRBD are picked as criteria to evaluate and compare these verification methods. The evaluation

shows CPN is the best method.

Introduction

As the widely use of computer system in diverse industries, the requirement for achieving the

reliability of large and complex system is increasingly important. It is stated that a system is

composed by components and these components are designed to achieve desirable performance [1].

It indicates that the reliability of a system is directly affected by the arrangement, quantities and

qualities of these components [1]. In this situation, many tools which are focused on components

modeling are proposed to model the system reliability, such as Reliability Block Diagram (RBD)

[2], Fault Tree (FT) [3] and Dynamic RBD (DRBD) [1,4,5]. Comparing with alternative tools, the

evaluation results in [4,5] have shown that DRBD is the most productive and accurate method. The

whole process for DRBD to model complex and large systems is summarized as following steps:

system specification, sub-systems identification, structural linking, dynamic linking and reiteration

[6]. Although this multiple steps process can models all components and behaviors of the system,

flaws and faults are easily introduced in this complex process [5]. Thus, methodologies like Markov

Chain (MC) [9], Petri Net (PT) [5] and Colored PN (CPN) [5,6,7] are used to verify DRBD to

guarantee the accurate reliability modeling result. Based on the evaluation and comparison of

DRBD's behaviors properties summarized in [1,4,5,8], this report takes the position that comparing

with alternative tools, CPN is the most productive and accurate method to verify DRBD. The

following parts will firstly give a explanation of DRBD model, then describes three widely used

DRBD verification methodologies. The next part will give the comparison and evaluation of these

methodologies. And finally turn to the conclusion.

DRBD

DRBD shares the same theory with RBD in terms of static behaviors modeling [1,4,5,6,8], but

distinguishes itself by introducing different kinds of controller blocks [4,5] which are based on the

state-events working mechanism [4,6] to analyze dynamic behaviors. RBD graphically figures out

arrangement of system components and connections [10,11]. It decides the overall system reliability

by analyzing the given reliability of each component [10,11] and components' connections. Fig.1

7th International Conference on Education, Management, Computer and Medicine (EMCM 2016)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 59

1396

shows a basic example of RBD. It shows the serial connections [1,11] between components A and

B, and the parallel connections [1,11] between C and D within B. Hence, one component of DRBD

is named as State-based reliability block (SRBD) [1,4,5] which does the same work as RBD.

Controller blocks deal with dynamic behaviors and they are based on the state-event mechanism [5].

Briefly, DRBD characterizes each component's condition with states and states' evolution with

events [1,5,7,8]. In time-variant systems, every component's condition is changing as time passes

[8]. Correspondingly, the component's state is changing among Active, Standby and failed (Fig.2)

[8]. Component works without problem is Active, while failure of component is represented by

Failed. Standby means the component is not work and has no effect on the system [4,5,6].

Additionally, Standby is divided into hot-standby, warm-standby and cold-standby [4]. Then, event

is classified into four categories: Failure, Weak-Up, Sleep and Repair [4,5,6,8]. State that exchanges

from Active/Standby to Failed is Failure [4]. State evolves from Active/Standby to Active is Weak-

Up [4]. Sleep is the transformation from Active/Standby to Standby [4]. Repair describes state from

Failed to Standby/Active [4]. Fig.3 [4] shows a more comprehensive DRBD state-events working

mechanism, but without Repair (sometimes the failure cannot be back-up). It describes all the states

(represented by rounded rectangles) and the events (described by directed arcs) among states. In

conclusion, based o n this state-events mechanism, the process for DRBD to model system

reliability is mainly achieved by three aspects:

Characterizing components by states: Active, Standby and Failed [4, 8].

Specifying components' static connections (structure relationships): Serial, Parallel and Hybrid

structure [12].

Specifying components' dynamic connections (reliability relationships) by events: Failure,

Weak-Up, Sleep and Repair [4,8,12].

C

D

A

B

 Figure 1. Basic RBD structure Figure 2. Basic DRBD State-Event Mechanism

Figure 3. Complete DRBD State-Event Mechanism

Verification Methodologies for DRBD

In order to guarantee the target system's reliability properties are represented without problems in

DRBD model. In this situation, formal methodologies are proposed to verify DRBD [13]. Based on

Advances in Computer Science Research, volume 59

1397

current review, these methodologies experienced a long development process. From partly

modeling DRBD's features to comprehensively model all possible behavioral properties. From

manually dealing with the complex verification process to automatically verify DRBD. Based on

current review, the following parts will discuss the three most widely used methodologies for

verifying DRBD: Markov-based combinational method, Object-Z and CPN.

Markov-based Combinational Method. This Markov-based methodology is a combinational

method which verifies static and dynamic parts separately [9]. Its two steps modeling process is

summarized in [9]. Firstly, modeling the whole DRBD model into multi-independent sub-DRBD

modules. These independent modules own their specific blocks which do not appear in other

modules of the system [9]. Additionally, modules who involve dependencies and dynamics are

identified as dynamic modules (controller blocks), others are defined as static modules [9]. Secondly,

using Markov chain to verify controller blocks and binary decision diagrams (BDD) [9] to check

static parts, respectively.

Markov chain verifies states and events in a recursive fashion [9] until tracking all states of

DRBD system. Specifically, the Markov model based on the following equations: (t)=AP(t) [9],

P(t)=[P1(t), P2(t), ..., Pn(t)] [9]. P' represents a set of differential equations. P is the state probability

vector and Pi(t) represents module's probability in state i at time t [9], n is the number of presented

states and A is an transaction rate matrix of n × n [9]. The mentioned set of differential equations is

solved by: ∑(n ,i=1) P (t) = 1 [2]. BDD is a powerful tool for modeling large static systems that with

binary-state: Active and Failed [14]. The reason for using BDD to model the static parts is as the size

of DRBD model increasing the size of Markov is growing exponentially [9]. Hence, BDD is

introduced to fill the gap of Markov chain. Therefore this methodology can deal with DRBD

behaviors properties. However, Markov is not suitable to model large and complex system for the

restriction of recursive mechanism. Furthermore, BDD is only suitable to binary-state systems and

cannot model multi-state systems.

Object-Z. Object-Z is an formal specification language for large and complex systems modular

design [15,16], which enjoys great capabilities in modeling data and state [9]. Both [9] and [17] give

the examples of using Object-Z to specify two kinds of DRBD controller blocks: state dependency

block and spare part blocks. For illustration purpose, Fig.4 [9] and Fig.5 [9] separately shows the

specification of SDEP and SPARE with Event. However, only state schemas are defined, the

operation schemas for modeling dynamic behaviors of gates are missing. Based on the examples, the

process for Object-Z to specify a DRBD model is summarized mainly as following steps. Firstly,

define events of a component with: Activation, Deactivation and Failure [9,17], which corresponding

to a state Active, Standby and Failed. Secondly, defining a state dependency as ActivateTrigger,

DeactivateTrigger, and [9,17]. Thirdly, specifying the whole defined DRBD into Object-Z formal

language. Based on the examples of [9,17]. It can be seen that what Object-Z does is to specify

DRBD components and constructs to formal semantics [9,17]. Although it precisely defines all

possible DRBD behaviors, there is lacking of analyzing and verifying tools to verify Object-Z's

result feasibly and straightforwardly [17].

Advances in Computer Science Research, volume 59

1398

Figure 4. Object-Z Specification of SDEP Block Figure 6. Object-Z Specification of SPARE

Block

CPN. CPN is an extension of PN by adding the Standard Modeling Language (SML) [18]. PN is

an easy to use and graphical representation tool [18, 19], which can graphically define DRBD's states,

events and its behaviors properties [19]. SML deals with data and creates models for all parameters

of the system. It can be seen that CPN can not only graphically model states and events of DRBD,

but represent DRBD model into formal modeling language. The method for verifying DRBD

automatically is proposed in [5]. Hence, based on [5], steps for CPN to verify DRBD are specified as

follows. Firstly, representing all components of DRBD by Backus-Naur form (BNF). Secondly,

proposing Reliability Markup Language (RML) [5] as an interface to link DRBD and CPN. The

RML is extended from the Extensible Markup Language (XML)[5,8,20]. Additionally, the design of

RML is based on BNF definition of DRBD model [5]. Hence, RML can formally represent all the

BNF format based DRBD blocks with formal markup language formats [5,2]. Thirdly, converting

the RM-represented DRBD into CPN. SML is one component of CPN, it is extended from the XML

and shares the same theory with RML. Hence, this step is mainly focus on linking these two XML-

based modeling languages together. This enables the conversion process easily and precisely. Finally,

using the CPN tools [5] to verify the converted CPN. CPN tools can trace CPN model's deadlock

states [5], so as to identify the design flaws and the error states in the CPN model. It is therefore can

be seen that this CPN verification process not only precisely achieve all behaviors of DRBD, but

automate the modeling process which extremely reduces faults, errors and flaws that introduced by

manual work.

Comparison and Evaluation

Based on the behavioral properties of DRBD in [1,4,5,8], its state-events working mechanism and

the whole process of the mentioned three method to verify DRBD. This report picks the following

criteria to evaluate the mentioned three works. Firstly, whether the method can model all DRBD

behavioral properties like dynamic, dependency, redundancy and load-sharing. These three

methodologies can successfully deal with all the properties. Secondly, whether these methods can

Advances in Computer Science Research, volume 59

1399

successfully model all states and events. Both Object-Z and CPN can precisely cover all states and

components of DRBD model. However, the BDD of Markov-based method can only model the

Active and Failed states, but cannot deal with the Standby. This limits it capability to model multi-

state systems. Thirdly, whether the methodology is user-friendly to all systems. The Markov-based

approach is apparently not suitable to large size DRBD system. Object-Z and CPN can be used to all

kinds of DRBD model. Finally, although both Object-Z and CPN describe the DRBD into formal

modeling language to alleviate the subtle flaws. The conversion result of CPN can be modeled by

formal CPN tools automatically. However, Object-Z only specifies the whole DRBD model but

without tools to check the generated Object-Z result.

Based on the working mechanism of DRBD and characteristics of system reliability, the picked

criteria for evaluating and comparing is accuracy, automation, achievement of static and dynamic

features and dynamic behaviors. Table.1 shows the comparison and evaluation of these

methodologies. It shows that BDD, MMDD and MC can only model partly of the whole system of

DRBD. Although the combination of them can model the whole DRBD features, it doses not

overcome the shortcoming of each technique. Object-Z performs well in verifying DRBD, however,

Object-Z only models the state dependency and spare part missing the dynamics and load sharing.

CPN can model DRBD precisely and comprehensively and the covered CPN can verify

automatically. Therefore, currently CPN is the best verification method for modeling DRBD among

the mentioned techniques.

Table 1 Comparison of Verification Methodologies

Criteria

Methodologies

Accur-

acy

Autom-

ation

Static

Modeling

Dynamic

Modeling

Dynamic Behaviors Modeling

dynamics dependencies redundancy
load

sharing

BDD Yes No Yes No No No No No

MMDD Yes No Yes No No No No No

MC No Yes No Yes Yes Yes Yes Yes

MC&BDD No No Yes Yes Yes Yes Yes Yes

MC&MMDD No No Yes Yes Yes Yes Yes Yes

Object-Z Yes Yes Yes Yes No Yes Yes No

CPN Yes Yes Yes Yes Yes Yes Yes Yes

Conclusion

System reliability is achieving increasing attention as the widely use of large and complex

systems, especially computer system. High reliability should be achieved by the accurate and

productive reliability modeling tools and the formal verification methodologies to guarantee the

precise results of these tools. In this situation, DRBD is stated as the most productive reliability

modeling tool, however it introduces flaws easily during the complex modeling process. In order to

guarantee the correct result of DRBD, verification methodologies like MC, Object-Z and CPN are

proposed to deal with the weakness of DRBD. Based on current review, comparing with alternative

methodologies for DRBD verification, CPN not only fully achieve all behavioral properties, states

and events of DRBD, but can identify DRBD's flaws and faults automatically. Thus, this paper

summarized that, based on current review and comparison, CPN is the best formal methodology to

verify DRBD.

References

[1] Distefano, Salvatore, and Antonio Puliafito. "Dynamic reliability block diagrams: Overview of a

methodology." ESREL. Vol. 7. 2007.

Advances in Computer Science Research, volume 59

1400

[2] Rausand, M., and A. Hoyland. "System Reliability Theory: Models and Statistical Methods,

2003."

[3] Vesely, William E., et al. Fault tree handbook. No. NUREG-0492. Nuclear Regulatory

Commission Washington DC, 1981.

[4] S. Distefano and L. Xing. A new approach to modeling the system reliability: dynamic

reliability block diagrams. In RAMS'06 proceedings, 2006, pp. 189-195.

[5] R. Robidoux, H. P. Xu, L. D. Xing, and M. C. Zhou, “Automated modelling of dynamic

reliability block diagrams using coloured Petri nets,” IEEE Trans. Syst., Man, Cybern. A, Syst.,

Humans, vol. 40(2010)No. 2, pp. 337–351.

[6] R. Manian, J. Dugan, D. Coppit, and K. Sullivan, “Combining various solution techniques for

dynamic fault tree analysis of computer systems,” in Proc. 3rd Int. Symp. High-Assurance

Systems Engineering (HASE’98), Washington, D.C., USA, 1998, pp. 21–28.

[7] Distefano S, Puliafito A. Dynamic reliability block dagrams: overview of a methodology. In:

Proceedings of the safety and reliability conference (ESREL07); 2007.

[8] S. Distefano and A. Puliafito, “Dependability Evaluation with Dynamic Reliability Block

Diagrams and Dynamic Fault Trees,” IEEE Trans. Dependable Secur. Comput., vol. 6(2009)No.

1, pp. 4–17.

[9] Xing, L., Xu, H., Amari, S. V., & Wang, W. A New Framework for Complex System Reliability

Analysis: Modeling, Verification, and Evaluation.

[10] A. Abd-Allah, “Extending Reliability Block Diagrams to Software Architectures,“ Technical

Report USC-CSE-97-501, Dept. of Computer Science, Univ. Southern California, 1997.

[11] R. Duke, G. Rose, and G. Smith, Object-Z: a specification language advocated for the

description of standards, Computer Standards and Interfaces (1995) Vol. 17, North-Holland, pp.

511-533.

[12] Robidoux, Ryan Mark. Automated verification of a computer system reliability model. Diss.

University of Massachusetts Dartmouth, 2007.

[13] L.Xing, Efficient Analysis of Systems with Multiple States, Proceedings of The IEEE 21st

International Conference on Advanced Information Networking and Applications, (2007) May

21-23; Niagara Falls, Canada, pp. 666-672.

[14] J. B. Dugan and S. A. Doyle, New results in fault-tree analysis, Tutorial Notes of the Annual

Reliability and Maintainability Symposium, (1997) .

[15] R. Duke, G. Rose, and G. Smith, Object-Z: a specification language advocated for the

description of standards, Computer Standards and Interfaces (1995) Vol. 17, North-Holland, pp.

511-533.

[16] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking, MIT Press (2001).

[17] Xu, Haiping, and Liudong Xing. "Formal semantics and verification of dynamic reliability

block diagrams for system reliability modeling." In Proc. 11th International Conference on

Software Engineering and Applications (SEA 2007), 2007, pp. 155-162.

[18] A. V. Ratzer, L. Wells, H.M. Lasen, M. Laursen, J.F. Qvortrup, et al., “CPN Tools for editing,

simulating and analysing coloured Petri nets,” in Proc. 24th Int. Conf. Application and Theory

of Petri Nets, Eindhoven, Netherlands, Jun. 2003, pp. 450-462.

[19] Kristensen, L.M., Christensen, S., Jensen, K.: The practitioner’s guide to coloured Petri nets.

International Journal on Software Tools for Technology Transfer 2 (1998) ,98–132

[20] C. Goldfarb and P. Prescod, The XML Handbook, Upper Saddle River, NJ, Prentice Hall, 2000.

Advances in Computer Science Research, volume 59

1401

