
Flower Pollination Algorithm for Multimodal Optimization 
 

Jorge Gálvez 1 *, Erik Cuevas  and Omar Avalos 

1 Departamento de Electrónica, Universidad de Guadalajara, CUCEI,  
Av. Revolución 1500 

Guadalajara, Jal, Mexico 
E-mail: jorge.galvez@cutonala.udg.mx 

 

 

Abstract 

This paper proposes a new algorithm called Multimodal Flower Pollination Algorithm (MFPA). Under MFPA, the 
original Flower Pollination Algorithm (FPA) is enhanced with multimodal capabilities in order to find all possible 
optima in an optimization problem. The performance of the proposed MFPA is compared to several multimodal 
approaches considering the evaluation in a set of well-known benchmark functions. Experimental data indicate that 
the proposed MFPA provides better results over other multimodal competitors in terms of accuracy and robustness. 
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1. Introduction 

In optimization1, the idea is to find an acceptable 
solution within a feasible search space guided by the 
values of an objective function. Optimization problems 
comprises many areas as engineering, medicine, 
economics, just to mention a few2.  The problem of 
optimization has been commonly solved through the use 
of deterministic methods such the Gradient descent 
algorithm3 and the Levenberg-Marquardt method4. 
These techniques provide a theoretical guarantee of 
finding the global optimum assuming some theoretical 
suppositions about objective function such as the uni-
modality5,6. However, most of the practical optimization 
problems tend to generate multimodal surfaces 
maintaining several local and global optima7. Under 
such conditions, the use of classical methods faces great 
difficulties in finding an acceptable solution due the 
existence of several optima in the objective function. 
 
As an alternative to deterministic techniques, the 
problem of optimization has also been conducted 
through Evolutionary Computation Techniques (ECT)8 . 
Such approaches are inspired by our scientific 
understanding of biological or social systems, which at 
some level of abstraction can be conceived as 
optimization processes. ECT have been developed by a 
combination of deterministic rules and randomness to 
mimic the behavior of natural or social entities. 
Different to deterministic methods, under the ECT 

perspective, the existence of several global and local 
optima does not represent a difficulty due to its search 
properties. Recently, several ECT have been proposed 
with interesting results. These methods involves the 
well-known Genetic Algorithm (GA) proposed by 
Holland9 and Goldberg10, Evolutionary Programming 
(EP) proposed by Rechenberg11 and the Differential 
Evolution (DE) developed by Storn and Price12  and 
Particle Swarm Optimization (PSO) method introduced 
by Kennedy & Eberhart13. Other ECT metaphors 
considers the emulation  of physical phenomena such 
Simulated Annealing (SA) proposed by Kirkpatrick14, 
the Electromagnetism-like Optimization (EMO) 
developed by Birbil and Fang15, and the Gravitational 
Search Algorithm (GSA) proposed by Rashedi16. The 
interaction among animals and their ecosystems has also 
used as optimization metaphors such the Particle Swarm 
Optimization developed by Kennedy and Eberhart17, the 
Artificial Bee Colony optimization (ABC) developed by 
Karaboga18 and the Cuckoo Search method (CS) 
proposed by Yang19. 
 
Most of research work on ECT has been accomplished 
for locating the global optimum. However, the 
acquisition of multiple promissory solutions is 
especially useful in engineering, since the best solution 
may not always be realizable due to several realistic 
constraints. Therefore, from a practical point of view, it 
is desirable to identify and maintain all the possible 
optima solutions through the overall optimization 
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process. The process of finding the global optimum and 
multiple local optima is known as multimodal 
optimization20.  ECT perform well for locating a single 
optimum with remarkable performance but fail to 
provide multiple solutions. The process of locating all 
the optima in a single run is more complicated than 
global optimization. Detection and maintenance of 
multiple solutions are two crucial processes in ECT for 
solving multimodal optimization problems since they 
are originally devised to find only a global solution. 
 
Several schemes have been incorporated into the 
original ECT to make them suitable for registering and 
maintaining potential optima. Some approaches include 
the Crowding method proposed by Jong21.  In 
Crowding, the main objective is to preserve diversity 
replacing similar individuals by individuals of better 
quality. Based on this approach, several multimodal 
algorithms have been designed considering different 
evolutionary methods such as the Crowding Differential 
evolution (CDE)22,23 and Deterministic Crowding 
Genetic Algorithms (DCGA)24,25. 
 
Fitness sharing is other multimodal scheme introduced 
by Goldberg and Richardson26. In fitness sharing, a 
function diminishes the fitness values of similar 
solutions, so that they have a lower probability to be 
selected in the new population27,28.  This method has 
produced several multimodal algorithms such as the 
Fitness Sharing Differential Evolution (FSDE)22. 
 
On the other hand, speciation-based niching methods 
are multimodal techniques which require the partition of 
the complete population into different sub-populations 
considered as species. Some multimodal algorithms of 
this category include the distance-based locally 
informed PSO29, the Ensemble Speciation (ES)30 and 
the History-based Topological speciation31. 
 
The above multimodal techniques have been applied to 
original ETC in order to produce their multimodal 
extensions.  However, other researchers have designed 
several evolutionary computation algorithms with 
multimodal capacities. Such methods use as inspiration 
our scientific understanding of biological systems, 
which at some level of abstraction can be represented as 
multimodal optimization processes.  Some examples of 
these methods include the Clonal Selection Algorithm32, 
the Multimodal Gravitational Search algorithm 
(MGSA)33 and the Region-Based Memetic method 
(RM)34. Such approaches employ operators and 
structures which support the finding and maintaining of 
multiple-solutions. 
 

On the other hand, the Flower Pollination Algorithm 
(FPA)35 is a recent evolutionary computation algorithm 
which is inspired on the natural pollination flower 
concept. Different to the most of existent evolutionary 
algorithms, FPA presents a better performance in 
multimodal problems, avoiding critical flaws such as the 
premature convergence to sub-optimal solutions. FPA 
considers both exploration and exploitation stages 
through the entire optimization process. For the 
exploration stage, FPA considers the Lévy flights36 
rather than simple random walks to discover new 
candidate solutions through the entire feasible region. 
For the exploitation stage, FPA considers the flower 
constancy which models the pollinator tendency to 
pollinate certain kind of flowers giving a reproduction 
probability in order to increase the pollination 
efficiency. As a result, FPA is potentially far more 
efficient than other ECT causing its election to 
incorporate multimodal capabilities extending its 
operands. Such characteristics have motivated its use to 
solve an extensive variety of engineering 
applications37,38. 
 
This paper presents a new multimodal optimization 
algorithm called Multimodal Flower Pollination 
Algorithm (MFPA). The method combines the FPA 
algorithm with three elements that allow the operation 
of several optima. The first element involves a memory 
mechanism39 which allows an efficient registering of 
potential local optima according to their fitness value 
and the distance to other potential solutions. The second 
element aims to accelerate the detection process of 
potential local minima. The original FPA search 
strategy is mainly conducted by the best individual 
found so-far (global optimum). Under the second 
element, the FPA strategy is modified to be influenced 
by individuals that are contained in the memory 
mechanism. The third element is a depuration procedure 
to eliminate similar solutions that possibly represent the 
same optimum. Numerical simulations have been 
conducted on fourteen benchmark functions to show the 
effectiveness of the proposed scheme. The performance 
of the proposed MFPA is compared to the results 
obtained by four multimodal algorithms: CDE, FSDE, 
DCGA and CSA. Experimental results indicate that the 
proposed MFPA is capable of providing better and even 
more consistent optima solutions over their well-known 
multimodal competitors for the majority of benchmark 
functions. 
 
The paper is organized as follows: Section 2 describes 
the original Flower Pollination Algorithm (FPA). 
Section 3 presents the proposed MFPA. Section 4 
presents the experimental results obtained. Finally, 
Section 5 establishes some conclusions. 
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2. Flower Pollination Algorithm (FPA)  

Flower Pollination Algorithm has been recently 
developed by Yang35. FPA is based on the pollination 
process of flowers. The flower pollination process aims 
to the transfer of pollen between the same flower or 
other flowers within the same or different plant for their 
reproduction. Pollination can be carried out by the so-
called pollination vectors like birds, insects, honey bees 
and other animals or by water, wind, light etc.; making 
the pollination process be divided in two different ways; 
biotic and abiotic. 
 
Biotic pollination is the most common type of flower 
pollination and constitutes the 90% of the total natural 
pollination around the world. This kind of pollination 
requires intervention of agents such insects to transfer 
pollen through flowers of different plants. The 
mechanism to accomplish biotic pollination by terms of 
these agents is called cross-pollination also known as 
allogamy and occurs when pollen is delivered to a 
flower from a different plant. On the other hand, abiotic 
pollination refers to situations where non-living 
organisms like water and wind transfer pollen. Only 
10% of the world total natural pollination belongs to 
this pollination category and it could be accomplish by 
self-pollination. Self-pollination occurs when pollen is 
delivered to flowers of the same plant by non-living 
agents extending the way flower reproduction takes 
place. 
  
In the biological process of flower pollination an 
important behavior occurs between flowers and the 
foraging stage of the pollinators. This behavior is 
known as flower constancy and mimics the biological 
phenomenon that a pollinator tend to visit certain flower 
species while passing by other flower species through 
their travel in order to improve the pollination process 
for reproduction.  
 
The Natural flower pollination process analogy is used 
to develop the FPA algorithm. Additionally, this 
algorithm use the so-called Lévy flights36 rather than 
simple random walks to enhance the exploration area 
within the search space. Biological processes are 
difficult to be modeled as evolutionary algorithms. 
Simplification of biological processes is necessary for 
successful implementation as evolutionary algorithm. 
The FPA algorithm simplifies the natural flower 
pollination process into four idealized rules as follows: 
 

(i) Global Pollination Rule: Biotic in terms of 
cross-pollination is considered as a global 
pollination operation with pollinators 

performing flights through flowers. This rule 
can be formulated as the exploration step that 
simulates global search through the search 
space in terms of Lévy flights. 
 

(ii) Local Pollination Rule: Abiotic in terms of 
self-pollination is considered as a local  
pollination operation and could be modeled as 
the exploitation stage to guide the search to 
find better solutions. 
 

(iii) Reproduction Probability Rule: This rule can 
be considered as the flower constancy behavior 
which models the pollinator tendency to 
pollinate certain kind of flowers giving a 
reproduction probability in order to increase 
the pollination efficiency. 
 

(iv) Switch Probability Rule: This rule acts like an 
operator that controls the switching process 
between global and local pollination in the 
evolution process and it is defined as [ ]0,1sp ∈ . 

 
In the real world, each plant can have many flowers and 
each of them produce millions of pollen gametes. From 
the implementation point of view, the FPA considers 
only one flower that produces only one pollen gamete. 
In the FPA, a population { }1 2, ,...,k k k k

n=X x x x  of n  flowers 
is generated every k iteration where each flower or 
pollen gamete ix corresponds to one solution. Each 
pollen gamete is represented by a d-dimensional vector 
{ },1 ,2 ,, ,...,k k k

i i i dx x x where each dimension corresponds to a 
decision variable of the optimization task to be solved. 
The population is evolved from initial point 0k=  to a 
total generation number. The quality of each flower is 
evaluated through a cost function, ( )kJ ix whose final 

value represents the fitness value of the solution k
ix . 

 
The four idealized rules described before could be 
implemented into three basic operations for successful 
implementation of the evolutionary process for the FPA: 
Global Pollination through Lévy flights, Local 
Pollination considering flower constancy and Elitist 
Selection. 
 
2.1 Global pollination through lévy flights 
 
In the global pollination step, pollen is carried by living 
agents who travel through Lévy flights all over the 
search space. Lévy flights enhance exploration stage 
within the search space rather than simple random 
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walks. They represent one on the most powerful 
operators in FPA and they mimic the peculiar behavior 
that living agents travel long distance in order to carry 
pollen to flowers. The Lévy distribution that describes  
the travel for the pollinators is defined as: 
 

 
Where ( )λΓ is the Gamma distribution and s describes 
the step size. For efficient implementation for Lévy 
distribution, Mantegna´s algorithm40 is employed to 
produce the step size a pollinator should move in order 
to replicate the Lévy flight distribution through the 
search space. The implementation for Mantegna 
algorithm is as follows: 
 

1is β=
u

v
 (2) 

 
Where { }1,....., du u=u and { }1,....., dv v=v are d-dimensional 
vectors and 3 2β = . Each element of the vector u  and 
v are calculated by normal distributions as shown in Eq. 
(3).   
 

Once is has been calculated, the position perturbation is 
obtained by: 

 
Where k

ix  is the current solution at k iteration and bestx  
is the best solution so far. Therefore the new candidate 
solution 1k

i
+x  is calculated by: 

 

 
2.2 Local pollination considering flower constancy 
 
This operation mimics the flower constancy behavior 
between a pollinator and the similarity between flower 
species and can be represented as: 

Where k
jx  and k

zx  are different flowers from the same 
plant species and [0,1]ε∈ is considered the flower 
constancy probability. 
 
2.3 Elitist selection 
 
After obtained a new candidate solution 1k

i
+x , it must be 

compared with its past solution. If the fitness value of  
1k

i
+x  is better than k

ix , 1k
i
+x  replaces the past solution 

otherwise, k
ix  remains in the population. This elitist 

selection operation can be stated as follows: 
 

This operation specifies that only high-quality solutions 
remains and provide the development of next generation 
through the best optima solution for the optimization 
problem to be solved. The complete pseudocode for the 
FPA implementation is shown in Fig 1. 

3. Multimodal Flower Pollination Algorithm 
(MFPA) 

 
In FPA, the biological flower pollination process is 
simplified in order to be implemented as an 
evolutionary algorithm. An individual k

ix  within FPA 

belonging to a population { }1 2, ,...,k k k k
n=X x x x represents a 

flower or solution of the optimization problem to be 
solved. One of the most powerful features of FPA is the 
use of the so-called Lévy flights to emulate the travel 
pollinators should do in order to carry out pollen. This 
stage on FPA is known as Global Pollination Rule and 

1
( )sin( /2) 1 , 00L s s

s λ
λ λ πλ

π +
Γ

>� �  (1) 

 

Fig.1. The Flower Pollination Algorithm Pseudocode. 
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reflects how pollen through living agents travels around 
different flowers to increase their reproduction 
efficiency. Another feature in FPA is the 
implementation of  Local Pollination considering flower 
constancy. This operation mimics the flower constancy 
behavior between a pollinator and the similarity 
between flower species causing the exploitation stage be 
more capable to find better solutions. As a result, FPA is 
a robust and powerful technique in order to solve global 
minima optimization problems. However in many 
practical engineering problems the necessity of multiple 
solutions make multimodal optimization difficult to 
maintain due the operators of unimodal algorithms. FPA 
lacks the ability to find more than one optimal solution 
even with powerful operators like Lévy flights and 
flower constancy. In the proposed MFPA approach, the 
original FPA is adapted to include multimodal 
capacities making it capable to find multiple solutions in 
a single execution. 
 
This multimodal adaptation incorporates three new 
operators proposed by Cuevas and Reyna-Orta39. The 
first operand is the utilization of a memory mechanism 
to identify potential local and global optima. The second 
operand is the adaptation of new selection strategy 
instead of the well-known elitist selection to ensure 
solution diversity. And the last operation considers a 
mechanism to depurate the memory mechanism to 
cyclically eliminate duplicated solutions. These three 
new operators for the proposed MFPA are performed 
during the evolutionary process that is divided into three 
states. 
 
The first state 1s=  corresponds from 0 to 50% of the 
total evolutionary process. The second state 2s=  
involves 50 to 90%. And the third state 3s=  belongs 90 
to 100%. The reason this division of the evolutionary 
process is implemented is that the proposed method can 
be capable of act according on the current state of the 
evolutionary process. The following sections describe 
the three new adaptations to provide multiple optima 
localization in the original FPA. These operators are 
Memory Mechanism (MM), Selection Strategy (SS) and 
Depuration Procedure (DP). 
 
3.1 Memory mechanism (MM) 
 
Within MFPA, a population { }1 2, ,...,k k k k

n=X x x x  evolves 
from initial point 0k=  to a total generation number. 
Each flower ix  represents a d-dimensional vector 

{ },,1 ,2 ,, ...,k k k
i i i dx x x where each dimension corresponds to a 

decision variable of the optimization task to be solved. 
The quality of each flower is evaluated through a cost 

function, ( )k
iJ x whose final value represents the fitness 

value of the solution k
ix at k iteration. MFPA have the 

ability to find not only multiple optima but also the 
ability to maintain also the best individual bestx . In case 
of minimization problem, the best individual acts as a 
global minimum such that: 
 

 
In multimodal optimization, both global and local 
optima describe two important features in order to be 
identified: they have significant good fitness value and 
they represent the best fitness in a certain neighborhood. 
Therefore the necessity to efficiently register potential 
global and local optima including these features should 
be implemented into a memory mechanism considering 
the past and new solutions in the overall evolutionary 
process. 
 
The memory mechanism constitutes an array of 

{ }1 2, ,... g=M m m m elements where each memory element 

wm defines potential global or local optimum that 
fulfills the optima features described before and 
corresponds a d-dimensional vector { },1 ,2 ,, ,...,w w w dm m m  
where each dimension corresponds to a decision 
variable. Therefore, a memory element is considered a 
solution to the optimization problem to be solved. To 
accomplish a successful registration in the memory, the 
memory mechanism occurs in two different phases: 
initialization and capture. Initialization phase is applied 
only once within the optimization process. That is, when 

0k=  only the best flower solution bestx of the initial 
population kx is successful register into the memory due 
to the good fitness value and its representation as the 
best individual in a certain neighborhood. Once the 
initialization phase is complete, the memory mechanism 
becomes more interesting and it is described by the next 
section. 
 
3.1.1 Capture phase 
 
This phase is applied from the first iteration 1k=  to the 
last iteration 1s=  at the end of the global or the local 
pollination operations in the entire evolutionary process. 
At this stage, each solution ix that corresponds to 
potential global or local optima is registered as memory  
 
element wm  if it has a good fitness value and it is the 
best individual in a determined neighborhood. In order 

{ } { } ( )arg min
 

1,2,..., , 1,2,...,
best

iJ
i n k

a
a

=
∈ ∈

x x  (8) 
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to register a solution into the memory. ix must be tested 
considering two rules: significant fitness value and non-
significant fitness value rule. 
 
 
Significant Fitness Value Rule 
This rule compares the fitness value of the solution k

ix  
against the fitness value of the worst element of the 
memory worstm where { } ( ) arg max  1,2,...,

worst
wJw g= ∈m m

, in case of minimization problem. The rule considers a 
solution k

ix to be potential global or local optima if the 

fitness value of k
ix  is better than worstm . The next step 

within this rule is to decide whether k
ix  represents a 

new optimum or it is similar to an existent memory 
element. Such decision is carried out by an acceptance 
probability function ( ),P ,i gD s  that depends not only of 

the distance from k
ix  to the nearest memory element 

nm but also by the current state s  of the evolutionary 
process. The notion of using this acceptance probability 
function consists that large distances in the beginning of 
the evolutionary process will increase the probability 
that k

ix to be part of the memory M . In the counterpart, 

the probability that k
ix would be similar to an existent 

memory element will increase as the distances decreases 
causing that in the end of the evolutionary process, only 
small distances are taking into account to perform better 
exploitation stage of the algorithm. The complete 
implementation process for this rule can be resumed in 
Fig 2. 
 
To implement the significant fitness value rule, the 
normalized distance ,i gD  between the k

ix solution to  

all the memory elements { }1 2, ,... gm m m  is calculated as 
follows: 

 
And the acceptance probability function ( ),P ,i gD s  is 

defined according to the nearest memory element nm  
such as: 

 

Where { }1,2,...,
upper

dl  and { }1,2,...,
lower

dl  represents the upper and 

the lower bounds of each dimension of the search space 
and ,i nD  represents the shortest distance between the 

solution k
ix  and the nm memory element with 

probability to be accepted ( ),P ,i nD s  and s is the 
current evolutionary process state. In order to decide 
whether the solution k

ix  represents a potential new 
optima or a similar existing memory element, a uniform 
random number a between [0,1] is generated. If a is 

less than ( ),P ,i nD s , k
ix  is included in the memory as a 

new optimum. Otherwise, it competes with 
nm according to their fitness value quality as follows: 

 

 
Non-Significant Fitness Value Rule 
This rule is the counterpart of the significant value rule, 
the difference that this rule performs within the 
evolutionary process is to capture potential local optima 
with low fitness values. The operation of this rule 
considers a solution k

ix to be potential local optima if the 

fitness value of k
ix  is worse than worstm . The next step 

within this rule is to decide whether k
ix  represents a 

possible local optimum to register within the memory. 
The decision to include k

ix  to the memory is based on 
the probability of the relationship between 
( ) ( ),k best k

iJ J−x x  and the fitness interval 

( ) ( ), ,worst k best kJ J−x x  where worstx  and bestx are the worst 

fitness quality solution and the best fitness quality 

2 2

,1 ,1 ,2 ,2 , ,

1 1 2 2

,

2

...
k k k
i g i g i d g d

upper lower upper lower upper lower
d d

i g l l l l l l
D

− − −
+ + +

− − −

     
=      

     

x m x m x m  (9) 

( ), ,P ,i n i n
sD s D=  (10) 

( )
( ) ( )

1 , , P ,

, if  

k
g i i n

k k
n i i n

D s

J J

+ ==
= <

m x
M

m x x m
 (11) 

 

Fig.2. The Significant Fitness Value Rule Pseudocode. 
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solution been so far. The probability function used, 
describes if a solution represents a possible local 
optimum considering if its fitness value is worse than 

worstm  and is defined as: 

 
Eq. (12) ranges from [0, 1] in minimization problems. 
This probability function value considers if a solution 

k
ix belongs or not to a potential local optimum 

considering the overall interval from the worse to the 
best solutions dividing the interval into two sections 
taking the respective values of [0, 0.5) and [0.5, 1]. The 
following procedure shows that: 

 
Therefore, the probability P assigns a probability 
greater than zero to solutions that have good fitness 
values. In order to test if a solution k

ix  is considered as 
potential local optimum, a uniform random number β  
from [0, 1] is generated and then if β  is less than the 
probability obtained by Eq.(13), the memory 
registration is tested to indicate if the solution enters to 
the memory or not. To do the test, the normalized 
distance ,i gD   is calculated between k

ix  to all the 
elements of the memory. Then the shortest distance 
value is determined as ( ),min i gD . To include the 

solution k
ix to the memory once the shortest distance is 

calculated, the following rule is applied: 

 
Where γ is a third uniform random number from [0, 1] 

and ,i nD  is the shortest distance between the solution 
k
ix  and the corresponding nearest element nm  inside 

the memory. The complete implementation process for 
this rule can be resumed in Fig 3. 
 
3.2 Selection strategy (SS) 
 
This operation extends the elitist selection strategy used 
not only in the original FPA but also in many 

evolutionary algorithms reported in the literature such 
as Particle Swarm Optimization13, Differential 
Evolution12, Gravitational Search Algorithm16  and 
Cuckoo Search19, just to mention few of them. Elitist 
selection considers only the best individuals to prevail 
through the overall evolutionary process41. This 
common selection strategy does not provide a 
mechanism to maintain potential solutions and treat 
them as global or local minima. Therefore elitist 
selection strategy must be change in order to perform 
multimodal optimization. MFPA implements a new 
selection strategy that allows capturing potential global 
and local minima optima. The SS is performed just at 
the end of the MM operation. 
 
By the new selection strategy, the new population newX  
is generated considering the first n  elements of the 
memory being n  the size of the initial population. An 
interesting point in the memory mechanism is the fact 
that each of its elements is considered as a minimum 
solution being the first n elements the best solutions that 
describe global or local features. The selection strategy 
complements the powerful operation of the memory 
mechanism by replacing each individual of the original 
population by each element of the memory keeping the 
population diversity through the evolutionary process. 
In case the number of elements inside the memory is 
less than n , the remaining individuals n g− are the best 
individuals of the original population kX . The procedure 
to implement this selection strategy is resumed in Fig 4. 
 

( ) ( )
( ) ( )

,

, ,
p 1

k best k
i

worst k best k

J J

J J

−
= −

−

x x

x x
 (12) 

p, 0.5 p 1
P

0, 0 p 0.5
≤ ≤

= ≤ <
 (13) 

1 , , if <

no change, Otherwise

sk
g i i nDγ+

 ==


m xM  (14) 

 

Fig.3. The Non-Significant Fitness Value Rule Pseudocode. 

 

Fig.4. The Selection Strategy Pseudocode. 
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3.3 Depuration procedure (DP) 
 
Elitist selection considers only the best individuals to 
prevail during the evolutionary process. Therefore this 
classical approach is not appropriate for multimodal 
optimization. In multimodal optimization a new 
selection strategy must be defined in order to capture 
multiple optima solutions in a single execution42. Some 
approaches for this capability include the well-known 
Deterministic Crowding and Fitness Sharing43 
techniques. However these techniques generate a final 
solution set as the same size of the initial population 
causing individual concentrations in the final solutions. 
In MFPA the new selection strategy (SS) allows 
multiple optima registration each iteration through the 
overall evolutionary process inside the memory. 
However each individual allocated inside the memory 
could represent the same minimum. The depuration 
procedure in MFPA eliminates similar individuals 
inside the memory improving the detection of 
significant and valid solutions. The execution of this 
depuration stage occurs just at the end of each state s . 
 
The memory mechanism of MFPA tends to allocate 
several solutions over the same minimum. The 
depuration procedure finds the distances among 
concentrations and eliminates solutions that are similar 
to each other in order to improve the search using only 
the most significant solutions. The procedure consists of 
taking the best element bestm  inside the memory and 
calculates all the distances among each of the memory 
elements rm . Later, test the fitness value of the medium 

point between bestm  and rm  in order to find a 
depuration ratio that allows elimination of all the nearest 
solutions to bestm . Then if the fitness value of the 
medium point ( )( )2best

rJ +m m  is not worse than 

( )bestJ m  and ( )rJ m ,the element rm  is considered part 

of the same concentration of bestm . However, if the 
fitness value of the medium point ( )( )2best

rJ +m m  is 

worse than ( )bestJ m  and ( )rJ m ,then rm  is considered 

part of another concentration. If the last situation occurs, 
the distance between bestm and rm  can be considered as 
a maximum depuration ratio distance which will be used 
to eliminate solutions within a certain neighborhood. 
The calculation of the depuration ratio rtD  takes the 

85% of the maximum distance between bestm and rm  
and is defined as: 

 
The implementation of this depuration procedure is 
resumed in Fig 5. 

 
3.4 Complete multimodal flower pollination algorithm 
 
In MFPA three new operations are added to the original 
FPA in order to incorporate multimodal capacities. This 
new operations consist of capturing potential optima 
solutions through the overall evolutionary process 
maintaining only the individuals which have significant 
fitness value and the ones that represents the best in a 
certain neighborhood. The first operation to incorporate 
multimodal capacities is based on a memory mechanism 
which allows multiple registrations of individuals in a 
single execution. The second operation is a new 
selection strategy which does not select only the best 
individual through the process but also a set of solutions 
that present global or local minima features. The last 
operation of the implementation of MFPA is the 
inclusion of depuration procedure for the memory 
storage. In classical multimodal approaches the final 
solution set has the same size of the initial population 
due the multiple solution registration. This entails the 
generation of minima concentration in a certain 
neighborhood. In order to eliminate these concentrations 
to keep only the best individual of each of them, the 
depuration procedure of MFPA considers a depuration 
ratio between each element of the memory and the 
remaining elements inside the memory. Later, all the 
elements inside within an area determined by the 
depuration ratio will be eliminated allowing significant 
solutions to prevail. The complete pseudocode for 
MFPA implementation with this three operations is 
resumed in Fig 6. 
 
 
 
 

0.85 best
rt rD = ⋅ −m m  (15) 

 

Fig.5. The Depuration Procedure Pseudocode. 
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4.   Experimental Results 

This section presents the performance of MFPA over a 
set of 2D benchmark functions in order to compare the 
minima solutions of the proposed MFPA against other 
multimodal algorithms. The Section 4.1 describes the 
performance criteria used in order to evaluate the results 
obtained by MFPA against the results of four algorithms 
commonly used in multimodal optimization comparing 
them with five different performance indexes. The 
Section 4.2 reports the approach used in order to 
determine the true optima set per function will be 
considered to calculate each of the five indexes.  
Finally, the Section 4.3 reports the results obtained for 
MFPA compared to each of the four algorithms 
according to the performance indexes criteria using a set 
of fourteen benchmark functions. 
 
4.1 Performance criteria 
 
This section describes a set of five performance indexes 
commonly used to evaluate the performance of 
multimodal algorithms23,39,44. The first index used is the 
Effective Peak Number (EPN) which expresses the 
amount of detected peaks. The second index is the 
Maximum Peak Ratio (MPR) to evaluate the quality of 
the solutions over the true optima. The third index is 
Peak Accuracy (PA) which calculates the total error 
produced among the identified solutions and the true 
optima. The fourth index calculated is the Distance 
Accuracy (DA) to measure the error produced by the 
components between identified solutions and true 
optima. And the last index, the Number of Function 
Evaluations (NFE) shows the total number of function 

calculations of each algorithm through the experiment. 
Each of these indexes is formally defined as follows. 
 
The Effective Peak Number (EPN) expresses the 
quantity of valid detected peaks. That is, each solution 
of each algorithm is considered as an optimum io  if the 
distance between the solution jw  and the true optima 

io  is not greater than 0.05. That is, only the 5% of error 
is permitted for each solution jw  against its 
correspondent true optima io . The EPN is resumed as: 
 

 
Where the subindex i  represents the i -th true optima 
and the subindex j represents the j -th solution an 
algorithm generates. To evaluate the quality of the 
identified optima, the Maximum Peak Ratio is defined 
as: 

 
Where O represents the number of true optima and EPN 
is defined as Eq. (16) and represents the number of 
identified optima. In order to calculate the total error 
produced by the identified solutions and the true optima, 
the Peak Accuracy is calculated as: 
 

 
PA only takes the error based on the fitness value for 
the true optima against the identified optima but not 
considers if the peak of io and iw are close. Under such 
circumstance, the Distancy Accuracy is calculated to 
consider the peak closeness and it is calculated as 
follows: 

 
The last index used for the evaluation of the 
performance benchmark is the Number of Function 
Evaluations which calculates the total number of 
function calculations in order to obtain a set of final 
solutions for each algorithm. 
 
 
 

 
 
Fig.6. The Multimodal Flower Pollination Algorithm 
Pseudocode. 

EPN 0.05i j= − <o w  (16) 

1

1

( )
MPR

( )

EPN
j

j
O

i
i

J

J

=

=

∑
=

∑

w

o
 (17) 

1
PA ( ) ( )

O
i i

i
J J

=
= −∑ o w  (18) 

1
DA ( ) ( )

O
i i

i
J J

=
= −∑ o w  (19) 
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4.2 True optima determination 
 
In order to calculate these performance indexes, a set of 
fourteen benchmark functions with different 
complexities is proposed. Due the fact these 
performance indexes operate among identified optima 
and true optima values for each benchmark function, the 
necessity to propose true optima values is essential. In 
the reported literature, does not exist selection criteria 
for true optima to test the performance indexes. 
Therefore a consideration to take true optima values 
must be done. In this study, all the optima found below 
the medium point of the highest and lowest values in 
each function will be considered as true optima for 
minimization problem. That is, obtaining the medium 
point of the highest and lowest function values, a set of 
true optima values will be determined as follows: 
 

 
Where J represents each of the benchmark functions, 

io represents each optima for the function J  and th  is 
the medium point threshold for the highest and lowest 
function J  values. Each optimum io  is obtained by 
using the traditional mathematical approach of the 
second partial derivative test for two-dimensional 
function which is defined as: 
 

 
Where D is the second partial derivative test 
discriminant. To verify if a point 0 0( , )x y  is a minimum, 
the discriminant D  must be tested as: 
 

 
4.3 Performance results 
 
To compare the results of the MFPA using the 
performance indexes described in Section 4.1, a 
comprehensive set of 14 multimodal functions, 
collected from Refs. 45,46, has been used. Table 1 
presents the benchmark functions 1J – 14J  considered in 
our experimental study. In Table 1, it is exposed the 
characteristics of each function such as the number of 
optima and the search space domain. The experiments 
compare the performance of MFPA against the Fitness 
Sharing Differential Evolution (FSDE), the Crowding 
Differential Evolution (CDE), the Clonal Selection 
Algorithm (CSA), the Deterministic Crowding Genetic 
Algorithm (DCGA), the Region-Based Memetic method 

(RM)34, the Multimodal Gravitational Search algorithm 
(MGSA)33 and the Ensemble Speciation DE (ES)30. For 
all the algorithms the population size is set to 50 
individuals and the number of total iterations has been 
set to 500. 
 
The parameter setting used in the comparison is 
described below. For the case of the FSDE method, the 
following parameters have been used:  the variant 
implemented is DE/rand/bin22 where crossover 
probability .9cr= , differential weight 0.1dw=  with 
sharing radius 0.1shares =  and 1.0a= according to Ref. 
39. With regard to the CDE algorithm, its configuration 
has been assumed with:  the variant implemented is 
DE/rand/bin where crossover probability .9cr= , 
differential weight 0.1dw=  with crowding factor 50cf = . 
Using the guidelines of Ref. 39. In case of the DCGA 
method, it has been implemented following the 
following guidelines: a crossover probability 0.9cp=  
and a mutation probability 0.1mp= using roulette wheel 
selection. The CSA has been set as follows: the 
mutation probability 0.01mp= , the percentile to random 
reshuffle 0.0per= and the clone per candidate .1fat= .  In 
case of the proposed MFPA, the probability switch 
between Global and Local Pollination is set to .25sp= . In 
the experiments, all the remaining methods, RM34, 
MGSA33 and ES30 have been configured according to 
their own reported guidelines. 
  
The performance results among the algorithms are 
reported in Tables 2 and 3. For the sake of clarity, they 
are divided in two groups, Table 2 for functions 1J – 7J  
and Table 3 for functions 8J – 14J . Both Tables register 
the performance indexes with regard to the effective 
peak number (EPN), the maximum peak ratio (MPR), 
the peak accuracy (PA) and the distance accuracy (DA). 

{ }|i i iJ th= ∀ ∈ ∧ ≤T o o o  (20) 

xx yy xy yxD J J J J≡ −  (21) 

{ }0 0if   D>0 and ( , ) 0xxJ x yi= >o  (22) 
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Table 1.  Benchmark functions 1 14J J− of our experimental study 

Function Search 
Domain 

Optima 
Number 

Bird 
[ 2 , 2 ]π π−  6 2 2 22 1

1 1 2 1 2 1 2

(1 cos( )) (1 sin( ))
( , ) sin( ) cos( ) ( )

x x
J x x x e x e x x

− −
= ⋅ + ⋅ + −  

Test Tube Holder 
[ 10, 10]−  4 

2 2
1 2cos

200 200
1 22 1 2( , ) 4 sin( ) cos( )

x x

J x x e x x

 
 +
 
 = − ⋅ ⋅ ⋅  

Penholder 

[ 11, 11]−  12 

1
2 2
1 2

1 2

3 1 2

 1

cos( ) cos( )

( , )

x x

e x x

J x x e

π

−
+

− +

⋅ ⋅

= −  
Rastriguin [ 5.12, 5.12]−

 21 2
4 1 2

1
( , ) 10 10 cos(2 ),      2

n

i i
i

J x x n x x nπ
=

= ⋅ − ⋅ =∑  
Himmelblau

 
[ 6, 6]−  5 ( ) ( )( )2 2

2 2
1 2 1 25 1 2( , ) 11 7J x x x x x x= − + − + + −

 
Six Hump Camel

 1

2

[ 3, 3]

  [ 2,2]

x

x

= −

= −
 3 2 2 4 4 6

1 1 2 2 1 2 16 1 2
1( , ) 4 4 2.1 4
3

J x x x x x x x x x
 

= − + − − + + 
   

Giunta
 [ 1, 1]−  4 2

7 1 2
1

16 1 64 16( , ) 0.6 sin 1    sin 4    sin 1  ,     2
15 50 15 15

n

i i i
i

J x x x x x n
=

      = + − − ⋅ − − − =      
      

∑
 

Rastriguin49
 [ 1, 1]−  8 2

8 1 2
1

( , ) 18 cos(2 ),    2
n

i i
i

J x x x x nπ
=

= − ⋅ =∑
 

Roots
 [ 2, 2]−  6 

69 1 2
1 2

1
( , )

1  ( ) 1
J x x

x x i
= −

+ + −  
Vincent

 [0.25, 10]  36 
10 1 2

1
( , ) sin(10 log( )),    2

n

i
i

J x x x n
=

= − ⋅ =∑
 

Multi Peak
 [ 2, 2]−  40 

11 1 2 1 1 2 2( , ) sin(4 ) sin(4 ) 1J x x x x x xπ π π= ⋅ − ⋅ + +
 Alpine 02

 [0, 10]  8 
12 1 2

1
( , ) sin( ),    2

n

i i
i

J x x x x n
=

= ⋅ =∏
 

Cosine Mixture
 

[ 1, 1]−  12 2
13 1 2

1 1
( , ) 0.1 cos(5 ) ,   2

n n

i i
i i

J x x x x nπ
= =

= − − =∑ ∑  
Egg Crate

 [ 5, 5]−  9 ( )2 2 2 2
1 214 1 2 1 2( , ) 25 sin ( )   sin ( )J x x x x x x= + + ⋅ +
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Table 2. Performance comparison for the set of benchmark functions
 1 7J J− . Numbers in parenthesis are the standard   

deviations. 

Function Algorithm 
EPN MPR PA DA NFE 

1
J  

FSDE 
2.6600 

(0.7174) 
 

0.7540 
(0.1914) 

 

91.0354 
(66.1408) 

 

16.1303 
(2.8272) 

 

2.5000e+04 
(0.0000) 

 

CDE 
5.9800 

(0.1414) 
 

1.0017 
(0.0006) 

 

0.5970 
(0.2103) 

 

0.3427 
(1.0932) 

 

2.5000e+04 
(0.0000) 

 

CSA 
1.0000 

(0.0000) 
 

-0.0043 
(0.0000) 

 

350.1699 
(0.0000) 

26.0224 
(0.0015) 

 

1.0020e+03 
(0.0000) 

 

DCGA 
0.4200 

(0.5379) 
 

0.1222 
(0.1617) 

 

309.4281 
(55.7500) 

 

25.3591 
(2.2885) 

 

1.3850e+06 
(288.1563) 

 

RM 
5.2800 

(0.6402) 
 

0.7036 
(0.1274) 

 

107.5283 (43.2990) 
 

8.3606 
(3.8876) 

 

5.0100e+02 
(0.0000) 

 

MGSA 
1.0000 

(0.0000) 
 

-0.0237 
(0.0845) 

 

359.8525 (29.1997) 
 

26.2039 
(1.2992) 

 

2.5000e+04 
(0.0000) 

 

ES 
2.5000 

(0.6145) 
 

0.7698 
(0.1923) 

 

409.6047 (53.8922) 
 

24.4823 
(0.6759) 

 

1.1941e+05 
(37170.0853) 

 

MFPA 
5.3600 

(0.4849) 
 

1.0044 
(0.0021) 

 

1.5166 
(0.7206) 

 

0.8587 
(0.5105) 

 

2.5203e+04 
(11.4375) 

 

2
J  

FSDE 
2.8000 

(1.2936) 
 

0.6869 
(0.3166) 

 

13.5855 
(13.7374) 

 

4.7114 
(4.3008) 

 

2.5000e+04 
(0.0000) 

 

CDE 
3.5400 

(0.8621) 
 

0.8853 
(0.2156) 

 

5.0055 
(9.3480) 

 

1.7228 
(2.9999) 

 

2.5000e+04 
(0.0000) 

 

CSA 
0.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

43.3904 
(0.0000) 

 

14.0472 
(0.0000) 

 

1.0020e+03 
(0.0000) 

 

DCGA 
0.2200 

(0.4185) 
 

0.0550 
(0.1046) 

 

41.0050 
(4.5371) 

 

13.2824 
(1.4547) 

 

1.3850e+06 
(285.0152) 

 

RM 
3.7400 

(0.4431) 
 

0.7180 
(0.1452) 

 

12.2383 
(6.3022) 

 

3.3264 
(1.5125) 

 

5.0100e+02 
(0.0000) 

 

MGSA 
0.9200 

(0.2740) 
 

0.0984 
(0.0758) 

 

39.1188 
(3.2869) 

 

13.9158 
(0.9773) 

 

2.5000e+04 
(0.0000) 

 

ES 
2.4400 

(1.0910) 
 

0.6100 
(0.2744) 

 

16.9892 
(11.8235) 

 

12.7849 
(2.4176) 

 

1.2220e+05 
(36883.9504) 

 

MFPA 
3.7800 

(0.5067) 
 

0.9454 
(0.1267) 

 

2.4043 
(5.4939) 

 

0.8865 
(1.7634) 

 

2.5165e+04 
(11.3026) 

 

3
J  

FSDE 
5.0400 

(1.5381) 
 

0.4226 
(0.1285) 

 

6.5307 
(1.4539) 

 

84.2616 
(19.0553) 

 

2.5000e+04 
(0.0000) 

 

CDE 
7.7000 

(2.6973) 
 

0.6433 
(0.2242) 

 

4.0347 
(2.5359) 

 

51.9124 
(32.6811) 

 

2.5000e+04 
(0.0000) 

 

CSA 
0.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

11.3110 
(0.0000) 

 

147.5853 
(0.0000) 

 

1.0020e+03 
(0.0000) 

 

DCGA 
0.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

11.3110 
(0.0000) 

 

147.5853 
(0.0000) 

 

1.3850e+06 
(280.2022) 

 

RM 
10.1600 
(1.0947) 

 

0.6011 
(0.1735) 

 

4.5117 
(1.9619) 

 

32.1361 
(12.1145) 

 

5.0100e+02 
(0.0000) 

 

MGSA 
0.2400 

(0.4314) 
 

0.0103 
(0.0217) 

 

11.1949 
(0.2450) 

 

145.6805 
(3.4615) 

 

2.5000e+04 
(0.0000) 
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Table 2.  Continued 

 

3
J  

ES 
0.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

11.3110 
(0.0000) 

 

147.5853 
(0.0000) 

 

8.5205e+04 
(23788.6955) 

 

MFPA 
11.6400 
(0.6928) 

 

0.9700 
(0.0577) 

 

0.3398 
(0.6531) 

 

4.8550 
(8.5080) 

 

2.5175e+04 
(11.9867) 

 

4
J  

FSDE 
1.0000 

(0.0000) 
 

0.0146 
(0.0204) 

 

71.6704 
(0.9852) 

 

34.4840 
(0.5887) 

 

2.5000e+04 
(0.0000) 

 

CDE 
15.4000 
(2.8067) 

 

0.6803 
(0.1438) 

 

24.1608 
(10.5013) 

 

10.1389 
(4.9194) 

 

2.5000e+04 
(0.0000) 

 

CSA 
1.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

72.3042 
(0.0000) 

 

35.0906 
(0.0000) 

 

1.0020e+03 
(0.0000) 

 

DCGA 
1.0600 

(0.3136) 
 

0.0011 
(0.0062) 

 

72.2399 
(0.3372) 

 

35.0315 
(0.3091) 

 

1.3850e+06 
(307.9098) 

 

RM 
9.9600 

(2.6570) 
 

1.2543 
(0.7687) 

 

90.0817 
(47.8586) 

 

29.9317 
(2.0631) 

 

5.0100e+02 
(0.0000) 

 

MGSA 
1.0000 

(0.0000) 
 

0.3463 
(0.1663) 

 

96.4085 
(12.0253) 

 

37.4041 
(0.9597) 

 

2.5000e+04 
(0.0000) 

 

ES 
21.0000 
(0.0000) 

 

0.4219 
(0.3969) 

 

51.4849 
(12.4425) 

 

40.8538 
(5.3202) 

 

1.2057e+05 
(39344.2203) 

 

MFPA 
19.5000 
(1.1294) 

 

0.8826 
(0.0538) 

 

8.4881 
(3.8911) 

 

2.5735 
(1.8889) 

 

2.5241e+04 
(16.7986) 

 

5
J  

FSDE 
1.0000 

(0.0000) 
 

0.3181 
(0.0091) 

 

4526.5866 
(60.4546) 

 

29.2162 
(0.0624) 

 

2.5000e+04 
(0.0000) 

 

CDE 
5.0000 

(0.0000) 
 

1.0000 
(0.0000) 

 

0.0085 
(0.0000) 

 

0.0228 
(0.0002) 

 

2.5000e+04 
(0.0000) 

 

CSA 
0.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

6638.3536 
(0.0000) 

 

37.6246 
(0.0000) 

 

1.0020e+03 
(0.0000) 

 

DCGA 
0.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

6638.3536 
(0.0000) 

 

37.6246 
(0.0000) 

 

1.3850e+06 
(315.5938) 

 

RM 
4.9600 

(0.1979) 
 

0.9795 
(0.0404) 

 

136.0493 
(268.3073) 

 

1.3495 
(1.3138) 

 

5.0100e+02 
(0.0000) 

 

MGSA 
0.5600 

(0.5014) 
 

0.0080 
(0.0108) 

 

6585.5431 
(71.8419) 

 

36.1061 
(1.6747) 

 

2.5000e+04 
(0.0000) 

 

ES 
0.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

6638.3536 (0.0000) 
 

37.6246 
(0.0000) 

 

3.6959e+04 
(464.7521) 

 

MFPA 
5.0000 

(0.0000) 
 

1.0000 
(0.0000) 

 

0.0085 
(0.0000) 

 

0.0229 
(0.0006) 

 

2.5113e+04 
(7.4773) 

 

6
J  

FSDE 
3.0000 

(0.0000) 
 

0.9337 
(0.0415) 

 

31.5887 
(19.7709) 

 

0.3095 
(0.2098) 

 

2.5000e+04 
(0.0000) 

 

CDE 
3.0000 

(0.0000) 
 

1.0000 
(0.0000) 

 

0.0000 
(0.0000) 

 

0.0000 
(0.0000) 

 

2.5000e+04 
(0.0000) 

 

CSA 
0.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

476.7000 
(0.0000) 

 

10.8167 
(0.0000) 

 

1.0020e+03 
(0.0000) 

 

DCGA 
0.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

476.7000 
(0.0000) 

 

10.8167 
(0.0000) 

 

1.3850e+06 
(317.1410) 

 

RM 
2.8600 

(0.3505) 
 

0.9164 
(0.1442) 

 

39.8426 
(68.7635) 

 

0.7597 
(1.3776) 

 

5.0100e+02 
(0.0000) 

 

MGSA 
1.0000 

(0.0000) 
 

0.0043 
(0.0054) 

 

474.6590 
(2.5734) 

 

10.5379 
(0.8883) 

 

2.5000e+04 
(0.0000) 
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Table 2.  Continued 

6
J

 

ES 
0.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

476.7000 
(0.0000) 

 

10.8167 
(0.0000) 

 

3.6995e+04 
(379.5627) 

 

MFPA 
3.0000 

(0.0000) 
 

1.0000 
(0.0000) 

 

0.0000 
(0.0000) 

 

0.0000 
(0.0000) 

 

2.5114e+04 
(7.8500) 

 

7
J  

FSDE 
0.9600 

(0.1979) 
 

0.1028 
(0.0463) 

 

0.7822 
(0.0368) 

 

3.7372 
(0.1575) 

 

2.5000e+04 
(0.0000) 

 

CDE 
4.0000 

(0.0000) 
 

0.9999 
(0.0000) 

 

0.0001 
(0.0000) 

 

0.0145 
(0.0000) 

 

2.5000e+04 
(0.0000) 

 

CSA 
3.1000 

(0.6145) 
 

0.6513 
(0.2199) 

 

0.2910 
(0.1830) 

 

1.2431 
(0.7920) 

 

1.0020e+03 
(0.0000) 

 

DCGA 
0.9000 

(0.3030) 
 

0.0698 
(0.0235) 

 

0.7740 
(0.0195) 

 

3.6894 
(0.1967) 

 

1.3850e+06 
(285.5354) 

 

RM 
1.4800 

(0.5047) 
 

0.3347 
(0.1999) 

 

0.7724 
(0.1356) 

 

4.1215 
(0.5835) 

 

5.0100e+02 
(0.0000) 

 

MGSA 
1.0000 

(0.0000) 
 

0.4672 
(0.1450) 

 

1.0917 
(0.1206) 

 

4.4569 
(0.2830) 

 

2.5000e+04 
(0.0000) 

 

ES 
4.0000 

(0.0000) 
 

0.3100 
(0.0000) 

 

0.5741 
(0.0000) 

 

5.0158 
(0.0012) 

 

1.2613e+05 
(41169.1392) 

 

MFPA 
4.0000 

(0.0000) 
 

0.9999 
(0.0000) 

 

0.0001 
(0.0000) 

 

0.0146 
(0.0014) 

 

2.5166e+04 
(9.7764) 

 

 

 

Table 3.  Performance comparison for the set of benchmark functions 8 14J J− . Numbers in parenthesis are the standard 
deviations. 

Function Algorithm EPN MPR PA DA NFE 

8
J  

FSDE 
7.0600 

(1.2191) 
 

0.8306 
(0.1369) 

 

19.9856 
(16.1370) 

 

1.4745 
(1.4757) 

 

2.5000e+04 
(0.0000) 

 

CDE 
8.0000 

(0.0000) 
 

1.0011 
(0.0000) 

 

0.1243 
(0.0000) 

 

0.0505 
(0.0001) 

 

2.5000e+04 
(0.0000) 

 

CSA 
1.0000 

(0.0000) 
 

0.1357 
(0.0000) 

 

101.9679 
(0.0000) 

 

8.2522 
(0.0000) 

 

1.0020e+03 
(0.0000) 

 

DCGA 
1.6200 

(0.7530) 
 

0.2106 
(0.0916) 

 

93.0945 
(10.7975) 

 

7.5821 
(0.8235) 

 

1.3850e+06 
(246.0397) 

 

RM 
1.6600 

(1.3494) 
 

0.1324 
(0.1502) 

 

102.2930  
(17.7047) 

 

8.5933 
(0.4921) 

 

5.0100e+02 
(0.0000) 

 

MGSA 
1.0000 

(0.0000) 
 

-0.1305 
(0.1520) 

 

133.2952  
(17.9190) 

 

8.6645 
(0.2191) 

 

2.5000e+04 
(0.0000) 

 

ES 
8.0000 

(0.0000) 
 

1.0586 
(0.0387) 

 

7.9924 
(2.8545) 

 

9.2303 
(1.4141) 

 

1.2881e+05 
(41569.5095) 

 

MFPA 
8.0000 

(0.0000) 
 

1.0010 
(0.0001) 

 

0.1151 
(0.0090) 

 

0.0515 
(0.0033) 

 

2.5185e+04 
(11.6426) 

 

9
J  

FSDE 
5.8600 

(0.4046) 
 

0.7571 
(0.0718) 

 

1.3902 
(0.4083) 

 

0.7456 
(0.4529) 

 

2.5000e+04 
(0.0000) 

 

CDE 
6.0000 

(0.0000) 
 

1.0591 
(0.0001) 

 

0.3346 
(0.0008) 

 

0.0592 
(0.0001) 

 

2.5000e+04 
(0.0000) 

 

CSA 
5.9800 

(0.1414) 
 

1.0536 
(0.0248) 

 

0.3414 
(0.1198) 

 

0.0789 
(0.1403) 

 

1.0020e+03 
(0.0000) 

 

DCGA 
1.6600 

(0.7453) 
 

0.2718 
(0.1172) 

 

4.1620 
(0.6688) 

 

4.3940 
(0.7275) 

 

1.3851e+06 
(294.9598) 

 

RM 
1.1600 

(0.3703) 
 

0.1375 
(0.0513) 

 

4.8846 
(0.2907) 

 

6.1834 
(0.7370) 

 

5.0100e+02 
(0.0000) 
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Table 3.  Continued 

9
J  MGSA 

1.0000 
(0.0000) 

 

0.0656 
(0.0364) 

 

5.2921 
(0.2062) 

 

6.3565 
(0.6297) 

 

2.5000e+04  
(0.0000) 

 

ES 
6.0000 

(0.0000) 
 

1.0575 
(0.0021) 

 

0.3254 
(0.0117) 

 

7.4911 
(0.0164) 

 

1.2681e+05 
(44819.6337) 

 

MFPA 
6.0000 

(0.0000) 
 

1.0565 
(0.0008) 

 

0.3201 
(0.0046) 

 

0.0593 
(0.0011) 

 

2.5075e+04 
(11.8566) 

 

10
J  

FSDE 
2.9200 

(1.0467) 
 

0.0823 
(0.0291) 

 

63.9790 
(2.0278) 

 

131.8780 
(7.6596) 

 

2.5000e+04 
(0.0000) 

 

CDE 
19.2200 
(2.0232) 

 

0.5513 
(0.0580) 

 

32.1830 
(3.7552) 

 

43.8647 
(10.0349) 

 

2.5000e+04 
(0.0000) 

 

CSA 
3.1800 

(0.8254) 
 

0.0892 
(0.0231) 

 

64.3565 
(1.3273) 

 

155.6625 
(0.4769) 

 

1.0020e+03 
(0.0000) 

 

DCGA 
0.4200 

(0.6728) 
 

0.0112 
(0.0183) 

 

68.9399 
(1.2723) 

 

154.8534 
(4.7674) 

 

1.3850e+06 
(263.8082) 

 

RM 
23.3400 

(10.6342) 
 

0.2915 
(0.3093) 

 

49.8345 
(20.9848) 

 

99.8005 
(35.7264) 

 

5.0100e+02 
 (0.0000) 

 

MGSA 
1.0000 

(0.0000) 
 

0.0034 
(0.0144) 

 

69.4808 
(1.0065) 

 

154.1424 
(1.2488) 

 

2.5000e+04 
 (0.0000) 

 

ES 
4.1600 

(6.3225) 
 

0.1164 
(0.1724) 

 

61.7971 
(11.6462) 

 

143.8171 
 (15.5269) 

 

9.3354e+04 
(42718.1724) 

 

MFPA 
25.5600 
(2.6121) 

 

0.7329 
(0.0749) 

 

20.7535 
(4.7384) 

 

28.4992 
(11.1146) 

 

2.5195e+04 
(11.9972) 

 

11
J  

FSDE 
28.6200 
(3.2381) 

 

0.8438 
(0.0828) 

 

22.9026 
(4.3348) 

 

31.4263 
(5.1948) 

 

2.5000e+04 
(0.0000) 

 

CDE 
37.1200 
(1.7219) 

 

0.9498 
(0.0399) 

 

4.6393 
(2.7818) 

 

5.8854 
(3.3588) 

 

2.5000e+04 
(0.0000) 

 

CSA 
0.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

69.3526 
(0.0000) 

 

81.7565 
(0.0000) 

 

1.0020e+03 
(0.0000) 

 

DCGA 
1.3200 

(1.1507) 
 

0.0290 
(0.0270) 

 

67.3455 
(1.8734) 

 

79.1726 
(2.2928) 

 

1.3850e+06 
(312.8785) 

 

RM 
32.5000 
(4.2964) 

 

0.1675 
(0.3229) 

 

59.8485 
(19.3763) 

 

51.7364 
(6.1193) 

 

5.0100e+02 
 (0.0000) 

 

MGSA 
1.0000 

(0.0000) 
 

-0.0143 
(0.0095) 

 

70.3478 
(0.6612) 

 

81.8660 
(0.6650) 

 

2.5000e+04 
 (0.0000) 

 

ES 
0.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

69.3526 
(0.0000) 

 

81.7565 
(0.0000) 

 

1.1785e+05 
(9512.0207) 

 

MFPA 
39.5800 
(0.6091) 

 

1.0031 
(0.0136) 

 

1.4761 
(0.9264) 

 

1.2663 
(1.1087) 

 

2.5232e+04 
(15.7429) 

 

12
J  

FSDE 
1.8400 

(0.3703) 
 

0.3492 
(0.0700) 

 

20.9057 
(2.2494) 

 

57.8155 
(3.3886) 

 

2.5000e+04 
(0.0000) 

 

CDE 
7.9000 

(0.3030) 
 

0.9868 
(0.0420) 

 

0.4377 
(1.3485) 

 

1.3691 
(3.7214) 

 

2.5000e+04 
(0.0000) 

 

CSA 
0.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

32.1222 
(0.0000) 

 

74.7141 
(0.0000) 

 

1.0020e+03 
(0.0000) 

 

DCGA 
0.0400 

(0.1979) 
 

0.0067 
(0.0337) 

 

31.9056 
(1.0814) 

 

74.2748 
(2.2017) 

 

1.3850e+06 
(264.5789) 

 

RM 
4.5200 

(0.6465) 
 

0.4752 
(0.0674) 

 

16.8572 
(2.1657) 

 

42.4463 
(6.8784) 

 

5.0100e+02 
 (0.0000) 

 

MGSA 
1.0000 

(0.0000) 
 

-0.0025 
(0.0832) 

 

32.2029 
(2.6719) 

 

68.8778 
(1.5205) 

 

2.5000e+04 
 (0.0000) 

 

ES 
2.1400 

(1.8845) 
 

0.3217 
(0.4432) 

 

28.3585 
(5.8737) 

 

63.0473 
(13.1130) 

 

1.5318e+05 
(36122.4091) 

 

MFPA 
8.0000 

(0.0000) 
 

1.0002 
(0.0000) 

 

0.0063 
(0.0000) 

 

0.1461 
(0.0029) 

 

2.5215e+04 
(10.6123) 
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The results are analyzed in terms of their average values 
µ and their standard deviations s  by considering 50 
different executions ( µ (s )). 
 
From Table 2, according to the EPN index, MFPA 
performs better than the other algorithms, since it finds 
most of the optima that include the respective function. 
In case of function 1J , the CDE method can find all 
optima of 1J while the MFPA presents a performance 
slightly minor. For function 2J , only MFPA and RM are 
able to detect almost all the optima values each time. 
For function 3J , only MFPA can get most of the optima 
at each run. In case of function 4J , most of the 
algorithms cannot get any better result. However, 
MFPA can reach most of the optima. For function 5J , 

FSDE, CSA, DCGA and MGSA maintain a similar 
performance whereas CDE, RM, and MFPA possess the 
best EPN values. In case of 6J , the algorithms CSA, 
DCGA, MGSA and MGSA present a poor performance; 
however, the FSDE, CDE, RM and MFPA algorithms 
have been able to detect all optima.  For function 7f , the 
MFPA, CDE and ES algorithms detect most of the 
optima whereas the rest of the methods reach different 
performance levels. By analyzing the MPR index in 
Table 2, MFPA has obtained the best score for all the 
multimodal problems. On the other hand, the rest of the 
algorithms present different accuracies, with CDE and  
RM being the most consistent. In case of the PA index, 
MFPA presents the best performance except for 1J .  
 

Table 3.  Continued 

13
J  

FSDE 
11.6600 
(0.8715) 

 

-1.6462 
(0.1286) 

 

2.2680 
(0.1090) 

 

4.2372 
(0.2934) 

 

2.5000e+04 
(0.0000) 

 

CDE 
12.0000 
(0.0000) 

 

0.9928 
(0.0000) 

 

0.0062 
(0.0000) 

 

0.0804 
(0.0007) 

 

2.5000e+04 
(0.0000) 

 

CSA 
3.9800 

(0.1414) 
 

-0.5883 
(0.0209) 

 

1.3587 
(0.0177) 

 

4.7141 
(0.0359) 

 

1.0020e+03 
(0.0000) 

 

DCGA 
4.0000 

(1.1066) 
 

-0.2584 
(0.2122) 

 

1.3465 
(0.1647) 

 

4.4869 
(0.5355) 

 

1.3850e+06 
(263.0987) 

 

RM 
1.0000 

(0.0000) 
 

-0.0915 
(0.0558) 

 

1.7797 
(0.0475) 

 

5.8308 
(0.1042) 

 

5.0100e+02 
 (0.0000) 

 

MGSA 
1.0000 

(0.0000) 
 

0.2814 
(0.2876) 

 

2.0975 
(0.2451) 

 

5.9561 
(0.2298) 

 

2.5000e+04 
 (0.0000) 

 

ES 
12.0000 
(0.0000) 

 

-1.7744 
(0.0000) 

 

2.3646 
(0.0000) 

 

6.1820 
(0.0013) 

 

1.2340e+05 
(42957.7385) 

 

MFPA 
11.7000 
(0.5440) 

 

0.9365 
(0.1078) 

 

0.0590 
(0.0921) 

 

0.2590 
(0.3145) 

 

2.5198e+04 
(10.0541) 

 

14
J  

FSDE 
1.0000 

(0.0000) 
 

0.0008 
(0.0031) 

 

114.4177 
(0.3320) 

 

28.9009 
(0.0377) 

 

2.5000e+04 
(0.0000) 

 

CDE 
8.9800 

(0.1414) 
 

0.9923 
(0.0235) 

 

0.8838 
(2.6837) 

 

0.5060 
(0.5907) 

 

2.5000e+04 
(0.0000) 

 

CSA 
1.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

114.3627 
(0.0000) 

 

28.8892 
(0.0000) 

 

1.0020e+03 
(0.0000) 

 

DCGA 
1.0000 

(0.0000) 
 

0.0000 
(0.0000) 

 

114.3627 
(0.0000) 

 

28.8892 
(0.0000) 

 

1.3850e+06 
(265.0882) 

 

RM 
7.3000 

(1.0351) 
 

1.3945 
(0.4019) 

 

105.6598  
(30.2145) 

 

13.0871 
(3.4396) 

 

5.0100e+02  
(0.0000) 

 

MGSA 
1.0000 

(0.0000) 
 

0.2581 
(0.1135) 

 

143.7611  
(12.9794) 

 

30.9674 
(0.9886) 

 

2.5000e+04  
(0.0000) 

 

ES 
8.8800 

(0.5938) 
 

0.0199 
(0.0985) 

 

112.8398 
(7.5359) 

 

28.8923 
(0.0228) 

 

1.2451e+05 
(40235.8707) 

 

MFPA 
9.0000 

(0.0606) 
 

0.9177 
(0.0776) 

 

9.4166 
(8.8730) 

 

2.9735 
(2.5272) 

 

2.5196e+04 
(11.5756) 

 

 

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 627–646
___________________________________________________________________________________________________________

642



 

Since the PA index evaluates the accumulative 
differences of fitness values, it could drastically change  
when one or several peaks are not detected (function 3J ) 
or when the function under testing presents peaks with 
high values (function 5J ). For the case of the DA index 
in Table 2, it can be deduced that the MFPA algorithm 
presents the best performance providing the shortest 
distances among the detected optima, except for 
function 1J .  After an analysis from Table 2, it can be 
seen that the MFPA algorithm is able to produce better  
search locations (i.e. a better compromise between 
exploration and exploitation), in a more efficient and 
effective way than other multimodal search strategies by 
using an acceptable number of function evaluations 
(NFE). After an analysis of Table 2, it is evident that the 
proposed MFPA method produces robust solutions, 
since the standard deviations (s ) of each performance 
index presents the smallest deviations. 
 
With regard to the EPN values from Table 3, we 
observe that MFPA can always find most of the optimal 
solutions for all the multimodal problems 8J – 14J . For 

function 8J , only MFPA and CDE can find all optima, 
whereas CSA, DCGA, RM and MGSA exhibit the worst 
EPN performance. For function 9J , the algorithms 
MFPA, CDE and ES can get most of the optima at each 
run while the remaining methods obtain bad results. A 
set of special cases are the functions 10J – 12J  which 
contain a few prominent optima (with good fitness 
value); however, such functions present several optima 
with bad fitness values. In these functions, MFPA is 
able to detect the highest number of optimal points. On 
the contrary, the rest of algorithms can find only 
prominent optima. For function 13J , the algorithms CDE 
and ES can get all optima for each execution while the 
proposed MFPA reaches a similar performance. In case 
of function 14J , it features numerous optima with 
different fitness values. However, MFPA still can find 
all global optima with an effectiveness rate of 100%. In 
terms of number of the maximum peak ratio (MPR), 
MFPA has practically obtained the best indexes for all 
the multimodal problems. On the other hand, the rest of 
the algorithms present different accuracy levels. A close 
inspection of Table 3 also reveals that the proposed 

Table 4. p-values produced by Wilcoxon’s test comparing MFPA vs. FSDE, MFPA vs. CDE, MFPA vs. CSA, MFPA 
vs.             DCGA, MFPA vs. RM, MFPA vs. MGSA and MFPA vs. ES over the “effective peak number (EPN)” 
values from Tables 2 and    3. 

MFPA vs. FSDE CDE CSA DCGA RM MGSA ES 

1J  2.14E-19▲ 0► 1.36E-21▲ 3.26E-20▲ 3.06E-02▲ 
 

1.36E-21▲ 1.50E-19▲ 

2J  9.72E-21▲ 2.47E-01▼ 3.24E-22▲ 1.72E-20▲ 6.02E-01▼ 
 

1.12E-21▲ 4.27E-09▲ 

3J  7.56E-20▲ 1.32E-17▲ 2.21E-21▲ 3.31E-21▲ 1.20E-12▲ 
 

7.31E-20▲ 2.21E-21▲ 

4J  3.62E-19▲ 
 

2.50E-14▲ 1.43E-20▲ 2.08E-20▲ 3.33E-18▲ 1.43E-20▲ 3.37E-17▲ 

5J  5.56E-21▲ 
 

0► 2.63E-23▲ 2.63E-23▲ 3.27E-01▼ 6.57E-21▲ 2.63E-23▲ 

6J  2.82E-18▲ 0► 2.63E-23▲ 4.27E-23▲ 8.22E-02▼ 2.63E-23▲ 2.63E-23▲ 

7J  2.26E-22▲ 3.27E-01▼ 1.19E-20▲ 1.03E-22▲ 6.73E-21▲ 
 

2.63E-23▲ 0► 

8J  2.37E-20▲ 7.37E-14► 2.63E-23▲ 9.63E-21▲ 3.57E-21▲ 2.63E-23▲ 0► 

9J  2.11E-20▲ 0► 3.27E-01▼ 9.50E-21▲ 4.43E-21▲ 2.63E-23▲ 0► 

10J  2.17E-18▲ 5.32E-17▲ 
 

3.01E-18▲ 1.10E-18▲ 9.81E-01▼ 2.90E-20▲ 1.24E-13▲ 

11J  2.90E-20▲ 2.43E-20▲ 2.63E-23▲ 1.08E-18▲ 3.12E-20▲ 
 

2.63E-23▲ 2.63E-23▲ 

12J  5.91E-21▲ 1.22E-02▲ 2.63E-23▲ 6.73E-23▲ 9.43E-21▲ 2.63E-23▲ 2.50E-20▲ 

13J  6.98E-19▲ 3.11E-05▲ 4.93E-21▲ 7.02E-19▲ 3.31E-21▲ 3.31E-21▲ 3.11E-05▲ 

14J  1.29E-18▲ 4.82E-16▲ 1.94E-20▲ 1.94E-20▲ 8.47E-01▼ 1.94E-20▲ 2.06E-12▲ 

▲ 14 8 13 14 9 14 11 
► 0 4 0 0 0 0 3 
▼ 0 2 1 0 5 0 0 
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MFPA approach is able to achieve the smallest PA and 
DA values in comparison to all other methods.  Similar 
to results of Table 2, the proposed MFPA method yields 
also the smallest deviations in each performance index 
from Table 3. 
To statistically interpret the results of Tables 2 and 3, a 
non-parametric analysis known as the Wilcoxon test 47,48 
has been conducted.  It permits to estimate the 
differentiation between two related methods. The test is 
performed for the 5% (0.05) significance level over the 
“effective peak number (EPN)” data. Table 4 reports the 
p-values produced by Wilcoxon analysis for the pair-
wise comparison among the algorithms. Under the 
analysis, seven groups are produced: MFPA vs. FSDE, 
MFPA vs. CDE, MFPA vs. CSA, MFPA vs. DCGA, 
MFPA vs. RM, MFPA vs. MGSA and MFPA vs. ES.  
In the Wilcoxon test, it is admitted as a null hypothesis 
that there is no a notable discrepancy between the two 
methods. On the other hand, it is accepted as alternative 
hypothesis that there is an important distinction between 
both approaches. In order to facilitate the analysis of 
Table 4, the symbols ▲, ▼, and ► are adopted. ▲ 
indicates that the proposed method performs 
significantly better than the tested algorithm on the 
specified function. ▼ symbolizes that the proposed 
algorithm performs worse than the tested algorithm, and 
► means that the Wilcoxon rank sum test cannot 
distinguish between the simulation results of the  
proposed multimodal optimizer and the tested 
algorithm. The number of cases that fall in these 
situations are shown at the bottom of the table. After an 
analysis from Table 4, it is evident that all p-values in 
the MFPA vs. FSDE, MFPA vs. DCGA and MFPA vs. 
MGSA columns are less than 0.05 (5% significance 
level) which is a strong evidence against the null 
hypothesis and indicates that MFPA performs better (▲) 
than the FSDE, the DCGA and the MGSA methods.  
Such data are statistically significant and show that they 
have not occurred by coincidence (i.e. due to the normal 
noise contained in the process). In case of the 
comparison between MFPA and CDE, the CDE 
maintains a better (▼) performance in functions 2J  
and 7J . In functions, 3J , 4J , 10J , 11J , 12J , 13J and 

14J  the MFPA present a better o similar performance 
than CDE. From the column MFPA vs. CDE, it is clear 
that the p-values of functions 1J , 5J , 6J  and 9J  are 
higher than 0.05 (►). Such results reveal that there is 
not statistically difference in terms of precision between 
MFPA and CDE, when they are applied to the 
aforementioned functions. In case of the differences 
between MFPA and CSA, the MFPA obtains better 
results than CSA,- except for function 9J . According to 
the Wilcoxon test, there exists evidence to suppose that 

the proposed MFPA method performs better than RM in 
functions 1J , 3J , 4J , 7J , 8J , 9J , 11J , 12J  and 13J .  
Adversely, it behaves worse than RM in functions 5J , 

6J , 10J and 14J . In case of the comparison between 
MFPA and ES, the proposed MFPA approach present 
better results than ES in 11 functions, while in 3 
functions there is no evidence to suppose that one 
algorithm performs better than other. 

5.   Conclusions 

This paper presents a new multimodal optimization 
algorithm called Multimodal Flower Pollination 
Algorithm (MFPA) which is a multimodal modification 
of the original Flower Pollination Algorithm (FPA) 
developed by Yang31 in which the natural flower 
pollination process is simplified to solve complex 
optimization problems. FPA is considered as a well-
balanced evolutionary computation technique due its 
operands for exploration and exploitation stages. FPA 
considers the use of the Lévy flights34 rather than simple 
random walks to mimic the travel pollinator should do 
in order to carry out pollen through flowers. This stage 
can computationally be modeled as an exploration stage 
which can discover new candidate solutions through the 
feasible region of certain objective function. FPA 
considers the flower constancy which models the 
pollinator tendency to pollinate certain kind of flowers 
giving a reproduction probability in order to increase the 
pollination efficiency as exploitation stage. As a result, 
FPA is considered as a candidate for multimodal 
extensions due its efficient and powerful operands. The 
performance of the proposed MFPA has been compared 
by calculating five performance indexes commonly used 
to evaluate the performance of multimodal algorithms 
[23], [35] through a set of fourteen benchmark functions 
against the results obtained by four state-of-art 
multimodal algorithms; CDE23, FSDE23, DCGA25, 
CSA30, the Region-Based Memetic method (RM)34, the 
Multimodal Gravitational Search algorithm (MGSA)33 
and the Ensemble Speciation DE (ES)30. Experimental 
results indicate that the proposed MFPA is capable of 
providing better and even more consistent optima 
solutions over their well-known multimodal competitors 
for the majority of benchmark functions. The 
remarkable performance of MFPA is explained by three 
important features: (i) the population diversity 
conservation that the memory mechanism produces, (ii) 
the consideration of close solutions to allocate solutions 
within the memory unit due a probability function 
through the actual state of the population respect the 
overall optimization process and (iii) the depuration 
procedure to eliminate solution concentrations to avoid 
ambiguity in the final solution values. 
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