ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 627-646

Flower Pollination Algorithm for Multimodal Optimization

Jorge Galvez ! *, Erik Cuevas and Omar Avalos

! Departamento de Electronica, Universidad de Guadalajara, CUCEI
Av. Revolucion 1500
Guadalajara, Jal, Mexico
E-mail: jorge.galvez@cutonala.udg.mx

Received 4 August 2016

Accepted 10 January 2017

Abstract

This paper proposes a new algorithm called Multimodal Flower Pollination Algorithm (MFPA). Under MFPA, the
original Flower Pollination Algorithm (FPA) is enhanced with multimodal capabilities in order to find all possible
optima in an optimization problem. The performance of the proposed MFPA is compared to several multimodal
approaches considering the evaluation in a set of well-known benchmark functions. Experimental data indicate that
the proposed MFPA provides better results over other multimodal competitors in terms of accuracy and robustness.
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1. Introduction

In optimization', the idea is to find an acceptable
solution within a feasible search space guided by the
values of an objective function. Optimization problems
comprises many areas as engineering, medicine,
economics, just to mention a few’. The problem of
optimization has been commonly solved through the use
of deterministic methods such the Gradient descent
algorithm’ and the Levenberg-Marquardt method®.
These techniques provide a theoretical guarantee of
finding the global optimum assuming some theoretical
suppositions about objective function such as the uni-
modality™°. However, most of the practical optimization
problems tend to generate multimodal surfaces
maintaining several local and global optima’. Under
such conditions, the use of classical methods faces great
difficulties in finding an acceptable solution due the
existence of several optima in the objective function.

As an alternative to deterministic techniques, the
problem of optimization has also been conducted
through Evolutionary Computation Techniques (ECT)® .
Such approaches are inspired by our scientific
understanding of biological or social systems, which at
some level of abstraction can be conceived as
optimization processes. ECT have been developed by a
combination of deterministic rules and randomness to
mimic the behavior of natural or social entities.
Different to deterministic methods, under the ECT

perspective, the existence of several global and local
optima does not represent a difficulty due to its search
properties. Recently, several ECT have been proposed
with interesting results. These methods involves the
well-known Genetic Algorithm (GA) proposed by
Holland’ and Goldberg'®, Evolutionary Programming
(EP) proposed by Rechenberg11 and the Differential
Evolution (DE) developed by Storn and Price'” and
Particle Swarm Optimization (PSO) method introduced
by Kennedy & Eberhart'’. Other ECT metaphors
considers the emulation of physical phenomena such
Simulated Annealing (SA) proposed by Kirkpatrick'*,
the Electromagnetism-like  Optimization (EMO)
developed by Birbil and Fang'’, and the Gravitational
Search Algorithm (GSA) proposed by Rashedi'®. The
interaction among animals and their ecosystems has also
used as optimization metaphors such the Particle Swarm
Optimization developed by Kennedy and Eberhart'’, the
Artificial Bee Colony optimization (ABC) developed by
Karaboga'® and the Cuckoo Search method (CS)
proposed by Yang'’.

Most of research work on ECT has been accomplished
for locating the global optimum. However, the
acquisition of multiple promissory solutions is
especially useful in engineering, since the best solution
may not always be realizable due to several realistic
constraints. Therefore, from a practical point of view, it
is desirable to identify and maintain all the possible
optima solutions through the overall optimization
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process. The process of finding the global optimum and
multiple local optima is known as multimodal
optimization®. ECT perform well for locating a single
optimum with remarkable performance but fail to
provide multiple solutions. The process of locating all
the optima in a single run is more complicated than
global optimization. Detection and maintenance of
multiple solutions are two crucial processes in ECT for
solving multimodal optimization problems since they
are originally devised to find only a global solution.

Several schemes have been incorporated into the
original ECT to make them suitable for registering and
maintaining potential optima. Some approaches include
the Crowding method proposed by Jong®. In
Crowding, the main objective is to preserve diversity
replacing similar individuals by individuals of better
quality. Based on this approach, several multimodal
algorithms have been designed considering different
evolutionary methods such as the Crowding Differential
evolution (CDE)** and Deterministic Crowding
Genetic Algorithms (DCGA)**>.

Fitness sharing is other multimodal scheme introduced
by Goldberg and Richardson®. In fitness sharing, a
function diminishes the fitness values of similar
solutions, so that they have a lower probability to be
selected in the new population’”*. This method has
produced several multimodal algorithms such as the
Fitness Sharing Differential Evolution (FSDE)*.

On the other hand, speciation-based niching methods
are multimodal techniques which require the partition of
the complete population into different sub-populations
considered as species. Some multimodal algorithms of
this category include the distance-based locally
informed PSO”, the Ensemble Speciation (ES)* and
the History-based Topological speciation’.

The above multimodal techniques have been applied to
original ETC in order to produce their multimodal
extensions. However, other researchers have designed
several evolutionary computation algorithms with
multimodal capacities. Such methods use as inspiration
our scientific understanding of biological systems,
which at some level of abstraction can be represented as
multimodal optimization processes. Some examples of
these methods include the Clonal Selection Algorithm™,
the Multimodal Gravitational Search algorithm
(MGSA)* and the Region-Based Memetic method
(RM)*. Such approaches employ operators and
structures which support the finding and maintaining of
multiple-solutions.
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On the other hand, the Flower Pollination Algorithm
(FPA)* is a recent evolutionary computation algorithm
which is inspired on the natural pollination flower
concept. Different to the most of existent evolutionary
algorithms, FPA presents a better performance in
multimodal problems, avoiding critical flaws such as the
premature convergence to sub-optimal solutions. FPA
considers both exploration and exploitation stages
through the entire optimization process. For the
exploration stage, FPA considers the Lévy flights®
rather than simple random walks to discover new
candidate solutions through the entire feasible region.
For the exploitation stage, FPA considers the flower
constancy which models the pollinator tendency to
pollinate certain kind of flowers giving a reproduction
probability in order to increase the pollination
efficiency. As a result, FPA is potentially far more
efficient than other ECT causing its election to
incorporate multimodal capabilities extending its
operands. Such characteristics have motivated its use to
solve an  extensive variety of engineering
applications®”**,

This paper presents a new multimodal optimization
algorithm called Multimodal Flower Pollination
Algorithm (MFPA). The method combines the FPA
algorithm with three elements that allow the operation
of several optima. The first element involves a memory
mechanism®™ which allows an efficient registering of
potential local optima according to their fitness value
and the distance to other potential solutions. The second
element aims to accelerate the detection process of
potential local minima. The original FPA search
strategy is mainly conducted by the best individual
found so-far (global optimum). Under the second
element, the FPA strategy is modified to be influenced
by individuals that are contained in the memory
mechanism. The third element is a depuration procedure
to eliminate similar solutions that possibly represent the
same optimum. Numerical simulations have been
conducted on fourteen benchmark functions to show the
effectiveness of the proposed scheme. The performance
of the proposed MFPA is compared to the results
obtained by four multimodal algorithms: CDE, FSDE,
DCGA and CSA. Experimental results indicate that the
proposed MFPA is capable of providing better and even
more consistent optima solutions over their well-known
multimodal competitors for the majority of benchmark
functions.

The paper is organized as follows: Section 2 describes
the original Flower Pollination Algorithm (FPA).
Section 3 presents the proposed MFPA. Section 4
presents the experimental results obtained. Finally,
Section 5 establishes some conclusions.
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2. Flower Pollination Algorithm (FPA)

Flower Pollination Algorithm has been recently
developed by Yang35. FPA is based on the pollination
process of flowers. The flower pollination process aims
to the transfer of pollen between the same flower or
other flowers within the same or different plant for their
reproduction. Pollination can be carried out by the so-
called pollination vectors like birds, insects, honey bees
and other animals or by water, wind, light etc.; making
the pollination process be divided in two different ways;
biotic and abiotic.

Biotic pollination is the most common type of flower
pollination and constitutes the 90% of the total natural
pollination around the world. This kind of pollination
requires intervention of agents such insects to transfer
pollen through flowers of different plants. The
mechanism to accomplish biotic pollination by terms of
these agents is called cross-pollination also known as
allogamy and occurs when pollen is delivered to a
flower from a different plant. On the other hand, abiotic
pollination refers to situations where non-living
organisms like water and wind transfer pollen. Only
10% of the world total natural pollination belongs to
this pollination category and it could be accomplish by
self-pollination. Self-pollination occurs when pollen is
delivered to flowers of the same plant by non-living
agents extending the way flower reproduction takes
place.

In the biological process of flower pollination an
important behavior occurs between flowers and the
foraging stage of the pollinators. This behavior is
known as flower constancy and mimics the biological
phenomenon that a pollinator tend to visit certain flower
species while passing by other flower species through
their travel in order to improve the pollination process
for reproduction.

The Natural flower pollination process analogy is used
to develop the FPA algorithm. Additionally, this
algorithm use the so-called Lévy flights®® rather than
simple random walks to enhance the exploration area
within the search space. Biological processes are
difficult to be modeled as evolutionary algorithms.
Simplification of biological processes is necessary for
successful implementation as evolutionary algorithm.
The FPA algorithm simplifies the natural flower
pollination process into four idealized rules as follows:

(i) Global Pollination Rule: Biotic in terms of
cross-pollination is considered as a global
pollination  operation  with  pollinators
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performing flights through flowers. This rule
can be formulated as the exploration step that
simulates global search through the search
space in terms of Lévy flights.

Local Pollination Rule: Abiotic in terms of
self-pollination is considered as a local
pollination operation and could be modeled as
the exploitation stage to guide the search to
find better solutions.

(i)

(iii) Reproduction Probability Rule: This rule can
be considered as the flower constancy behavior
which models the pollinator tendency to
pollinate certain kind of flowers giving a
reproduction probability in order to increase
the pollination efficiency.

(iv) Switch Probability Rule: This rule acts like an
operator that controls the switching process
between global and local pollination in the
evolution process and it is defined as sp € [0,1] .

In the real world, each plant can have many flowers and
each of them produce millions of pollen gametes. From
the implementation point of view, the FPA considers
only one flower that produces only one pollen gamete.

In the FPA, a population X' = {x{‘ x’z‘x’;} of n flowers

is generated every k iteration where each flower or
pollen gamete x; corresponds to one solution. Each

pollen gamete is represented by a d-dimensional vector

decision variable of the optimization task to be solved.
The population is evolved from initial point k=0 to a
total generation number. The quality of each flower is

evaluated through a cost function, J(xf.‘ )whose final

value represents the fitness value of the solution x/ .

The four idealized rules described before could be
implemented into three basic operations for successful
implementation of the evolutionary process for the FPA:
Global Pollination through Lévy flights, Local
Pollination considering flower constancy and Elitist
Selection.

2.1 Global pollination through lévy flights

In the global pollination step, pollen is carried by living
agents who travel through Lévy flights all over the
search space. Lévy flights enhance exploration stage
within the search space rather than simple random
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walks. They represent one on the most powerful
operators in FPA and they mimic the peculiar behavior
that living agents travel long distance in order to carry
pollen to flowers. The Lévy distribution that describes
the travel for the pollinators is defined as:

AT(A)sin(7A/2) 1
Lo P S1+/1 ’

s0 s9>0 (1

Where r(4)is the Gamma distribution and s describes
the step size. For efficient implementation for Lévy
distribution, Mantegna’s algorithm™ is employed to
produce the step size a pollinator should move in order
to replicate the Lévy flight distribution through the
search space. The implementation for Mantegna
algorithm is as follows:

o )

Where u={u....,u;} and v={v,......,v,} are d-dimensional

vectors and p=3/2. Each element of the vector u and
vare calculated by normal distributions as shown in Eq.

3).

u~N(O,07), v~N(0,09),

1B
] 2 GV:L

Once s, has been calculated, the position perturbation is

L (1+B)-sen(r-/2)

- 3)
“o T p)2) 2D

obtained by:

Li:0.0l-si(xf‘ —xbesf) (4)

Where xf is the current solution at  iteration and x**
is the best solution so far. Therefore the new candidate

solution x¥*! s calculated by:

xf-‘ . :xf-‘ +L;

)
2.2 Local pollination considering flower constancy

This operation mimics the flower constancy behavior
between a pollinator and the similarity between flower
species and can be represented as:

x,]-”] :x,]-c +e-(xlj‘~ —xlz‘ )

(6)

630

Where x' and xlzc are different flowers from the same

J
plant species and e€[0,1]is considered the
constancy probability.

flower

2.3 Elitist selection

After obtained a new candidate solution xﬁ”l , it must be

compared with its past solution. If the fitness value of

x™1 is better than x¥, x*™! replaces the past solution

otherwise, xl’f remains in the population. This elitist

selection operation can be stated as follows:

k+1 : k+1 k
x; o, it JIx; T )<J(x;
Xl]‘ﬁLl: ! ( ! ) ( l) (7)
xf-‘, Otherwise

This operation specifies that only high-quality solutions
remains and provide the development of next generation
through the best optima solution for the optimization
problem to be solved. The complete pseudocode for the
FPA implementation is shown in Fig 1.

[ - k
Objective function min or max J (X[
Initialize a population of i flowers randomly
Find the best solution X in the initial population
Define switch probability to alternate between Global and Local Pollination sp < [0.1]
while (4 < maximum iterations)
for i=1:n (for all » flowers in the population)
if rand < sp
Generate a step vector L of d-dimensions through Lévy distribution using Mantegna's algorithm
5 : ksl _ _k
Global pollination via X;~ =X, + 1,
else
Generate & from a uniform distribution in [0, 1] to mimic flower constancy
Randomly choose j and =
P k ®
Local pollination via X, " =X/ + &-(x} —x)
end (if)
Evaluate new candidate solution
Apply Elitist Selection to the new candidate solution to its past solution
end (for)
Find the best solution X'
end (while)
Display the best solution

Fig.1. The Flower Pollination Algorithm Pseudocode.

3. Multimodal Flower Pollination Algorithm
(MFPA)

In FPA, the biological flower pollination process is
simplified in order to be implemented as an

evolutionary algorithm. An individual xf-‘ within FPA
belonging to a population X":{x{‘ ,x’z‘,...,x’;}represents a

flower or solution of the optimization problem to be
solved. One of the most powerful features of FPA is the
use of the so-called Lévy flights to emulate the travel
pollinators should do in order to carry out pollen. This
stage on FPA is known as Global Pollination Rule and
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reflects how pollen through living agents travels around
different flowers to increase their reproduction
efficiency. Another feature in FPA is the
implementation of Local Pollination considering flower
constancy. This operation mimics the flower constancy
behavior between a pollinator and the similarity
between flower species causing the exploitation stage be
more capable to find better solutions. As a result, FPA is
a robust and powerful technique in order to solve global
minima optimization problems. However in many
practical engineering problems the necessity of multiple
solutions make multimodal optimization difficult to
maintain due the operators of unimodal algorithms. FPA
lacks the ability to find more than one optimal solution
even with powerful operators like Lévy flights and
flower constancy. In the proposed MFPA approach, the
original FPA is adapted to include multimodal
capacities making it capable to find multiple solutions in
a single execution.

This multimodal adaptation incorporates three new
operators proposed by Cuevas and Reyna-Orta®’. The
first operand is the utilization of a memory mechanism
to identify potential local and global optima. The second
operand is the adaptation of new selection strategy
instead of the well-known elitist selection to ensure
solution diversity. And the last operation considers a
mechanism to depurate the memory mechanism to
cyclically eliminate duplicated solutions. These three
new operators for the proposed MFPA are performed
during the evolutionary process that is divided into three
states.

The first state s=1 corresponds from 0 to 50% of the
total evolutionary process. The second state s=2
involves 50 to 90%. And the third state s=3 belongs 90
to 100%. The reason this division of the evolutionary
process is implemented is that the proposed method can
be capable of act according on the current state of the
evolutionary process. The following sections describe
the three new adaptations to provide multiple optima
localization in the original FPA. These operators are
Memory Mechanism (MM), Selection Strategy (SS) and
Depuration Procedure (DP).

3.1 Memory mechanism (MM)

Within MFPA, a population X":{x{‘,x’z‘,...,xﬁ} evolves

from initial point k=0 to a total generation number.
Each flower x; represents a d-dimensional vector

{xﬁl,xﬁz,...,xﬁd}where each dimension corresponds to a

decision variable of the optimization task to be solved.
The quality of each flower is evaluated through a cost
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function, J(xf-“ ) whose final value represents the fitness

value of the solution xf-‘ at k iteration. MFPA have the

ability to find not only multiple optima but also the

ability to maintain also the best individual x**' . In case

of minimization problem, the best individual acts as a
global minimum such that:

arg min
ie{1,2,...,n},ae{l,Z,...,k}

Xbest _

J(xf” )

In multimodal optimization, both global and local
optima describe two important features in order to be
identified: they have significant good fitness value and
they represent the best fitness in a certain neighborhood.
Therefore the necessity to efficiently register potential
global and local optima including these features should
be implemented into a memory mechanism considering
the past and new solutions in the overall evolutionary
process.

®)

The memory mechanism constitutes an array of
M:{ml,m2,4..mg}elements where each memory element

m,, defines potential global or local optimum that
fulfills the optima features described before and

corresponds a d-dimensional vector {mw)l,mw,z,...,mw’d}

where each dimension corresponds to a decision
variable. Therefore, a memory element is considered a
solution to the optimization problem to be solved. To
accomplish a successful registration in the memory, the
memory mechanism occurs in two different phases:
initialization and capture. Initialization phase is applied
only once within the optimization process. That is, when

best

k=0 only the best flower solution x”*'of the initial

population x" is successful register into the memory due
to the good fitness value and its representation as the
best individual in a certain neighborhood. Once the
initialization phase is complete, the memory mechanism
becomes more interesting and it is described by the next
section.

3.1.1 Capture phase

This phase is applied from the first iteration .=1 to the
last iteration s=1 at the end of the global or the local
pollination operations in the entire evolutionary process.

At this stage, each solution X, that corresponds to
potential global or local optima is registered as memory

element m, if it has a good fitness value and it is the
best individual in a determined neighborhood. In order
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to register a solution into the memory. x; must be tested

considering two rules: significant fitness value and non-
significant fitness value rule.

Significant Fitness Value Rule

This rule compares the fitness value of the solution Xf,{
against the fitness value of the worst element of the
= arg mane{l,Z,...,g} J(mw)

, in case of minimization problem. The rule considers a

worst

memory m worst

where m

solution xf-‘ to be potential global or local optima if the

worst

fitness value of xl]f is better than m . The next step

within this rule is to decide whether xf-‘ represents a

new optimum or it is similar to an existent memory
element. Such decision is carried out by an acceptance

probability function P(‘Di,g ,s) that depends not only of

the distance from xf~C to the nearest memory element
m, but also by the current state s of the evolutionary

process. The notion of using this acceptance probability
function consists that large distances in the beginning of
the evolutionary process will increase the probability

that xf-‘ to be part of the memory M . In the counterpart,

the probability that xf-‘ would be similar to an existent

memory element will increase as the distances decreases
causing that in the end of the evolutionary process, only
small distances are taking into account to perform better
exploitation stage of the algorithm. The complete
implementation process for this rule can be resumed in
Fig 2.

To implement the significant fitness value rule, the

normalized distance HDi’gH between the xf-‘ solution to

all the memory elements {m;.m,,.m } is calculated as

follows:
X-m Y (x,-m, Y X -m Y
D] = e |+ S | ] S ©)
: e g g
And the acceptance probability function P(HDZ- < ,s) is

defined according to the nearest memory element m,,
such as:

P(|o.

s HDA[ (10)
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and llower

upper
Where / o d}

e ) represents the upper and

the lower bounds of each dimension of the search space
and HD,-,,,H represents the shortest distance between the

solution xf-‘ and the m,memory element with

probability to be accepted P(HDI-

,s) and Sis the

o
current evolutionary process state. In order to decide

whether the solution xf-‘ represents a potential new

optima or a similar existing memory element, a uniform
random number o between [0,1] is generated. If « is

less than P(HD,-’,,

,s) , xf-" is included in the memory as a

new optimum. Otherwise, it competes with
m,, according to their fitness value quality as follows:

)

m,=x’, if J(xf-‘ )<J(mn)

k
m,, =X;,

g+l P(HDi,n

(11

for i=1:n (for all u flowers in the population)
it J(x!) < J(m™)
Calculare an array of distances between \" 1o all the elements of M
Select M, according to the shortest distance
Calcnlate l‘(”l{ 5 H .5)
Generate a uniform random number &
ite<P(|D,[.5)
m,, = x
else
if J[x" J<J(m,)
m, = xf
end (if)
end (if)

end (if)
end (for)

Fig.2. The Significant Fitness Value Rule Pseudocode.

Non-Significant Fitness Value Rule

This rule is the counterpart of the significant value rule,
the difference that this rule performs within the
evolutionary process is to capture potential local optima
with low fitness values. The operation of this rule
considers a solution xf-‘ to be potential local optima if the

worst

fitness value of xf-‘ is worse than m . The next step

within this rule is to decide whether xl]f represents a
possible local optimum to register within the memory.
The decision to include xf-‘ to the memory is based on
the probability of the

J(x’-‘ )—J (x”“”k) and the

relationship  between

fitness interval

1

J(xwm”k )—J(x”"””‘ ) where x"*" and x”*' are the worst

fitness quality solution and the best fitness quality
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solution been so far. The probability function used,
describes if a solution represents a possible local
optimum considering if its fitness value is worse than

m""*" and is defined as:

J(xll_c )_J(xbest,k )
J(Xworsz‘,k )7J(Xbest,k )

p=l (12)

Eq. (12) ranges from [0, 1] in minimization problems.
This probability function value considers if a solution
xf-‘ belongs or not to a potential local optimum

considering the overall interval from the worse to the
best solutions dividing the interval into two sections
taking the respective values of [0, 0.5) and [0.5, 1]. The
following procedure shows that:

p, 0.5<p<]
= 1
{0, 0<p<0.5 (13)

Therefore, the probability Passigns a probability
greater than zero to solutions that have good fitness
values. In order to test if a solution xf-‘ is considered as
potential local optimum, a uniform random number f
from [0, 1] is generated and then if S is less than the

probability obtained by Eq.(13), the memory
registration is tested to indicate if the solution enters to
the memory or not. To do the test, the normalized

distance ‘Di,gH is calculated between xf-‘ to all the

elements of the memory. Then the shortest distance

value is determined as min(‘Dl-’gH). To include the

solution xl’»‘ to the memory once the shortest distance is

calculated, the following rule is applied:

M= m,,=x;, ify<|D, [ (14)

no change, Otherwise

Where yis a third uniform random number from [0, 1]
and HD,-,n

f-‘ and the corresponding nearest element m, inside

is the shortest distance between the solution

X

the memory. The complete implementation process for
this rule can be resumed in Fig 3.

3.2 Selection strategy (SS)

This operation extends the elitist selection strategy used
not only in the original FPA but also in many

633

for i=1:1 (for all i flowers in the population)
if J[xf ) J(m™™)
Calculate p =1—(J(x})—J(x*"* ])/(fl X" ) - T (x5 ))
Generate a uniform random number /3
it f<p
Calculate an array of distances between X, to all the elements of M
Select M, according to the shortest distance
Generate a uniform random number
s
wr i
m,, =x;
end (if)

end (if)
end (for)

Fig.3. The Non-Significant Fitness Value Rule Pseudocode.

evolutionary algorithms reported in the literature such
as Particle Swarm Optimization'>, Differential
Evolution'?, Gravitational Search Algorithm'® and
Cuckoo Search", just to mention few of them. Elitist
selection considers only the best individuals to prevail
through the overall evolutionary process’’. This
common selection strategy does not provide a
mechanism to maintain potential solutions and treat
them as global or local minima. Therefore elitist
selection strategy must be change in order to perform
multimodal optimization. MFPA implements a new
selection strategy that allows capturing potential global
and local minima optima. The SS is performed just at
the end of the MM operation.

By the new selection strategy, the new population x"*
is generated considering the first n elements of the
memory being n the size of the initial population. An
interesting point in the memory mechanism is the fact
that each of its elements is considered as a minimum
solution being the first n elements the best solutions that
describe global or local features. The selection strategy
complements the powerful operation of the memory
mechanism by replacing each individual of the original
population by each element of the memory keeping the
population diversity through the evolutionary process.
In case the number of elements inside the memory is
less thann, the remaining individuals n—g are the best

individuals of the original population x* . The procedure
to implement this selection strategy is resumed in Fig 4.

if g > n (if the number of memory elements is greater than the number of individuals in the population)
for i=/n (for all » flowers in the population)
X -m,
end (for)
else
for i=I.g
X" -m,
end (for)
end (if)

Fig.4. The Selection Strategy Pseudocode.



ATLANTIS
PRESS

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 627-646

3.3 Depuration procedure (DP)

Elitist selection considers only the best individuals to
prevail during the evolutionary process. Therefore this
classical approach is not appropriate for multimodal
optimization. In multimodal optimization a new
selection strategy must be defined in order to capture
multiple optima solutions in a single execution*’. Some
approaches for this capability include the well-known
Deterministic = Crowding and  Fitness  Sharing®
techniques. However these techniques generate a final
solution set as the same size of the initial population
causing individual concentrations in the final solutions.
In MFPA the new selection strategy (SS) allows
multiple optima registration each iteration through the
overall evolutionary process inside the memory.
However each individual allocated inside the memory
could represent the same minimum. The depuration
procedure in MFPA eliminates similar individuals
inside the memory improving the detection of
significant and valid solutions. The execution of this
depuration stage occurs just at the end of each state s .

The memory mechanism of MFPA tends to allocate
several solutions over the same minimum. The
depuration procedure finds the distances among
concentrations and eliminates solutions that are similar
to each other in order to improve the search using only
the most significant solutions. The procedure consists of

taking the best element m”®’ inside the memory and

calculates all the distances among each of the memory
elements m,. . Later, test the fitness value of the medium

best in order to find a

point between m and m,
depuration ratio that allows elimination of all the nearest
solutions tom”. Then if the fitness value of the

medium point J((mbeSt+m',) /2) is not worse than

J(mbesl‘) and J(m,),the element m, is considered part

of the same concentration of m”®’. However, if the

fitness value of the medium point J((mbe‘”err) /2) is

worse than J(m”“’ ) and J(m, ),then m, is considered

part of another concentration. If the last situation occurs,

best

the distance between m”*’ and m, can be considered as

a maximum depuration ratio distance which will be used
to eliminate solutions within a certain neighborhood.
The calculation of the depuration ratio D,, takes the

best

85% of the maximum distance between m” and m,

and is defined as:
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Drt:0.85~Hmb‘“’—mrH

(15)

The implementation of this depuration procedure is
resumed in Fig 5.

for 5= 1:3 (for each state of the evolutionary process)
Sort the elements of the memory according to their fitness in ascending order for minimization problem
for 1=1:g (for all g individuals in the memory, considering each i-individual as the best)
Calculate an array of distances between m’ and each memory element m,

if J(msm, | /2> J(m'| and J{(m'om,)/2) > SHm,)
D=0 x%"m’ m, u

end (ify
end (for)
Remove all memory elements inside a neighborhood determined by D,,

end (for)

Fig.5. The Depuration Procedure Pseudocode.

3.4 Complete multimodal flower pollination algorithm

In MFPA three new operations are added to the original
FPA in order to incorporate multimodal capacities. This
new operations consist of capturing potential optima
solutions through the overall evolutionary process
maintaining only the individuals which have significant
fitness value and the ones that represents the best in a
certain neighborhood. The first operation to incorporate
multimodal capacities is based on a memory mechanism
which allows multiple registrations of individuals in a
single execution. The second operation is a new
selection strategy which does not select only the best
individual through the process but also a set of solutions
that present global or local minima features. The last
operation of the implementation of MFPA is the
inclusion of depuration procedure for the memory
storage. In classical multimodal approaches the final
solution set has the same size of the initial population
due the multiple solution registration. This entails the
generation of minima concentration in a certain
neighborhood. In order to eliminate these concentrations
to keep only the best individual of each of them, the
depuration procedure of MFPA considers a depuration
ratio between each element of the memory and the
remaining elements inside the memory. Later, all the
elements inside within an area determined by the
depuration ratio will be eliminated allowing significant
solutions to prevail. The complete pseudocode for
MFPA implementation with this three operations is
resumed in Fig 6.
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Initialize the initial population X*«|xf.«f sk}

Initialize the memory M
Initialize state s=1

while (k < totalGen)
for i=1:n (for all » flowers in the population)
if rand < sp
Generate a step vector L of d-dimensions through Lévy distribution using Mantegna's algorithm
Global pollination via x*=xf-I;
else
Generate & from a uniform distribution in [0, 1] to mimic flower constancy
Randomly choose j and =
Local pollination via x} =xf+z-(x} -xt)
end (if)
end (for)
Execute memory mechanism procedure
Apply new selection strategy approach
it ((k * 100) / totalGen == _5)
5=2
Apply depuration procedure
end (if)
if ((k * 100) / totalGen == .9)
s=3
Apply depuration procedure
end (if)
end (while)
Display the best solutions inside the memory

Fig.6. The Multimodal
Pseudocode.

Flower Pollination Algorithm

4. Experimental Results

This section presents the performance of MFPA over a
set of 2D benchmark functions in order to compare the
minima solutions of the proposed MFPA against other
multimodal algorithms. The Section 4.1 describes the
performance criteria used in order to evaluate the results
obtained by MFPA against the results of four algorithms
commonly used in multimodal optimization comparing
them with five different performance indexes. The
Section 4.2 reports the approach used in order to
determine the true optima set per function will be
considered to calculate each of the five indexes.
Finally, the Section 4.3 reports the results obtained for
MFPA compared to each of the four algorithms
according to the performance indexes criteria using a set
of fourteen benchmark functions.

4.1 Performance criteria

This section describes a set of five performance indexes
commonly used to evaluate the performance of
multimodal algorithms™**. The first index used is the
Effective Peak Number (EPN) which expresses the
amount of detected peaks. The second index is the
Maximum Peak Ratio (MPR) to evaluate the quality of
the solutions over the true optima. The third index is
Peak Accuracy (PA) which calculates the total error
produced among the identified solutions and the true
optima. The fourth index calculated is the Distance
Accuracy (DA) to measure the error produced by the
components between identified solutions and true
optima. And the last index, the Number of Function
Evaluations (NFE) shows the total number of function
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calculations of each algorithm through the experiment.
Each of these indexes is formally defined as follows.

The Effective Peak Number (EPN) expresses the
quantity of valid detected peaks. That is, each solution
of each algorithm is considered as an optimum o; if the

distance between the solution w j

o; is not greater than 0.05. That is, only the 5% of error

and the true optima

is permitted for each solution w; against its

correspondent true optima o;. The EPN is resumed as:

EPN=Jo,~w ;[<0.05 (16)
Where the subindex i represents the i-th true optima
and the subindex jrepresents the j-th solution an

algorithm generates. To evaluate the quality of the
identified optima, the Maximum Peak Ratio is defined
as:

EPN
X J(w;)
=
MPR=L5———
X J(o;)
i=1

)

Where O represents the number of true optima and EPN
is defined as Eq. (16) and represents the number of
identified optima. In order to calculate the total error
produced by the identified solutions and the true optima,
the Peak Accuracy is calculated as:

o]
PA= § |7 (0)—J (w))| (18)

PA only takes the error based on the fitness value for
the true optima against the identified optima but not
considers if the peak of o;and w;are close. Under such

circumstance, the Distancy Accuracy is calculated to
consider the peak closeness and it is calculated as
follows:

@]
DA= gl\\J(oi)—J(wi)\\ (19)

The last index wused for the evaluation of the
performance benchmark is the Number of Function
Evaluations which calculates the total number of
function calculations in order to obtain a set of final
solutions for each algorithm.
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4.2 True optima determination

In order to calculate these performance indexes, a set of
fourteen benchmark  functions  with  different
complexities is proposed. Due the fact these
performance indexes operate among identified optima
and true optima values for each benchmark function, the
necessity to propose true optima values is essential. In
the reported literature, does not exist selection criteria
for true optima to test the performance indexes.
Therefore a consideration to take true optima values
must be done. In this study, all the optima found below
the medium point of the highest and lowest values in
each function will be considered as true optima for
minimization problem. That is, obtaining the medium
point of the highest and lowest function values, a set of
true optima values will be determined as follows:

T={0;|V0,€J n0;<th} (20)
Where J represents each of the benchmark functions,
o, represents each optima for the function J and ¢ is

the medium point threshold for the highest and lowest
function J wvalues. Each optimum o; is obtained by

using the traditional mathematical approach of the
second partial derivative test for two-dimensional
function which is defined as:

D=J o J yy=J iy 1x

@n
Where Dis the second partial derivative test
discriminant. To verify if a point (xy,y) is a minimum,
the discriminant D must be tested as:

o;={if D>0and J,,(x(,59)>0} (22)

4.3 Performance results

To compare the results of the MFPA using the
performance indexes described in Section 4.1, a
comprehensive set of 14 multimodal functions,
collected from Refs. 45,46, has been used. Table 1
presents the benchmark functions J,—J,, considered in

our experimental study. In Table 1, it is exposed the
characteristics of each function such as the number of
optima and the search space domain. The experiments
compare the performance of MFPA against the Fitness
Sharing Differential Evolution (FSDE), the Crowding
Differential Evolution (CDE), the Clonal Selection
Algorithm (CSA), the Deterministic Crowding Genetic
Algorithm (DCGA), the Region-Based Memetic method
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(RM)*, the Multimodal Gravitational Search algorithm
(MGSA)* and the Ensemble Speciation DE (ES)™. For
all the algorithms the population size is set to 50
individuals and the number of total iterations has been
set to 500.

The parameter setting used in the comparison is
described below. For the case of the FSDE method, the
following parameters have been used: the variant
implemented is DE/rand/bin®® where crossover
probability cr=.9, differential weight dw=0.1 with
sharing radius oy,,,=0.1 and «=1.0 according to Ref.
39. With regard to the CDE algorithm, its configuration
has been assumed with: the variant implemented is
DE/rand/bin ~ where  crossover  probability cr=9,
differential weight @w=0.1 with crowding factor ¢f=50 .
Using the guidelines of Ref. 39. In case of the DCGA
method, it has been implemented following the
following guidelines: a crossover probability c¢p=0.9
and a mutation probability mp=0.1using roulette wheel
selection. The CSA has been set as follows: the
mutation probability mp=0.01, the percentile to random
reshuffle per=0.0 and the clone per candidate far=.1. In
case of the proposed MFPA, the probability switch
between Global and Local Pollination is set to sp=.25. In
the experiments, all the remaining methods, RM*,
MGSA™ and ES® have been configured according to
their own reported guidelines.

The performance results among the algorithms are
reported in Tables 2 and 3. For the sake of clarity, they
are divided in two groups, Table 2 for functions J,—J,

and Table 3 for functions J,—J,, . Both Tables register

the performance indexes with regard to the effective
peak number (EPN), the maximum peak ratio (MPR),
the peak accuracy (PA) and the distance accuracy (DA).
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Table 1. Benchmark functions J, - J,, of our experimental study

Function Search Optima
Domain Number
Bird
1- 2 1=sin(x, ))> [-27,27] 6
J, (%, x,) = sin(x,) - Lmeostn))” | cos(x, ) - LS o -%)
Test Tube Holder
COs| i+ XEZ
200 200 | | [-10,10] 4
J2 (xl s xz) =—4.|e -sin(x; )-cos(x, )
Penholder
-1
2. 2
i
T
e -cos(x;)-cos(xy )| [-11,11] 12
Js(xl,xz) =—e
Rastriguin
[-5.12,5.12]
. 21
J,(x,,%,) = 10n- Z]x,-z—10~cos(27z‘x[ ) n=2
Himmelblau
2 2 -6,6 5
Js(xl,xz):—((xlzﬂcz—ll) +(x1+x22—7) ) [-6. 6]
Six Hump Camel X =[3,3]
1 3
Jo(x),x,) = 7(4x12+x1x274x2272.1x14+4x§+5x16j Y = [2.2]
Giunta
= -1,1 4
J,(x,.%,) = 0.6+ ;(sinz(l - %xi] - 5—10~sin(4 - %x,.] - sin{l - %xi)), n=2 (=111
Rastriguin49
i [-1,1] 8
To(x,.x,) = Z{Xi ~18-cos(27x;), n =2
Roots
1
J X)) =— [-2,2] 6
o (%) = T
Vincent
S [0.25,10] 36
Jio (x5 %,) = —Zl sin(10-log(x;)), n =2
Multi Peak
. . [-2.,2] 40
(x5 x,) = x) -sin(4zx, ) — x, - sin(4zx, + ) + 1
Alpine 02
- ) 0,10 8
J,(x,x,) = l:[J;i~sln(xi), n=2 [ ]
Cosine Mixture
Jp(x,x)) = —0.12 cos(Sﬁx,»)—z,V%, n=2 =11 12
’ i=l =]
Egg Crate
2 2 ] . [-5,5] 9
Ji (x5 x)) =x +x, +25- (smz(x]) + smz(xz))
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Table 2. Performance comparison for the set of benchmark functions J, —-/,. Numbers in parenthesis are the standard
deviations.

Function Algorithm
EPN MPR PA DA NFE
2.6600 0.7540 91.0354 16.1303 2.50006+04
FSDE (0.7174) (0.1914) (66.1408) (2.8272) (0.0000)
5.9800 1.0017 0.5970 03427 2.50000104
CDE (0.1414) (0.0006) 0.2103) (1.0932) (0.0000)
1.0000 20,0043 50,1699 260224 100206703
csA (0.0000) (0.0000) 10,0000 (0.0015) (0.0000)
04200 01222 309.4281 253591 138506106
DCGA (0.5379) (0.1617) (55.7500) (2.2885) (288.1563)
J 5.2800 0.7036 83606 5.01000+02
! RM (0.6402) (0.1274) 107.5283 (43.2990) (3.8876) (0.0000)
1.0000 00237 262039 2.50006+04
MGSA (0.0000) (0.0845) 359.8525 (29.1997) (1.2992) (0.0000)
2.5000 0.7698 244823 119416705
ES (0.6145) (0.1923) 409.6047 (53.8922) (0.6759) (37170.0853)
5.3600 1.0044 15166 0.8587 2.5203c+04
MFPA (0.4849) (0.0021) (0.7206) (0.5105) (11.4375)
2.8000 0.6869 13.5855 47114 2.50000+04
FSDE (1.2936) (0.3166) (13.7374) (4.3008) (0.0000)
3.5400 0.8853 5.0055 1.7228 2.5000¢+04
CDE (0.8621) (0.2156) (9.3480) (2.9999) (0.0000)
0.0000 0.0000 43.3904 12.0472 1.00200+03
csA (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
0.2200 0.0550 41,0050 13.2824 138506106
DCGA (0.4185) (0.1046) 4.5371) (1.4547) (285.0152)
J
2 3.7400 0.7180 12.2383 33264 5.01000+02
RM (0.4431) (0.1452) (6.3022) (1.5125) (0.0000)
0.9200 0.0984 39.1188 13.9158 2.50000+04
MGSA (0.2740) (0.0758) (3.2869) (0.9773) (0.0000)
2.4200 0.6100 16.9892 12.7849 122206105
ES (1.0910) (0.2744) (11.8235) (2.4176) (36883.9504)
3.7800 0.9454 24043 0.8865 251650104
MFPA (0.5067) (0.1267) (5.4939) (1.7634) (11.3026)
5.0400 0.4226 6.5307 842616 2.50000104
FSDE (1.5381) (0.1285) (1.4539) (19.0553) (0.0000)
77000 0.6433 30347 519124 2.50006+04
CDE (2.6973) (0.2242) (2.5359) (32.6811) (0.0000)
0.0000 0.0000 113110 147.5853 1.0020¢+03
csA (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
/3 0.0000 0.0000 13110 1475853 138506106
DCGA (0.0000) (0.0000) (0.0000) (0.0000) (280.2022)
10.1600 0.6011 35117 32.1361 5.01006+02
RM (1.0947) (0.1735) (1.9619) (12.1145) (0.0000)
0.2400 0.0103 11.1949 145.6805 2.50000+04
MGSA (0.4314) 0.0217) (0.2450) (3.4615) (0.0000)
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Table 2. Continued

0.0000 0.0000 113110 147.5853 8.52050+04
ES (0.0000) (0.0000) (0.0000) (0.0000) (23788.6955)
7 11.6400 0.9700 0.3398 48550 251756104
MFPA (0.6928) (0.0577) (0.6531) (8.5080) (11.9867)
1.0000 0.0146 716704 34,4840 2.50000104
FSDE (0.0000) (0.0204) (0.9852) (0.5887) (0.0000)
15.4000 0.6803 24.1608 10.1389 2.50000104
CDE (2.8067) (0.1438) (10.5013) (4.9194) (0.0000)
1.0000 0.0000 723042 35.0006 100206703
csA (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
1.0600 0.0011 72.2399 35.0315 1.3850¢+06
DCGA (0.3136) (0.0062) (0.3372) (0.3091) (307.9098)
’4 9.9600 12543 90.0817 299317 5.01006+02
RM (2.6570) (0.7687) (47.8586) (2.0631) (0.0000)
1.0000 0.3463 96.4085 374041 2.50000+04
MGSA (0.0000) (0.1663) (12.0253) (0.9597) (0.0000)
21,0000 04219 51,4849 408538 120576105
ES (0.0000) (0.3969) (12.4425) (5.3202) (39344.2203)
19.5000 0.8826 84881 2.5735 2524104
MFPA (1.1294) (0.0538) (3.8911) (1.8889) (16.7986)
1.0000 0.3181 4526.5866 292162 2.50000+04
FSDE (0.0000) (0.0091) (60.4546) (0.0624) (0.0000)
5.0000 1.0000 0.0085 0.0228 2.50006+04
CDE (0.0000) (0.0000) (0.0000) (0.0002) (0.0000)
0.0000 0.0000 6638.3536 37.6246 1.00200+03
csA (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
0.0000 0.0000 6638.3536 37.6246 138500106
DCGA (0.0000) (0.0000) (0.0000) (0.0000) (315.5938)
I 4.9600 0.9795 136.0493 1.3495 5.0100¢+02
RM (0.1979) (0.0404) (268.3073) (1.3138) (0.0000)
0.5600 0.0080 6585.5431 36.1061 2.5000¢+04
MGSA (0.5014) (0.0108) (71.8419) (1.6747) (0.0000)
0.0000 0.0000 37.6246 3.69590+04
ES (0.0000) (0.0000) 6638.3536 (0.0000) (0.0000) (464.7521)
5.0000 1.0000 0.0085 0.0229 251130104
MFPA (0.0000) (0.0000) (0.0000) (0.0006) (1.4773)
3.0000 0.9337 31,5887 0.3095 2.50006+04
FSDE (0.0000) (0.0415) (19.7709) (0.2098) (0.0000)
3.0000 1.0000 0.0000 0.0000 2.50000104
CDE (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
0.0000 0.0000 476.7000 10.8167 1.00200+03
CsA (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
; 0.0000 0.0000 476.7000 10.8167 138506106
6 DCGA (0.0000) (0.0000) (0.0000) (0.0000) (317.1410)
2.8600 0.9164 39.8426 0.7597 5.0100¢+02
RM (0.3505) (0.1442) (68.7635) (1.3776) (0.0000)
1.0000 0.0043 474.6590 105379 2.50000+04
MGSA (0.0000) (0.0054) (2.5734) (0.8883) (0.0000)
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Table 2. Continued

0.0000 0.0000 476.7000 10.8167 3.6995¢+04
ES (0.0000) (0.0000) (0.0000) (0.0000) (379.5627)
p 3.0000 1.0000 0.0000 0.0000 2.5114¢+04
MFPA (0.0000) (0.0000) (0.0000) (0.0000) (7.8500)
0.9600 0.1028 0.7822 37372 2.5000e+04
FSDE (0.1979) (0.0463) (0.0368) (0.1575) (0.0000)
4.0000 0.9999 0.0001 0.0145 2.5000e+04
CDE (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
3.1000 0.6513 0.2910 1.2431 1.0020e+03
CSA (0.6145) (0.2199) (0.1830) (0.7920) (0.0000)
0.9000 0.0698 0.7740 3.6894 1.3850e+06
DCGA (0.3030) (0.0235) (0.0195) (0.1967) (285.5354)
g 1.4800 0.3347 0.7724 4.1215 5.0100e+02
RM (0.5047) (0.1999) (0.1356) (0.5835) (0.0000)
1.0000 0.4672 1.0917 4.4569 2.5000e+04
MGSA (0.0000) (0.1450) (0.1206) (0.2830) (0.0000)
4.0000 0.3100 0.5741 5.0158 1.2613e+05
ES (0.0000) (0.0000) (0.0000) (0.0012) (41169.1392)
4.0000 0.9999 0.0001 0.0146 2.5166e+04
MFPA (0.0000) (0.0000) (0.0000) (0.0014) (9.7764)

Table 3. Performance comparison for the

set of benchmark functions J, - J, . Numbers in parenthesis are the standard

deviations.
Function Algorithm EPN MPR PA DA NFE
7.0600 0.8306 19.9856 1.4745 2.5000e+04
FSDE (1.2191) (0.1369) (16.1370) (1.4757) (0.0000)
8.0000 1.0011 0.1243 0.0505 2.5000e+04
CDE (0.0000) (0.0000) (0.0000) (0.0001) (0.0000)
1.0000 0.1357 101.9679 8.2522 1.0020e+03
CSA (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
1.6200 0.2106 93.0945 7.5821 1.3850e+06
DCGA (0.7530) (0.0916) (10.7975) (0.8235) (246.0397)
Jg 1.6600 0.1324 102.2930 8.5933 5.0100e+02
RM (1.3494) (0.1502) (17.7047) (0.4921) (0.0000)
1.0000 -0.1305 133.2952 8.6645 2.5000e+04
MGSA (0.0000) (0.1520) (17.9190) (0.2191) (0.0000)
8.0000 1.0586 7.9924 9.2303 1.2881e+05
ES (0.0000) (0.0387) (2.8545) (1.4141) (41569.5095)
8.0000 1.0010 0.1151 0.0515 2.5185e+04
MFPA (0.0000) (0.0001) (0.0090) (0.0033) (11.6426)
5.8600 0.7571 1.3902 0.7456 2.5000e+04
FSDE (0.4046) (0.0718) (0.4083) (0.4529) (0.0000)
6.0000 1.0591 0.3346 0.0592 2.5000e+04
CDE (0.0000) (0.0001) (0.0008) (0.0001) (0.0000)
5.9800 1.0536 0.3414 0.0789 1.0020e+03
J CSA (0.1414) (0.0248) (0.1198) (0.1403) (0.0000)
9
1.6600 0.2718 4.1620 4.3940 1.3851e+06
DCGA (0.7453) (0.1172) (0.6688) (0.7275) (294.9598)
1.1600 0.1375 4.8846 6.1834 5.0100e+02
RM (0.3703) (0.0513) (0.2907) (0.7370) (0.0000)
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Table 3. Continued
1.0000 0.0656 5.2921 6.3565 2.5000e+04
J, MGSA (0.0000) (0.0364) (0.2062) (0.6297) (0.0000)
6.0000 1.0575 0.3254 7.4911 1.2681e+05
ES (0.0000) (0.0021) (0.0117) (0.0164) (44819.6337)
6.0000 1.0565 0.3201 0.0593 2.5075e+04
MFPA (0.0000) (0.0008) (0.0046) (0.0011) (11.8566)
2.9200 0.0823 63.9790 131.8780 2.5000e+04
FSDE (1.0467) (0.0291) (2.0278) (7.6596) (0.0000)
19.2200 0.5513 32.1830 43.8647 2.5000e+04
CDE (2.0232) (0.0580) (3.7552) (10.0349) (0.0000)
3.1800 0.0892 64.3565 155.6625 1.0020e+03
CSA (0.8254) (0.0231) (1.3273) (0.4769) (0.0000)
0.4200 0.0112 68.9399 154.8534 1.3850e+06
DCGA (0.6728) (0.0183) (1.2723) (4.7674) (263.8082)
Jm 23.3400 0.2915 49.8345 99.8005 5.0100e+02
RM (10.6342) (0.3093) (20.9848) (35.7264) (0.0000)
1.0000 0.0034 69.4808 154.1424 2.5000e+04
MGSA (0.0000) (0.0144) (1.0065) (1.2488) (0.0000)
4.1600 0.1164 61.7971 143.8171 9.3354e+04
ES (6.3225) (0.1724) (11.6462) (15.5269) (42718.1724)
25.5600 0.7329 20.7535 28.4992 2.5195e+04
MFPA (2.6121) (0.0749) (4.7384) (11.1146) (11.9972)
28.6200 0.8438 22.9026 31.4263 2.5000e+04
FSDE (3.2381) (0.0828) (4.3348) (5.1948) (0.0000)
37.1200 0.9498 4.6393 5.8854 2.5000e+04
CDE (1.7219) (0.0399) (2.7818) (3.3588) (0.0000)
0.0000 0.0000 69.3526 81.7565 1.0020e+03
CSA (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
1.3200 0.0290 67.3455 79.1726 1.3850e+06
DCGA (1.1507) (0.0270) (1.8734) (2.2928) (312.8785)
J” 32.5000 0.1675 59.8485 51.7364 5.0100e+02
RM (4.2964) (0.3229) (19.3763) (6.1193) (0.0000)
1.0000 -0.0143 70.3478 81.8660 2.5000e+04
MGSA (0.0000) (0.0095) (0.6612) (0.6650) (0.0000)
0.0000 0.0000 69.3526 81.7565 1.1785e+05
ES (0.0000) (0.0000) (0.0000) (0.0000) (9512.0207)
39.5800 1.0031 1.4761 1.2663 2.5232e+04
MFPA (0.6091) (0.0136) (0.9264) (1.1087) (15.7429)
1.8400 0.3492 20.9057 57.8155 2.5000e+04
FSDE (0.3703) (0.0700) (2.2494) (3.3886) (0.0000)
7.9000 0.9868 0.4377 1.3691 2.5000e+04
CDE (0.3030) (0.0420) (1.3485) (3.7214) (0.0000)
0.0000 0.0000 32,1222 74.7141 1.0020e+03
CSA (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
0.0400 0.0067 31.9056 74.2748 1.3850e+06
DCGA (0.1979) (0.0337) (1.0814) (2.2017) (264.5789)
2 4.5200 0.4752 16.8572 42.4463 5.0100e+02
RM (0.6465) (0.0674) (2.1657) (6.8784) (0.0000)
1.0000 -0.0025 32.2029 68.8778 2.5000e+04
MGSA (0.0000) (0.0832) (2.6719) (1.5205) (0.0000)
2.1400 0.3217 28.3585 63.0473 1.5318e+05
ES (1.8845) (0.4432) (5.8737) (13.1130) (36122.4091)
8.0000 1.0002 0.0063 0.1461 2.5215e+04
MFPA (0.0000) (0.0000) (0.0000) (0.0029) (10.6123)
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Table 3. Continued
11.6600 -1.6462 2.2680 4.2372 2.5000e+04
FSDE (0.8715) (0.1286) (0.1090) (0.2934) (0.0000)
12.0000 0.9928 0.0062 0.0804 2.5000e+04
CDE (0.0000) (0.0000) (0.0000) (0.0007) (0.0000)
3.9800 -0.5883 1.3587 4.7141 1.0020e+03
CSA (0.1414) (0.0209) (0.0177) (0.0359) (0.0000)
4.0000 -0.2584 1.3465 4.4869 1.3850e+06
DCGA (1.1066) (0.2122) (0.1647) (0.5355) (263.0987)
13 1.0000 -0.0915 1.7797 5.8308 5.0100e+02
RM (0.0000) (0.0558) (0.0475) (0.1042) (0.0000)
1.0000 0.2814 2.0975 5.9561 2.5000e+04
MGSA (0.0000) (0.2876) (0.2451) (0.2298) (0.0000)
12.0000 -1.7744 2.3646 6.1820 1.2340e+05
ES (0.0000) (0.0000) (0.0000) (0.0013) (42957.7385)
11.7000 0.9365 0.0590 0.2590 2.5198e+04
MFPA (0.5440) (0.1078) (0.0921) (0.3145) (10.0541)
1.0000 0.0008 114.4177 28.9009 2.5000e+04
FSDE (0.0000) (0.0031) (0.3320) (0.0377) (0.0000)
8.9800 0.9923 0.8838 0.5060 2.5000e+04
CDE (0.1414) (0.0235) (2.6837) (0.5907) (0.0000)
1.0000 0.0000 114.3627 28.8892 1.0020e+03
CSA (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
1.0000 0.0000 114.3627 28.8892 1.3850e+06
DCGA (0.0000) (0.0000) (0.0000) (0.0000) (265.0882)
JM 7.3000 1.3945 105.6598 13.0871 5.0100e+02
RM (1.0351) (0.4019) (30.2145) (3.4396) (0.0000)
1.0000 0.2581 143.7611 30.9674 2.5000e+04
MGSA (0.0000) (0.1135) (12.9794) (0.9886) (0.0000)
8.8800 0.0199 112.8398 28.8923 1.2451e+05
ES (0.5938) (0.0985) (7.5359) (0.0228) (40235.8707)
9.0000 0.9177 9.4166 2.9735 2.5196e+04
MFPA (0.0606) (0.0776) (8.8730) (2.5272) (11.5756)

The results are analyzed in terms of their average values
uand their standard deviations o by considering 50

different executions (i (o )).

From Table 2, according to the EPN index, MFPA
performs better than the other algorithms, since it finds
most of the optima that include the respective function.
In case of function.,, the CDE method can find all
optima of J, while the MFPA presents a performance
slightly minor. For function s, , only MFPA and RM are
able to detect almost all the optima values each time.
For function J,, only MFPA can get most of the optima
at each run. In case of functions,, most of the
algorithms cannot get any better result. However,
MFPA can reach most of the optima. For function.J,,
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FSDE, CSA, DCGA and MGSA maintain a similar
performance whereas CDE, RM, and MFPA possess the
best EPN values. In case ofJ,, the algorithms CSA,
DCGA, MGSA and MGSA present a poor performance;
however, the FSDE, CDE, RM and MFPA algorithms
have been able to detect all optima. For function ,, the
MFPA, CDE and ES algorithms detect most of the
optima whereas the rest of the methods reach different
performance levels. By analyzing the MPR index in
Table 2, MFPA has obtained the best score for all the
multimodal problems. On the other hand, the rest of the
algorithms present different accuracies, with CDE and
RM being the most consistent. In case of the P4 index,
MFPA presents the best performance except for J, .
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Since the PA index evaluates the accumulative
differences of fitness values, it could drastically change
when one or several peaks are not detected (function .J,)
or when the function under testing presents peaks with
high values (function J; ). For the case of the D4 index
in Table 2, it can be deduced that the MFPA algorithm
presents the best performance providing the shortest
distances among the detected optima, except for
functions,. After an analysis from Table 2, it can be
seen that the MFPA algorithm is able to produce better
search locations (i.e. a better compromise between
exploration and exploitation), in a more efficient and
effective way than other multimodal search strategies by
using an acceptable number of function evaluations
(NFE). After an analysis of Table 2, it is evident that the
proposed MFPA method produces robust solutions,
since the standard deviations (o ) of each performance
index presents the smallest deviations.

With regard to the EPN values from Table 3, we
observe that MFPA can always find most of the optimal
solutions for all the multimodal problems J,—.J,. For

function J;, only MFPA and CDE can find all optima,

whereas CSA, DCGA, RM and MGSA exhibit the worst
EPN performance. For functions,, the algorithms

MFPA, CDE and ES can get most of the optima at each
run while the remaining methods obtain bad results. A
set of special cases are the functions J,—.,, which

contain a few prominent optima (with good fitness
value); however, such functions present several optima
with bad fitness values. In these functions, MFPA is
able to detect the highest number of optimal points. On
the contrary, the rest of algorithms can find only
prominent optima. For function J , , the algorithms CDE

and ES can get all optima for each execution while the
proposed MFPA reaches a similar performance. In case
of functiony,, it features numerous optima with
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different fitness values. However, MFPA still can find
all global optima with an effectiveness rate of 100%. In
terms of number of the maximum peak ratio (MPR),
MFPA has practically obtained the best indexes for all
the multimodal problems. On the other hand, the rest of
the algorithms present different accuracy levels. A close
inspection of Table 3 also reveals that the proposed

Table 4. p-values produced by Wilcoxon’s test comparing MFPA vs. FSDE, MFPA vs. CDE, MFPA vs. CSA, MFPA

Vvs. DCGA, MFPA vs. RM, MFPA vs. MGSA and MFPA vs. ES over the “effective peak number (EPN)”
values from Tables 2 and 3.
MFPA vs. FSDE CDE CSA DCGA RM MGSA ES
J, 2.14E-19A o» 1.36E-214A 3.26E-20A 3.06E-02 A 1.36E-214A 1.50E-19 A
J, 9.72E-214A 2.47E-01V 3.24E-22A 1.72E-20A 6.02E-01Y 1.12E-214A 4.27E-09 A
7, 7.56E-20 A 1.32E-17A 2.21E-214A 3.31E-214A 1.20E-12 A 7.31E-20A 2.21E-214A
; 3.62E-19A 2.50E-14 A 1.43E-20A 2.08E-20A 3.33E-184A 1.43E-20A 3.37E-174A
4
; 5.56E-21A o» 2.63E-23A 2.63E-23A 3.27E-01V 6.57E-21A 2.63E-23A
5
; 2.82E-184A o» 2.63E-23A 4.27E-23A 8.22E-02V 2.63E-23A 2.63E-23A
6
. 2.26E-224A 3.27E-01V 1.19E-20A 1.03E-224A 6.73E-21A 2.63E-23A o»
), 2.37E-20A 7.37E-14> 2.63E-23A 9.63E-214A 3.57E-214A 2.63E-23A o»
J, 2.11E-20A o» 3.27E-01V 9.50E-21A 4.43E-21A 2.63E-23A o»
; 2.176-184A 5.32E-17A 3.01E-18A 1.10E-18A 9.81E-01V 2.90E-20 A 1.24E-13A
10
; 2.90E-20 A 2.43E-20A 2.63E-23A 1.08E-18 A 3.12E-20A 2.63E-23A 2.63E-23A
11
; 5.91E-214A 1.22E-02 A 2.63E-23A 6.73E-23 A 9.43E-21A 2.63E-23A 2.50E-20 A
12
6.98E-19 A 3.11E-05A 4.93E-21A 7.02E-19A 3.31E-21A 3.31E-214A 3.11E-05A
13
; 1.29E-184A 4.82E-16 A 1.94E-20 A 1.94E-20 A 8.47E-01V 1.94E-20 A 2.06E-12A
14
A 14 8 13 14 9 14 11
> 0 4 0 0 0 0 3
v 0 2 1 0 5 0 0
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MFPA approach is able to achieve the smallest PA and
DA values in comparison to all other methods. Similar
to results of Table 2, the proposed MFPA method yields
also the smallest deviations in each performance index
from Table 3.

To statistically interpret the results of Tables 2 and 3, a
non-parametric analysis known as the Wilcoxon test */**
has been conducted. It permits to estimate the
differentiation between two related methods. The test is
performed for the 5% (0.05) significance level over the
“effective peak number (EPN)” data. Table 4 reports the
p-values produced by Wilcoxon analysis for the pair-
wise comparison among the algorithms. Under the
analysis, seven groups are produced: MFPA vs. FSDE,
MFPA vs. CDE, MFPA vs. CSA, MFPA vs. DCGA,
MFPA vs. RM, MFPA vs. MGSA and MFPA vs. ES.
In the Wilcoxon test, it is admitted as a null hypothesis
that there is no a notable discrepancy between the two
methods. On the other hand, it is accepted as alternative
hypothesis that there is an important distinction between
both approaches. In order to facilitate the analysis of
Table 4, the symbols A, V¥, and » are adopted. A
indicates that the proposed method performs
significantly better than the tested algorithm on the
specified function. ¥ symbolizes that the proposed
algorithm performs worse than the tested algorithm, and
» means that the Wilcoxon rank sum test cannot
distinguish between the simulation results of the
proposed multimodal optimizer and the tested
algorithm. The number of cases that fall in these
situations are shown at the bottom of the table. After an
analysis from Table 4, it is evident that all p-values in
the MFPA vs. FSDE, MFPA vs. DCGA and MFPA vs.
MGSA columns are less than 0.05 (5% significance
level) which is a strong evidence against the null
hypothesis and indicates that MFPA performs better (A)
than the FSDE, the DCGA and the MGSA methods.
Such data are statistically significant and show that they
have not occurred by coincidence (i.e. due to the normal
noise contained in the process). In case of the
comparison between MFPA and CDE, the CDE
maintains a better (V) performance in functions J,
and J, . In functions, J,, J,, J,, J,,, J,, J;;and
J,, the MFPA present a better o similar performance
than CDE. From the column MFPA vs. CDE, it is clear
that the p-values of functions J,, J,, J, and J, are

higher than 0.05 (»). Such results reveal that there is
not statistically difference in terms of precision between
MFPA and CDE, when they are applied to the
aforementioned functions. In case of the differences
between MFPA and CSA, the MFPA obtains better
results than CSA,- except for function J, . According to

the Wilcoxon test, there exists evidence to suppose that
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the proposed MFPA method performs better than RM in
functions J,, J,, J,, J,, Ji» Jy, J, J, and J;.
Adversely, it behaves worse than RM in functions J,,
Jg, Jpand J,. In case of the comparison between

MFPA and ES, the proposed MFPA approach present
better results than ES in 11 functions, while in 3
functions there is no evidence to suppose that one
algorithm performs better than other.

5. Conclusions

This paper presents a new multimodal optimization
algorithm called Multimodal Flower Pollination
Algorithm (MFPA) which is a multimodal modification
of the original Flower Pollination Algorithm (FPA)
developed by Yang® in which the natural flower
pollination process is simplified to solve complex
optimization problems. FPA is considered as a well-
balanced evolutionary computation technique due its
operands for exploration and exploitation stages. FPA
considers the use of the Lévy flights® rather than simple
random walks to mimic the travel pollinator should do
in order to carry out pollen through flowers. This stage
can computationally be modeled as an exploration stage
which can discover new candidate solutions through the
feasible region of certain objective function. FPA
considers the flower constancy which models the
pollinator tendency to pollinate certain kind of flowers
giving a reproduction probability in order to increase the
pollination efficiency as exploitation stage. As a result,
FPA is considered as a candidate for multimodal
extensions due its efficient and powerful operands. The
performance of the proposed MFPA has been compared
by calculating five performance indexes commonly used
to evaluate the performance of multimodal algorithms
[23], [35] through a set of fourteen benchmark functions
against the results obtained by four state-of-art
multimodal algorithms; CDE23, FSDE23, DCGAZS,
CSA*, the Region-Based Memetic method (RM)*, the
Multimodal Gravitational Search algorithm (MGSA)*
and the Ensemble Speciation DE (ES)*’. Experimental
results indicate that the proposed MFPA is capable of
providing better and even more consistent optima
solutions over their well-known multimodal competitors
for the majority of benchmark functions. The
remarkable performance of MFPA is explained by three
important features: (i) the population diversity
conservation that the memory mechanism produces, (ii)
the consideration of close solutions to allocate solutions
within the memory unit due a probability function
through the actual state of the population respect the
overall optimization process and (iii) the depuration
procedure to eliminate solution concentrations to avoid
ambiguity in the final solution values.
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