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Abstract 

In this paper, we investigate the cluster techniques of hesitant fuzzy information. Consider that the distance measure 
is one of the most widely used tools in clustering analysis, we first point out the weakness of the existing distance 
measures for hesitant fuzzy sets (HFSs), and then put forward a novel distance measure for HFSs, which involves a 
new hesitation degree. Moreover, we construct the distance matrix and choose different values of λ  so as to obtain 
the λ − cutting matrix, each column of which is treated as a vector. After that, an orthogonal clustering method is 
developed for HFSs. The main idea of this clustering method is that the orthogonal vectors in the distance matrix 
should be clustered into the same group, and according to the different values of λ , the procedure will repeat again 
and again until all the cases are considered. Finally, two numerical examples are given to demonstrate the 
effectiveness of our algorithm. 
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1. Introduction 

In our daily life, there exist some phenomena that 
cannot be described accurately in mathematical forms, 
for example, the words “fast”, “big”, “beautiful”, “rich” 
and so on. It encourages people to find a more effective 
way to study and handle these uncertain problems. In 
1965, Zadeh 1 originally put forward the concept of 
fuzzy set, which opens the door of fuzzy theory 
research. Since then, fuzzy set theory has been 

developed from various angles. In 1986, Atanassov 
extended fuzzy set to intuitionistic fuzzy set 2, which 
takes account of the membership degree, the non-
membership degree and the hesitance degree. Compared 
to fuzzy set, it includes more details to distinguish 
different objects. Later, Atanassov and Gargov 
introduced the concept of interval-valued intuitionistic 
fuzzy set 3, in which the membership degree and the 
non-membership degree are interval-valued. There are 
also some other kinds of fuzzy sets, such as type-2 
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fuzzy set 4,5, interval type-2 fuzzy set 6, type-n fuzzy set 
4, and hesitant fuzzy linguistic set 7,8, etc.  

 The fuzzy sets mentioned above can solve a lot of 
decision making problems appropriately, but they do not 
do well when analyzing hesitant fuzzy information 7,8. 
In some decision making problems, when considering 
the degree that an alternative satisfies a criterion, 
different experts have different opinions. Some experts 
who are optimistic may assign 0.9, some experts may 
give 0.6, and some 0.1. Their attitudes cannot be 
changed and each opinion cannot be ignored. It is clear 
that this issue cannot be solved by using fuzzy sets 
talked before. Hesitant fuzzy set 7,8 proposed by Torra 
and Narukawa can work out the issue more 
convincingly. Xia and Xu 9,10 gave the mathematical 
expression of the HFS, and called its components the 
hesitant fuzzy elements (HFEs). Obviously, utilizing the 
HFE {0.9,0.6,0.1} to describe the above situation is 
much more reasonable than the interval-valued fuzzy set 
[0.1,0.9] or the single value. Therefore, it is necessary 
and essential to use the HFEs (or HFSs) to describe the 
hesitant information in the decision making problems. 
So far, a lot of research has been done to develop the 
hesitant fuzzy set theory. Torra et.al 7,8 made a deep 
exploration about the difference among the HFS and 
other fuzzy sets, and gave some basic operations of 
HFSs, such as complement, union and intersection. Xia 
and Xu 9,10 developed some aggregation operators for 
HFEs, and also studied the distance, similarity and 
correlation measures of HFSs. Rodriguez et al.11 
presented an overview on hesitant fuzzy set and pointed 
out the further research directions in the future. In the 
existing research, Xu and Xia 10 proposed several 
distance measures to discuss the variances and applied 
them to clustering analysis. In addition, the distance 
measures have been widely used in decision making 12-

14, medical diagnosis 15 and pattern recognition 16, etc. 
However, the existing distance measures have some 
drawbacks, such as changing the original information 
and ignoring the hesitation degree. To overcome these 
drawbacks, in this paper, we develop a novel method to 
calculate the distance involving hesitation degrees and 
compare it with the existing distance measures, and 
finally, we apply the proposed distance measure to 
clustering analysis. 

Clustering is a dividing process which divide the 
set of different kinds of objects into a few groups 
generally according to their characteristics, which has 
been widely used in various fields, such as economics, 
computer sciences, astronomy and so on 17-19. The 
similar objects would be clustered into the same group. 
Based on the properties of the generated clusters, the 
clustering techniques are generally classified as the 
partitional clustering method and the hierarchical 
clustering method 21. The partitional clustering 

algorithm divides the data into several partitions based 
on certain objective function, where each partition 
represents a cluster, such as K-means clustering 
algorithm. While the hierarchical clustering algorithm 
gathers all the data to form a tree shaped structure, 
compare the distances or similarities between each pair 
of clusters in each layer, and form a new layer. Through 
continuous cycle, we can get the clustering results 
finally. Recently, some scholars have been giving 
research on hesitant fuzzy clustering techniques. Chen 
et al. 22 constructed a correlation matrix by calculating 
the correlation coefficients for each pair of HFSs, then 
formed the correlation coefficients equivalent matrix, 
and finally clustered the HFSs based on the λ − cutting 
matrix. Zhang and Xu 23 proposed a minimal spanning 
tree (MST) clustering technique, while drawing the 
MST is too complicated. Zhang and Xu 21 adopted the 
traditional agglomerative hierarchical clustering method 
24 to calculate the center of the groups again and again, 
which needs too much calculational effort too. Chen et 
al. 25 put forward a clustering method of HFSs based on 
K-means clustering algorithm which takes the results of 
hierarchical clustering as the initial input.  

Looking into the clustering algorithms discussed 
above, we find that some need a large amount of 
computational effort, some need the complicated 
transformation, and most of the algorithms take a lot of 
time to finish clustering. To overcome these issues, in 
this paper, we will propose a novel orthogonal 
clustering method for HFSs. In this method, we first 
construct the distance matrix using our new distance 
measure for HFSs. After that, we choose the confidence 
level λ  to obtain the λ − cutting matrix, every column 
of which is treated as a vector. If two vectors are 
orthogonal, then we cluster them into the same group. 

The remainder of the paper is organized as follows: 
Section 2 reviews some basic knowledge related to 
HFSs. Section 3 gives a novel method to calculate the 
distance and defines a new concept of hesitation degree. 
In Section 4, we put forward the orthogonal clustering 
method for HFSs. We illustrate the effectiveness of the 
method via two numerical examples in Section 5. The 
paper ends with some concluding remarks in Section 6. 

2. Preliminaries 

2.1. The basic knowledge related to HFSs   

In some decision making problems, many experts are 
needed to express individual opinions on the same 
problem. When considering the degree that an 
alternative satisfies a criterion, different experts have 
different opinions, and thus, different people may assign 
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different values to the alternatives. To solve these 
problems, Torra 7 generalized the fuzzy set to hesitant 
fuzzy set (HFS), in which the membership degree of an 
element to a set is expressed as several possible values 
between 0 and 1.  

Let 1 2{ , , , }mX x x x= ⋅⋅⋅  be a fixed set, a HFS A  on 
X  is defined as a function that when applied to X  

returns a subset of [0,1]. Xia and Xu 9 expressed it by a 
mathematical symbol as follows: 

{ , ( ) | }AA x h x x X= < ∈ >  
where x  represents a criterion and ( )Ah x  is a set of 
some values in [0,1] , on behalf of the possible 
membership degrees of the element x  to the set A . For 
convenience, Xu and Xia 9 defined ( )Ah x  as hesitant 
fuzzy element (HFE). 

Example 1. Let 1 2 3{ , , }X x x x=  be a fix set, 

1( ) {0.1,0.2,0.3}Ah x = , 2( ) {0.4,0.5}Ah x = , and 

3( )Ah x =  {0.3,0.5,0.6}  are the HFEs of ( 1, 2,3)ix i =  to 
a set A . Then the HFS A  can be expressed as: 

1 2

3

{ , (0.1,0.2,0.3) , , (0.4,0.5) ,
, (0.3,0.5,0.6) }

A x x
x
= < > < >

< >
 

To compare the HFEs, we introduce the score of 
the HFE 9: 

1( )
hh

s h
l γ

γ
∈

= ∑  

where hl  is the number of the elements in h , generally 
being called the length of h , and γ  is the elements in 
h . In fact, the score of the HFE is the average value of 
numbers in h . For two HFEs 1h  and 2h , if 

1 2( ) ( )s h s h> , then 1h  is superior to 2h , denoted by 

1 2h h> . However, if 1 2( ) ( )s h s h= , only with the score 
of HFEs, then we cannot distinguish which one is 
bigger. For example, 1 {0.1,0.1,0.7}h =  and 

2 {0.2,0.4}h =  are two HFEs. We can easily get the 
scores of these two HFEs: 1( ) 0.3s h =  and 2( ) 0.3s h = . 
Since 1 2( ) ( )s h s h= , then we cannot distinguish these 
two HFEs with the score. Clearly, even if two HFEs 1h  
and 2h  have the same score, their deviation degrees may 
be different. To better compare the HFEs, Chen et al. 22 
defined the concept of deviation degree: Let the HFE 

{ }1 1 2( ) , nh x x x x= ⋅⋅⋅ , then the deviation degree of 1( )h x  
is expressed as: 

2

1
( )

( )

n

i
i

h

x x
h

l
σ =

−
=
∑

 

where 1

n

i
i

x
x

n
==
∑

. The deviation degree is just the 

standard variance of ix . 
Distance measure is an important content in 

clustering analysis with hesitant fuzzy information. Xu 
and Xia 10 gave its concept as follows: 

Definition 1 10. Let 1A  and 2A  be two HFSs defined on 
X, then the distance measure between 1A  and 2A  is 
defined as 1 2( , )d A A , which should satisfy:   
(1) 1 20 ( , ) 1d A A≤ ≤ . 
(2) 1 2( , ) 0d A A =  if and only if 1 2A A= . 
(3) 1 2 2 1( , ) ( , )d A A d A A= . 

Based on the above properties of distance measure 
between each pair of HFSs, we can construct the 
distance matrix below:  
Definition 2 10. Let ( 1, 2, , )iA i m= ⋅⋅⋅  be m  HFSs, then 

( )ij m mD d ×=  is called a distance matrix, where 
( , )ij i jd d A A=  is the distance measure between iA  and 

jA , and ijd  should satisfy the following properties:   
(1) 0 1ijd≤ ≤  for all , 1, 2, ,i j m= ⋅⋅⋅ . 
(2) ( , ) 0i jd A A =  if and only if i jA A= . 
(3) ij jid d=  for all , 1, 2, ,i j m= ⋅⋅⋅ .  

Definition 3 24. If ( )ij m mD d ×=  is a distance matrix, then 
we define ( )ij m mD dλ λ ×=  as the λ -cutting matrix of 
D , where 

0 ,
, 1, 2, ,

1 ,
ij

ij
ij

if d
d i j m

if dλ

λ

λ

<= = ⋅⋅⋅ ≥
 

2.2. The existing distance measures for HFSs   

Clustering is a progress which divides different kinds of 
elements into a few groups. Elements in the same group 
have something in common. On the contrary, the 
elements in different groups differ widely. So it is very 
important to find a suitable method to measure the 
relationship between different elements. Generally, we 
estimate this relation by distance, similarity or 
correlation coefficient. Only a good measure can lead to 
accurate results, in what follows, we will review some 
existing distance measures for HFSs. 
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In earlier research, a lot of approaches have been 
found to calculate the distance between any two HFSs. 
Let ( )Ah x  and ( )Bh x  be two HFEs. In most cases, the 
numbers of values in the HFEs ( )Ah x  and ( )Bh x  may 
be different. According to Ref. [10], the number of 
values in the HFE ( )A ih x  is called the length of the 
HFE ( )A ih x , expressed as ( )A ih xl . That is to say, the 
lengths of the HFEs may be different. For convenience, 
Xu and Xia 10 put forward some rules as follows: 
Arrange the values in ( )Ah x  and ( )Bh x  in descending 
orders. It means that ( ) ( )j

Ah xσ  represents the j th largest 
element. The equation ( )Ah x = ( )Bh x  holds if and only 
if ( ) ( )j

Ah xσ = ( ) ( )j
Bh xσ , 1, 2, ,j m= ⋅⋅⋅ . Generally, if 

( )A ih xl  and ( )B ih xl  represent the lengths of ( )A ih x  and 

( )B ih x , then ( ) ( )max{ , }
i A i B ix h x h xl l l=  for each ix  in X . 

Only if they have the same length, can we continue to 
make deeper research. In the previous algorithms, if the 
lengths of two HFEs are different, then we add values to 
the HFEs which have less numbers until they have the 
same length. The principle of adding numbers reflects 
the risk preferences of the decision makers. The 
optimists may add the maximum value to the HFE, 
while the other who expect negative consequences may 
add the minimum number to the HFE. In order to avoid 
its weakness, in this paper, we will extend the shorter 
one by the maximum value, assuming that the decision 
makers are all optimistic. For example, there are two 
HFEs 1( )Ah x = {0.6,0.5,0.3,0.3,0.3} and 1( )Bh x = 
{0.4,0.2}, and assume that the decision makers’ 
opinions are optimistic, we extend 1( )Bh x  to '

1( )Bh x = 
{0.4,0.4,0.4,0.4,0.2}. 

Let 1A  and 2A  be two HFSs defined on 

1 2{ , , }nX x x x= ⋅⋅⋅ , ( )A ih x  and ( )B ih x  be two HFEs. 
Based on the well-known Hamming distance and 
Euclidean distance, Xu and Xia 10 proposed a 
generalized hesitant normalized distance: 

               
1

( ) ( )
1

1 1

1( , ) ( ) ( )
xi

i

ln
j j

A i B i
i jx

d A B h x h x
l

llσ σ

= =

 
= − 

  
∑ ∑         (1)                   

where 0λ > . Particularly, if 1, 2λ = , then the 
generalized hesitant normalized distance is reduced to 
the hesitant Hamming distance and the hesitant 
Euclidean distance, respectively: 

   ( ) ( )
2

1 1

1( , ) ( ) ( )
xi

i

ln
j j

A i B i
i jx

d A B h x h x
l

σ σ

= =

 
= − 

  
∑ ∑          (2)         

1 2
2( ) ( )

3
1 1

1( , ) ( ) ( )
xi

i

ln
j j

A i B i
i jx

d A B h x h x
l

σ σ

= =

  
 = −     
∑ ∑       (3)  

If the weight iw  of each element ix  is taken into 
consideration, then the generalized hesitant weighted 
distance is defined as follows: 

             
1

( ) ( )
4

1 1

1( , ) ( ) ( )
xi

i

ln
j j

i A i B i
i jx

d A B w h x h x
l

llσ σ

= =

 
= − 

  
∑ ∑        (4) 

where 0, 1,2iw i n≥ = ⋅⋅⋅ , 
1

1
n

i
i

w
=

=∑ . 

Example 2. For two HFEs 1( ) {0.8,0.1}h x =  and 

2 ( ) {0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1}h x = . Now we 
calculate the distance between these two HFEs: 
According to the distance measure proposed above, we 
first extend 1( )h x  until it 1( )h x  and 2 ( )h x  have the 
same length. Suppose that the decision maker is 
pessimistic, then we should add the minimum number to 

1( )h x . Then 1( )h x  can be modified to 
'
1( ) (0.8,0.1,0.1,0.1,0.1,0.1,0.1,0.1)h x = . By the hesitant 

Euclidean distance, we can get the distance between '
1h  

and 2h  as 3 1 2( , )d h h = 0.096. 

3. A novel method to calculate the distance 
between HFSs  

3.1. The drawbacks of the existing distance measures 
for HFSs 

In Section 2, we have reviewed some distance measures. 
Clearly, all of the above distance measures satisfy the 
three conditions in Definition 1. However, we can easily 
find that these distance measures have some 
shortcomings. Most importantly, these distance 
measures are based on the following assumptions: 
 The values in a HFE are arranged in ascending 

order or increasing order. 
 Assume that the lengths of each two corresponding 

HFEs are the same. 
However, in most practical decision making 

problems, the lengths of the corresponding HFEs may 
be different. In some cases, they may even have big 
differences. It is also possible that the values in Ah  and 

Bh  are in order, that is to say, to arrange the values 
again may be improper. The existing distance measures 
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have some weakness as described in the introduction. In 
the following, we will give two short examples to 
illustrate the weakness of the existing methods: 

Example 3. Suppose that we are going to compute the 
distance between 1( ) {0.8,0.1}h x =  and 

2 ( ) {0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1}h x = . In Example 2, 
we have got the distance as: 3 1 2( , )d h h = 0.096. 
However, in the course of calculation, we have added 
six numbers to 1( )h x  which just has two values 
originally, and the original average value is 0.45. After 
adding numbers, the average value is 0.1875. Clearly, 
the result is totally different. Furthermore, if we add the 
maximum number to the shorter one and suppose that 
the decision maker is optimistic, then we can extend 

1( )h x  to '
1( )h x = {0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.1} . So 

we can measure the distance '
3 1 2( , )d h h = 0.119, and the 

average value is 0.7125. Compared to the results 
measured before, it is completely different. However, 
according to the rules given in Ref. [10], these two 
results are all reasonable even though they differ very 
much. It is the weakness of the existing methods that 
change the original information when calculating the 
distances of HFEs. In the following, we try to propose a 
novel method to estimate distances so as to avoid the 
drawback mentioned above. 

3.2. A novel distance measure for HFSs 

Let { , ( ) | , 1, 2, , }i A i iA x h x x X i n= < > ∈ = ⋅⋅⋅  and 
{ , ( ) | , 1, 2, , }i B i iB x h x x X i n= < > ∈ = ⋅⋅⋅  be two HFSs on 

1 2{ , , }nX x x x= ⋅⋅⋅ , respectively. According to the 
principle we talked before, if the values are given in 
disorder, we needn’t to arrange the values in HFEs in a 
decreasing order or increasing order. If the lengths of 
the corresponding HFEs are different, then adding the 
minimum number to the short one for computing 
distances of HFSs is also redundant. To keep the 
original information, we may consider a new distance 
measure between the HFSs A  and B  as: 

( ) ( )

9
1 1 1( ) ( )

1 1( , ) | ( ) ( ) |
h x h xB i A i

A i B i

l ln
m n
A i B i

i n mh x h x

d A B h x h x
n l l= = =

= −∑ ∑ ∑   (5)                     

where ( ( ))A il h x  is the length of ( )A ih x . Now we need 
to check whether 9 ( , )d A B  satisfies Definition 1 or not. 
Apparently, 9 9( , ) ( , )d A B d B A=  and 90 ( , ) 1d A B≤ ≤  
hold. What we need to check is 9 ( , ) 0d A B =  if and only 
if A B= . However, 

( ) ( )

( ) ( )

9
1 1 1( ) ( )

( ) ( )
1 1 1

1 1( , ) | ( ) ( ) |

1 | ( ) ( ) |

h x h xB i A i

A i B i

h x h xA i B i

B i A i

l ln
m n
A i B i

i n mh x h x

l ln
m n

h x A i h x B i
i m n

d A B h x h x
n l l

l h x l h x
n

= = =

= = =

= −

= −

∑ ∑ ∑

∑ ∑ ∑
  (6) 

If 
( ) ( )

( ) ( )
1 1

( ) ( )
h x h xA i B i

B i A i

l l
m n

h x A i h x B i
m n

l h x l h x
= =

−∑ ∑ =0 holds, then 

9 ( , ) 0d A B = . While in this case, A B=  cannot be 
guaranteed. For example, {0.5,0.4,0.3}A =  and 

{0.6,0.5,0.4,0.1}B = , 9 ( , ) 0d A B =  but A B≠ . On the 
contrary, when A B≠ , 9 ( , ) 0d A B =  may also be 
possible. Thus, 9 ( , ) 0d A B =  if and only if A B=  
cannot be guaranteed in any cases.  

Through analyzing the data, we find that what 
leads to this conclusion is that we haven’t considered 
the influence of the length and deviation of data on the 
result. These two parameters are also essential, which 
involve the hesitance of the decision makers. In the 
following, we will analyze the importance of hesitance 
of the decision makers, and develop a novel distance 
measure considering the hesitation degrees. 

Example 4. For two HFEs 1( ) {0.8}h x =  and 

2 ( ) {0.8,0.8,0.8,0.8,0.8,0.8}h x = . According to the 
rules 10, the lengths of these two HFEs are different. For 
convenience of calculation, we extend 1( )h x  to 

1( ) {0.8,0.8,0.8,0.8,0.8,0.8}h x = . So we can conclude 
that these two HFEs are the same. But considering the 
amount and distribution of values, the decision makers 
who provided 2 ( )h x  seem to be more hesitant. As a 
result, the hesitation degrees cannot be ignored. 

In the previous research, Li 26 defined a concept of 
hesitation degree only considering the lengths of HFEs: 

Definition 4 26. Let A  be a HFS on 1 2{ , , }nX x x x= ⋅⋅⋅ . 
Then the hesitation degree of the HFS A  is defined as: 

            
1

1( ) ( ( ))
n

i
i

A h x
n

µ µ
=

= ∑                       (7) 

where 

             1( ( )) 1
( ( ))i

i

h x
l h x

µ = −                      (8) 

and ( ( ))il h x  is the length of ( )ih x . 

For the HFE ( )ih x , the value of ( ( ))ih xµ  
represents the hesitation degree of a decision maker 
when he or she determines the membership degree. If 

( ( )) 1il h x = , then ( ( )) 0ih xµ = . It means that the 
decision maker is quite sure about the membership 
degree. In contrast, if ( ( ))il h x  intends to be infinite, the 
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hesitation degree ( ( ))ih xµ  intends to be 1 which 
indicates that the decision maker is quite hesitant. For 
example, for the HFEs 1( ) (0.9,0.8,0.7)h x =  and 

2 ( ) (0.8,0.5)h x = , 1
1 2( ( )) 1
3 3

h xµ = − = , and 

2
1 1( ( )) 1
2 2

h xµ = − = . 

Superficially, the result mentioned above is 
somewhat reasonable. It is clear that the hesitation 
degree is closely associated to the length of HFE. 
However, to a certain extent, this method is not 
comprehensive. For example, when talking about the 
membership degree about the same alternative to meet 
the same properties, one decision maker puts forward 
his/her preference by the HFE 1( ) (0.9,0.8,0.7)h x = , 
while the other expresses the preference with 

2 ( ) (0.9,0.2,0.1)h x = . Obviously, we can discover that 
the lengths of 1( )h x  and 2 ( )h x  are the same. If we 
evaluate the hesitation degree according to the method 
mentioned above, then the hesitation degrees of the two 
HFEs will be same as well, namely, 

1 2( ( )) ( ( ))h x h xµ µ= . However, by analyzing the data, 
we can catch that data in 2 ( )h x  spread wider compared 
with 1( )h x . It means that the decision maker is doubtful 
about the membership degree and actually very 
uncertain. So, in fact 1 2( ( )) ( ( ))h x h xµ µ< . That is the 
reason why the decision maker gives 0.9, 0.2 and 0.1, 
these three numbers are far away from each other. From 
the example, we can see that only considering the length 
of HFE is not enough at all. When analyzing the 
hesitation degree, it is essential to take the deviation 
degrees of data into account as well. The wider the data 
distribute, the bigger the deviation degree is.  

Consequently, combined with the standard 
deviation, we put forward a generalized hesitation 
degree considering the influence of divergence and the 
length of HFE.  

Definition 5. Let A  be a HFS on 1 2{ , , }nX x x x= ⋅⋅⋅ . 
The generalized hesitation degree can be expressed as: 

      

2

1
( )

1( ( )) (1 )
( ( ))

n

i
i

x x
h x

l h x n
µ α β =

−
= − +

∑
     (9) 

         
1

1( ) ( ( ))
n

i
i

A h x
n

µ µ
=

= ∑                     (10) 

where α  and β  are the weight coefficients, 
0 , 1α β≤ ≤  and 1α β+ = . If 0α = , then it means that 
we pay no attention to the influence of the length of 
HFE. In contrast, if 0β = , then it represents that we 

ignore the standard deviation. For convenience, here we 

let 1
2

α β= = . So, the generalized hesitation degree has 

the following form: 

2

1
( )

1 1( ( )) (1 )
2 ( ( ))

n

i
i

x x
h x

l h x n
µ =

−
= − +

∑
       (11) 

To preserve the original information and by 
combining the generalized hesitation degrees, we try to 
define a new distance measure between the HFSs A  
and B  as: 

( ) ( )

10
1 1( ) ( )

( ( ), ( )) | ( ) ( ) |

| ( ) ( ) |

h x h xB i A i

A i B i

A B

l l
m n

A i B i A i B i
n mh x h x

h i h i

d h x h x h x h x
l l

x x

α

β mm
= =

= − +

−

∑ ∑ (12) 

          10
1

1( , ) ( ( ), ( ))
n

A i B i
i

d A B d h x h x
n =

= ∑           (13) 

where α  and β  are the weight coefficients, 
0 , 1α β< <  and 1α β+ = . and ( ( ))A il h x  is the length 
of ( )A ih x . ( )

Ah ixµ  is the generalized hesitation degree 

of the HFE ( )A ih x . For convenience, suppose that we 
have the same preference between the hesitation degree 

and the membership values, then 1
2

α β= = , and the 

distance measure can be expressed as: 

( ) ( )

1 1( ) ( )10

1| ( ) ( ) |1( ( ), ( ))
2

| ( ) ( ) |

h x h xB i A i

A i B i

A B

l l
m n
A i B i

n mh x h xA i B i

h i h i

h x h x
l ld h x h x

x xmm
= =

 
− + 

=  
 − 

∑ ∑  

(14) 

It is clear that we have taken the generalized 
hesitation degree into consideration in the formula (14). 
Next, we will prove that this distance measure satisfies 
all the properties in Definition 1. 
Proof.  
(1) Since for every HFE, ( ) 0m

Ah x ≥  and ( ) 0
Ah ixµ ≥  

hold. It is obvious that 100 ( , ) 1d A B≤ ≤ .  
(2) If A B= , then ( ) ( )m n

A i B ih x h x= , for any ix X∈ and 
any ,m n . What’s more, their lengths and deviation 
degrees are both the same, so ( ) ( )

A Bh i h ix xµ µ= , for any 

1 i n≤ ≤ . As a result, 10 ( , ) 0d A B = . On the contrary, if 

10 ( , ) 0d A B = , then we can get that for any 1 i n≤ ≤ ,  
| ( ) ( ) | 0

A Bh i h ix xµ µ− =   
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and
( ) ( )

( ) ( )
1 1

| ( ) ( ) |
h x h xA i B i

B i A i

l l
m n

h x A i h x B i
m n

l h x l h x
= =

−∑ ∑ =0.  Since 

| ( ) ( ) | 0
A Bh i h ix xµ µ− = , then we can get that the lengths 

of figures and the deviation degrees in ( )A ih x  and 
( )B ih x  are both the same. Thus, ( ) ( )m n

A i B ih x h x= , for 
any ix X∈  and any ,m n . As a result, we can get that 
the HFS A  is equal to the HFS B . That is to say, 

10 ( , ) 0d A B =  if and only if A B= . 
(3) It is straightforward that 10 10( , ) ( , )d A B d B A= . 

Consider that the objects ( )1,2, ,ix i n= 2  may 
have different weights in some cases, we propose a 
weighted form of the distance measure for HFSs. Let 

1 2( , )nw w w w= ⋅⋅⋅  be the weight vector of 

( )1,2, ,ix i n= 2 , with 0, 1, 2, ,iw i n≥ = ⋅⋅⋅ , and 

1
1

n

i
i

w
=

=∑ . Then the hesitant weighted distance is 

defined as: 

( ) ( )

1 1( ) ( )11
1

1| ( ) ( ) |
( , )

2
| ( ) ( ) |

h x h xB i A i

A i B i

A B

l l
m nn
A i B ii

n mh x h x
i

h i h i

h x h xw l ld A B
x xmm

= =
=

  
 − +  =   
  −   

∑ ∑∑                 

(15) 

which also satisfies the properties in Definition 1. 
In the following work, we will apply the novel 

distance measure developed in this paper to clustering 
analysis. Actually, there are some existing clustering 
methods, such as the MST clustering algorithm 23, 
hierarchical clustering algorithm 21 and so on. But these 
methods are somewhat complicated and need so much 
calculation and lots of transformations. In the following, 
we will propose a straightforward clustering algorithm 
called the orthogonal method for clustering the HFSs. 

4. An orthogonal method for clustering the 
HFSs 

The main idea of the orthogonal clustering algorithm is 
uncomplicated at all: Firstly, we utilize the developed 
distance measure to compute the distance between each 
two HFSs, and then construct a distance matrix M ; 
Secondly, we should choose a confidence level 

[ ]0,1λ ∈  to get a λ − cutting matrix M λ  of the distance 
matrix M , and then take each column of the matrix 
M λ  as a vector, so the matrix M λ can be expressed as 

1 2( , , , )nM λ α α α= ⋅⋅⋅
  

, where 1 2( , , , )T
j j j njα α α α= ⋅⋅⋅


. 

Finally, we utilize the orthogonal relation among the 
HFSs to cluster the objects. The detailed process can be 
described as follows: 

Step 1. Let 1 2{ , , , }nA A A⋅ ⋅ ⋅  be a set of HFSs over 

1 2{ , , , }mX x x x= ⋅⋅⋅ , representing m samples. using the 
distance measure defined before, we can calculate the 
distance between each two HFSs, and then construct a 
distance matrix ( )ij n nM d ×= , where ( , )ij i jd d A A= . 

Step 2. Choose the confidence level [ ]0,1λ ∈ , and 
then construct the corresponding λ − cutting matrix M λ  
according to Definition 4. We choose the value of λ  
from the values in the matrix M , with the order from 
the biggest value to the smallest one. 

Step 3. After getting the λ − cutting matrix, we 
take each column of the matrix M λ  as a vector. As a 
result, the matrix M λ  can be expressed as 

1 2( , , , )nM λ α α α= ⋅⋅⋅
  

, where 1 2( , , , )T
j j j njα α α α= ⋅⋅⋅


. 

The inner product of any two column vectors is 

( , )
T

i j i jα α α α=
   

. If ( , ) 0
T

i j i jα α α α= =
   

, then we call 
that these two column vectors are orthogonal. 

Step 4. We cluster the objects into a few classes 
according to the orthogonal method among the column 
vectors. The detailed procedure is as follows:  

○,1If ( , ) 0i jα α ≠
 

, then we cluster the objects iA  
and jA  into the same class. This is called direct 
clustering principle. 

○,2 If there exist 1 21 , , , sn n n n≤ ⋅⋅⋅ ≤ , and 

1 1 2
( , )( , ) ( , ) 0

si n n n n jα α α α α α⋅⋅⋅ ≠
     

, then we cluster the 

objects iA  and jA  into the same class. This is called 
indirect clustering principle. 

○,3if ( , ) 0i jα α =
 

, and for any 1 21 , , , sn n n n≤ ⋅⋅⋅ ≤ , 

1 1 2
( , )( , ) ( , ) 0

si n n n n jα α α α α α⋅⋅⋅ =
     

, then the objects iA  

and jA  are not in the same group.  
Compared with the hesitant fuzzy MST clustering 

algorithm 23 and the hesitant fuzzy agglomerative 
hierarchical clustering algorithm 21, the hesitant fuzzy 
orthogonal clustering method we proposed is much 
easier and can be realized by computer programs. It is 
practical and can be generalized to the large data 
environment. While in the hesitant fuzzy agglomerative 
hierarchical clustering algorithm 21, we should first 
divide the alternatives into certain clusters, compute the 
distance of each pair of clusters, combine the clusters 
with the minimum distance to form a new cluster, and 
repeat the above steps until all the alternatives are in the 
same clusters. Obviously, it is much more complicated 
and needs a large amount of computational efforts and 
takes a lot of time to accomplish. In the hesitant fuzzy 
MST clustering algorithm 23, after we get the distance of 
each pair of alternatives, we need draw a hesitant fuzzy 
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graph where every node represents an alternative and 
every edge has weight which shows the dissimilarity 
degree. Then, we make the clustering analysis by using 
the hesitant fuzzy minimal spanning tree. Although this 
method is easy to realize, it is not convenient to be 
computed by the automatic programs, which is a big 
limitation. 

 

5. Applications 

In what follows, two numerical examples are given to 
demonstrate the effectiveness and practicality of the 
proposed clustering method: 

Example 5. Different people have different 
requirements towards computers. Someone who likes 
watching movie prefers the computer with clear screen 
compared to other characters, while game players may 
like the computer with high speed CPU to control the 
figures in time.  

Now there are six different computers to be 
evaluated. In order to provide recommendations to the 
consumers, a digital evaluation website invites six 
experts to evaluate the performance of these six 

computers, mainly from five aspects: price 1( )x , 
electricity consumption ( 2x ), the speed of CPU ( 3x ), 
the quality of screen ( 4x ), and design ( 5x ). The weight 
of each attribute is not the same and can be changed 
according to different demands. For business man, 
electricity consumption is very important, so we can 
increase the weight of 2x  to pick out the most suitable 
computer. In this paper, we assume that the attribute 
weight vector is (0.1,0.2,0.3,0.25,0.15)Tw = . The 
evaluation results for each computer are expressed by 
hesitant fuzzy numbers shown in Table 1. When the 
experts evaluate the performance of each computer, the 
value of the evaluation will be given. For example, the 
CPU of one computer runs very fast. The experts 
believe that CPU is very good, they may give a 
relatively high value, maybe close to 1. If someone is 
hesitant in giving membership degree, he/she may give 
two or more values. Gathering all the evaluation results, 
we form Table 1. The larger the value of the hesitant 
fuzzy element in Table 1 is, the better the attribute of 
the alternative do the experts think. 

Table 1. The characteristics information of the computers 
 1x   2x  3x  4x  5x  

1A   {0.5,0.4,0.3} {0.9,0.8,0.7} {0.5,0.4,0.3} {0.9,0.6,0.5,0.4} {0.5,0.4} 

2A  {0.5,0.3} {0.9,0.7,0.6,0.6} {0.8,0.6,0.5,0.1} {0.7,0.5,0.3} {0.6,0.3,0.3} 

3A  {0.7} {0.9,0.5} {0.7,0.5,0.3} {0.8,0.4} {0.8,0.6,0.4,0.2} 

4A  {0.8,0.7,0.5,0.4} {0.7,0.4,0.4} {0.5,0.1} {0.7,0.3} {0.5,0.3} 

5A  {0.7,0.5,0.3} {0.8,0.2} {0.9,0.8,0.7} {0.3} {0.7,0.5,0.3} 

6A  {0.9,0.7,0.6,0.2,0.1} {0.8,0.6} {0.8} {0.3,0.1} {0.9,0.7,0.6,0.2} 

In the following, we utilize the hesitant fuzzy 
orthogonal clustering method proposed in this paper to 
classify these six computers, which involves the 
following steps: 
Step 1. We calculate the hesitation degrees by the 
formula (11):       

5
2

1
( )

1 1( ( )) (1 )
2 ( ( )) 5

i
j

x x
h x

l h x
µ =

−
= − +

∑
 

For 
1 1( )Ah x , 3l =  and 0.4x = , we have 

1 1( ( )) 0.3742Ah xµ = . We can calculate the others in a 
similar way. As a result, we can get all the hesitation 
degrees which can be expressed as a matrix: 

 0.3742    0.3742    0.3742    0.4685    0.2750
 0.3000    0.4362    0.5025    0.4150    0.4040
    0           0.3500    0.4150    0.3500    0.4868
 0.4541     0.4040    0.3500    0.3500    0.3000
 0.4

h =

150      0.4000    0.3742         0        0.4150
 0.5517      0.3000         0        0.3000    0.5025

 
 
 
 
 
 
 
  
 

 

Step 2. According to the formula (15), we can calculate 
the distance with the weighting vector 

(0.1,0.2,0.3,0.25,0.15)w =  between each two 
computers: 

( ) ( )

1 1( ) ( )11
1

1| ( ) ( ) |
( , )

2
| ( ) ( ) |

h x h xB i A i

A i B i

A B

l l
m nn
A i B ii

n mh x h x
i

h i h i

h x h xw l ld A B
x xmm

= =
=

  
− +   =   

  −   

∑ ∑∑

Consequently, we can get the distance matrix: 
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         0        0.0868    0.1017    0.0985    0.2099    0.2468
    0.0868         0        0.0861    0.1097    0.1838    0.2258
    0.1017    0.0861         0        0.1269    0.1935    0.2148
    0.

D =
0985    0.1097    0.1269         0        0.1709    0.2417

    0.2099    0.1838    0.1935    0.1709         0        0.1570
    0.2468    0.2258    0.2148    0.2417    0.1570         0

 
 
 
 
 
 
 

 



 

Step 3. We choose the confidential level λ  from the 
distance matrix to get the λ -cutting matrix 

6 6( )ijD dλ λ ×=  according to the principles given before. 
For example, if 0.0868λ = , then any values in the 
distance matrix which are bigger than λ  would turn 
into 1, otherwise, it would be 0. Consequently, when 

0.0868λ = , the λ -cutting matrix is expressed as: 

  0     1     1     1     1     1
  1     0     0     1     1     1
  1     0     0     1     1     1
  1     1     1     0     1     1
  1     1     1     1     0     1
  1     1     1     1     1     

Dλ = 1 2 3 4 5 6( , , , , , )

0

α α α α α α

 
 
 
 

= 
 
 
  
 

     

 

If 0.2148λ = , then the λ -cutting matrix is expressed 
as: 

 0     0     0     0     0     1
 0     0     0     0     0     1
 0     0     0     0     0     1
 0     0     0     0     0     1
 0     0     0     0     0     0
 1     1     1     1     0     0

Dλ






=



1 2 3 4 5 6( , , , , , )α α α α α α





= 

 
 
  



     

 

which takes each column of the matrix Dλ  as a vector. 
As a result, the matrix Dλ  can be expressed as 

1 2 6( , , , )Dλ α α α= ⋅⋅⋅
  

, where 1 2 6( , , , )T
j j j jα α α α= ⋅⋅⋅


. 

The inner product of any two column vectors is 

( , )
T

i j i jα α α α=
   

. If ( , ) 0
T

i j i jα α α α= =
   

, then we call 
that these two column vectors are orthogonal. The 
orthogonal vectors cannot be clustered into the same 
group. That is to say, if ( , ) 0i jα α ≠

 
, then we cluster the 

computers iA  and jA  into the same class. For example, 

when 0.2148λ = , 1 2( , ) 0α α ≠
 

, then cluster the 
computers 1A  and 2A  into the same class. 

Consequently, we can get all the possible classifications 
of ( 1, 2, ,6)iA i =   as follows: 
(1) If 0 0.1570λ≤ ≤ , then ( 1,2, ,6)iA i =   are 
clustered into the same group: 

1 2 3 4 5 6{ , , , , , }A A A A A A  
(2) If 0.1570 0.2099λ< ≤ , then ( 1,2, ,6)iA i =   are 
clustered into two groups: 

1 2 3 4 5 6{ , , , },{ , }A A A A A A  
(3) If 0.2099 0.2148λ< ≤ , then ( 1,2, ,6)iA i =   are 
clustered into three groups: 

1 2 3 4 5 6{ , , , },{ },{ }A A A A A A  
(4) If 0.2148 0.2258λ< ≤ , then ( 1,2, ,6)iA i =   are 
clustered into three groups: 

1 2 4 3 5 6{ , , },{ },{ },{ }A A A A A A  
(5) If 0.2258 0.2417λ< ≤ , then ( 1,2, ,6)iA i =   are 
clustered into five groups: 

1 4 2 3 5 6{ , },{ },{ },{ },{ }A A A A A A  
(6) If 0.2417 1λ< ≤ , then ( 1,2, ,6)iA i =   are 
clustered into six groups: 

1 2 3 4 5 6{ },{ },{ },{ },{ },{ }A A A A A A  
Obviously, according to the clustering results, the 

computer market can divide these computers into 
several groups. The computers in the same group have 
something similar in some extent. If some consumers 
regard one attribute as quite important, such as “speed 
of CPU ( 3x )”, then the attribute weight vector can be 
changed to get the satisfied computers. Different 
attribute weight vectors lead to different clustering 
results. 

Liu et al. 27 proposed a hesitant fuzzy netting 
clustering method, whose process is as follows:  
Step 1. According to the similarity measures, we 
compute the similarity between each two HFSs.  
Step 2. Construct the similarity matrix ( )ij m mS s ×= , 
where ( , )ij i js s A A= , , 1, 2,...,i j m= .  
Step 3. Delete all the elements above the diagonal of the 
distance matrix, and replace the elements on the 
diagonal with the representation of the objects.  
Step 4. Choose the confidence level λ  and construct 
the corresponding λ -cutting matrix. Replace ‘1’ with 
‘*’ and delete all the ‘0’ in the matrix. From the points 
‘*’ in the matrix, we can draw the vertical and 
horizontal line to the representations of the objects on 
the diagonal. Obviously, each ‘*’ links to two points on 
the diagonal which represents two objects. Cluster these 
two objects into the same group. Until go through all the 
points ‘*’, we can get the clustering result 
corresponding to the selected λ . Choosing different 
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values of λ , we can get different clustering results until 
all the objects are clustered into one class.  

In the following, we cluster the six kinds of 
computers with the hesitant fuzzy netting clustering 
method 27 again. Here, we utilize the distance measure 
to estimate the relationship between computers instead 
of similarity measure. After we get the λ -cutting 
matrix, if we use the netting clustering method, then we 
first should replace ‘1’ with ‘*’ and delete all the ‘0’ in 
the matrix according to Step 4. For example, when 

0.2258λ = , the λ -cutting matrix is expressed as: 
 0     0     0     0     0     1
 0     0     0     0     0     1
 0     0     0     0     0     0
 0     0     0     0     0     1
 0     0     0     0     0     0
 1     1     0     1     0     0

Dλ






=








 
 
 
  



 

According to Step 4, the matrix can be adjusted to  

1

2

3

4

5

6

 A                                  
       A                           
            A      
                    A              
                          A          
 *  *    *    A

Dλ





=



4

4 4

4 4

4 4 4

33333 







 
 
 
 



 

In this case, the computers can be clustered into three 
classes: 

1 2 4 3 5 6{ , , },{ },{ },{ }A A A A A A  
We can combine the results of these two algorithms as 
follows: 

Table 2. Clustering results 
Classes Netting clustering method Orthogonal clustering method 
6 1 2 3 4 5 6{ },{ },{ },{ },{ },{ }A A A A A A  1 2 3 4 5 6{ },{ },{ },{ },{ },{ }A A A A A A  

5 1 4 2 3 5 6{ , },{ },{ },{ },{ }A A A A A A  1 4 2 3 5 6{ , },{ },{ },{ },{ }A A A A A A  

4 1 2 4 3 5 6{ , , },{ },{ },{ }A A A A A A  1 2 4 3 5 6{ , , },{ },{ },{ }A A A A A A  

3 1 2 3 4 5 6{ , , , },{ },{ }A A A A A A  1 2 3 4 5 6{ , , , },{ },{ }A A A A A A  

2 1 2 3 4 5 6{ , , , },{ , }A A A A A A  1 2 3 4 5 6{ , , , },{ , }A A A A A A  

1 1 2 3 4 5 6{ , , , , , }A A A A A A  1 2 3 4 5 6{ , , , , , }A A A A A A  

Obviously, the results derived by these two 
algorithms are the same. Since the two algorithms 
utilize the same distance formula and the core idea is 
similar. However, there still exist some differences 
between these two methods. In the hesitant fuzzy 
orthogonal method, we take every column of the 
distance matrix as a vector. The relationship between 
each two objects can be easily found through the 
orthogonal vectors. Thus, this method can be 
accomplished easily and efficiently by MATLAB 
programs, which speeds up the clustering progress. 
While the hesitant fuzzy netting clustering method 27 is 
not very convenient to realize with the computer 
programs. Since the netting is complicated to realize for 
programs and the netting graph needs people to 

recognize, then if the data are very complicated and 
very big, clustering so many objects is really difficult by 
using the hesitant fuzzy netting clustering method 27. 
Compared to the hesitant fuzzy netting method 27, the 
hesitant fuzzy orthogonal method is much more 
effective and simple.  

In order to illustrate the computation complexity, 
we generate a few HFSs at random for clustering to 
compare these two algorithms. We measure the 
computation time before we get the clustering results 
respectively. The run time of these two methods is 
shown in Table 3. Considering the practical application, 
we think the orthogonal clustering method can save 
much time for big data problem. 

Table 3. The running time for each method 
numbers 6  10 15 20 

The orthogonal 
method 

0.000164 0.000523 0.001056 0.001619 

The netting method 0.000205 0.000852 0.001431 0.002057 

In the following example, we compare the 
clustering results by using our distance measure and the 
existing distance measure given in Ref. [10]:    

Example 6. As we all know, pirate is one of the most 
important factors threatening the security of merchant 
shipping. With different social backgrounds, pirates in 
different oceans have great difference in equipment and 
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strength. Furthermore, their attack targets and means of 
crimes are usually different. However, it is common that 
they all escape quickly from the scene, always before 
the arrival of modern Navy. In this case, we cannot 
know its real strength, such as weapons, amounts of 
people and the areas they always appear in. While fuzzy 
mathematics can handle these uncertain problems better. 
According to the features of every accident, we can 
cluster the pirates in any area into a few groups so that 
we can easily find out which area is very dangerous and 
the situations in that area. What’s more, through 
comparing the strengths of pirates in all areas, we can 
give advice to the passing ships. It contributes greatly to 
the ship’s emergency plan and risk management. 

According to the report of IMO (International 
Maritime Organization), we first extract the features in 
every attacked accident, including the number of 
pirates, the damage degree of ships, the loss degree of 
packages, the damage degree of ship crews and so on. 

Since the damage degree cannot be expressed accurately 
in mathematical forms, it is better to estimate them by 
HFSs. For every accident, the specialists will make 
judgements about the damage degrees. According to the 
given data, we can divide the ocean area and estimate 
the threatening degrees of any areas and any pirates.  

In the recent three months, there happened 10 
accidents attacked by pirates. After each crime, some 
specialists are invited to evaluate the damage degrees of 
these 10 accidents by HFSs, including the amount of 
pirates ( 1x ), the damage degree of ships ( 2x ), the loss 
degree of packages ( 3x ), the damage degree of ship 
crews ( 4x ). Now we get the data to make clustering in 
order to give advice to the passing ships. The attribute 
weight vector is (0.4,0.2,0.1,0.3)w = , and the data are 
shown below: 

Table 4. The characteristic information of pirate crimes 
 1x   2x  3x  4x  

1A   {0.1,0.1,0.2,0.4,0.5,0.5} {0.2,0.4} {0.5,0.7,0.8} {0.6,0.6,0.7,0.7} 

2A  {0.1,0.2,0.2,0.4} {0.2,0.4,0.7} {0.3,0.5,0.5,0.6} {0.5,0.5,0.6} 

3A  {0.3,0.4} {0.3,0.3,0.4,0.4,0.5} {0.7,0.8} {0.2,0.2,0.4,0.5,0.5,0.6} 

4A  {0.5,0.6} {0.2} {0.5,0.7,0.7} {0.5,0.5} 

5A  {0.3} {0.4,0.6,0.6} {0.5,0.6,0.7} {0.3,0.4,0.5} 

6A  {0.5,0.6,0.6} {0.3,0.6} {0.4,0.5} {0.6,0.7,0.8} 

7A  {0.3,0.4,0.4,0.5,0.6,0.6} {0.5,0.7} {0.4,0.5} {0.2,0.3,0.6} 

8A  {0.3,0.5} {0.3,0.7,0.8} {0.4,0.7,0.9} {0.7,0.8,0.9,0.9} 

9A  {0.3,0.4,0.5,0.5,0.5} {0.4,0.5,0.7} {0.4,0.5,0.7,0.7,0.8} {0.2,0.6} 

10A  {0.3,0.5} {0.4,0.5} {0.5,0.5} {0.3,0.4,0.5,0.6} 
Step 1. Using the distance measure (15), we can get the 
distance matrix: 

         0        0.0919    0.1391    0.1831    0.1778    0.1284    0.1317    0.1355    0.1248    0.1284
    0.0919         0        0.1233    0.1942    0.1481    0.1322    0.1303    0.1407    0.0896

D =

    0.1125
    0.1391    0.1233         0        0.1643    0.1163    0.1558    0.1297    0.1249    0.1084    0.0688
    0.1831    0.1942    0.1643         0        0.2120    0.1403    0.1857    0.1973    0.1632    0.1353
    0.1778    0.1481    0.1163    0.2120         0        0.1961    0.1665    0.1693    0.1271    0.1261
    0.1284    0.1322    0.1558    0.1403    0.1961         0        0.1171    0.1153    0.1244    0.0995
    0.1317    0.1303    0.1297    0.1857    0.1665    0.1171         0        0.1498    0.0616    0.0834
    0.1355    0.1407    0.1249    0.1973    0.1693    0.1153    0.1498         0        0.1252    0.1077
    0.1248    0.0896    0.1084    0.1632    0.1271    0.1244    0.0616    0.1252         0        0.0932
    0.1284    0.1125    0.0688    0.1353    0.1261    0.0995    0.0834    0.1077    0.0932         0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Step 2. Choose the confidential level λ  from the 
distance matrix to get the λ -cutting matrix 

10 10( )ijD dλ λ ×=  according to the formulas given before. 
Finally, by the proposed hesitant fuzzy orthogonal 
clustering method, we can get the clustering results as 
follows: 
(1) If 0 0.1322λ≤ ≤ , then ( 1,2, ,10)iA i =   can be 

clustered into the same group: 
1 2 3 4 5 6 7 8 9 10{ , , , , , , , , , }A A A A A A A A A A  

(2) If 0.1322 0.1558λ< ≤ , then ( 1,2, ,10)iA i =   are 
clustered into two groups: 

1 2 3 4 5 6 7 8 9 10{ , , , , , , , , },{ }A A A A A A A A A A  
(3) If 0.1558 0.1643λ< ≤ , then ( 1,2, ,10)iA i =   are 

clustered into three groups: 
1 2 3 4 5 6 7 8 9 10{ , , , , , , , },{ },{ }A A A A A A A A A A  

(4) If 0.1643 0.1778λ< ≤ , then ( 1,2, ,10)iA i =   are 
clustered into four groups: 

1 2 4 5 6 7 8 3 9 10{ , , , , , , },{ },{ },{ }A A A A A A A A A A  
(5) If 0.1778 0.1831λ< ≤ , then ( 1,2, ,10)iA i =   are 

clustered into five groups: 
1 2 5 7 8 4 6 3 9 10{ , , , , },{ , },{ },{ },{ }A A A A A A A A A A  

(6) If 0.1831 0.1857λ< ≤ , then ( 1,2, ,10)iA i =   are 
clustered into six groups: 

1 2 5 7 8 4 6 3 9 10{ },{ , , , },{ , },{ },{ },{ }A A A A A A A A A A  
(7) If 0.1857 0.1942λ< ≤ , then ( 1,2, ,10)iA i =   are 

clustered into seven groups: 
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1 2 5 8 4 6 3 7 9 10{ },{ , , },{ , },{ },{ },{ },{ }A A A A A A A A A A  
(8) If 0.1942 0.1961λ< ≤ , then ( 1,2, ,10)iA i =   are 

clustered into eight groups: 
1 2 5 8 4 6 3 7 9 10{ },{ },{ , },{ , },{ },{ },{ },{ }A A A A A A A A A A  

(9) If 0.1961 0.1973λ< ≤ , then ( 1,2, ,10)iA i =   are 
clustered into nine groups: 

1 2 5 8 4 6 3 7 9 10{ },{ },{ , },{ },{ },{ },{ },{ },{ }A A A A A A A A A A  
(10) If 0.1973 1λ< ≤ , then ( 1,2, ,10)iA i =   are 

clustered into ten groups: 

1 2 5 8 4 6 3 7 9 10{ },{ },{ },{ },{ },{ },{ },{ },{ },{ }A A A A A A A A A A  
In the following, we will use the existing distance 

measure 10 in our hesitant fuzzy orthogonal clustering 
method:  

According to the method proposed by Xu and Xia 
10, if the lengths of the HFEs are different, then we 
should extent the shorter one by adding the minimum 
value or the maximum value until they have the same 
length. Consequently, we can get the improved HFSs as 
follows: 

Table 5. The characteristics information of pirate crimes 
 1x   2x  3x  4x  

1A   {0.1,0.1,0.2,0.4,0.5,0.5} {0.2,0.4,0.4,0.4,0.4} {0.5,0.7,0.8,0.8,0.8} {0.6,0.6,0.7,0.7,0.7,0.7} 

2A  {0.1,0.2,0.2,0.4,0.4,0.4} {0.2,0.4,0.7,0.7,0.7} {0.3,0.5,0.5,0.6,0.6} {0.5,0.5,0.6,0.6,0.6,0.6} 

3A  {0.3,0.4,0.4,0.4,0.4,0.4} {0.3,0.3,0.4,0.4,0.5} {0.7,0.8,0.8,0.8,0.8} {0.2,0.2,0.4,0.5,0.6,0.6} 

4A  {0.5,0.6,0.6,0.6,0.6,0.6} {0.2,0.2,0.2,0.2,0.2} {0.5,0.7,0.7,0.7,0.7} {0.5,0.5,0.5,0.5,0.5,0.5} 

5A  {0.3,0.3,0.3,0.3,0.3,0.3} {0.4,0.6,0.6,0.6,0.6} {0.5,0.6,0.7,0.7,0.7} {0.3,0.4,0.5,0.5,0.5,0.5} 

6A  {0.5,0.6,0.6,0.6,0.6,0.6} {0.3,0.6,0.6,0.6,0.6} {0.4,0.5,0.5,0.5,0.5} {0.6,0.7,0.8,0.8,0.8,0.8} 

7A  {0.3,0.4,0.4,0.5,0.6,0.6} {0.5,0.7,0.7,0.7,0.7} {0.4,0.5,0.5,0.5,0.5} {0.2,0.3,0.6,0.6,0.6,0.6} 

8A  {0.3,0.5,0.5,0.5,0.5,0.5} {0.3,0.7,0.8,0.8,0.8} {0.4,0.7,0.9,0.9,0.9} {0.7,0.8,0.9,0.9,0.9,0.9} 

9A  {0.3,0.4,0.5,0.5,0.5,0.5} {0.4,0.5,0.7,0.7,0.7} {0.4,0.5,0.7,0.7,0.8} {0.2,0.6,0.6,0.6,0.6,0.6} 

10A  {0.3,0.5,0.5,0.5,0.5,0.5} {0.4,0.5,0.5,0.5,0.5} {0.5,0.5,0.5,0.5,0.5} {0.3,0.4,0.5,0.6,0.6,0.6} 
 
Step 1. Calculate the distance 1( , )ij i jd d A A=  by the 
formula (2), and let the attribute vector be 

(0.4,0.2,0.1,0.3)w = . Then we can get the distance 
matrix ( )ij n nD d ×=  as: 

         0        0.1080    0.1580    0.2013    0.1797    0.1983    0.2057    0.1937    0.1580    0.1627
    0.1080         0        0.1580    0.2240    0.1237    0.2050    0.1283    0.2123    0.1107

D =

    0.1373
    0.1580    0.1580         0        0.1680    0.1083    0.2470    0.1443    0.2423    0.1267    0.1113
    0.2013    0.2240    0.1680         0        0.2023    0.1610    0.2017    0.2617    0.1813    0.1487
    0.1797    0.1237    0.1083    0.2023         0        0.2233    0.1327    0.2347    0.1170    0.1117
    0.1983    0.2050    0.2470    0.1610    0.2233         0        0.1507    0.1327    0.1523    0.1437
    0.2057    0.1283    0.1443    0.2017    0.1327    0.1507         0        0.1847    0.0610    0.0797
    0.1937    0.2123    0.2423    0.2617    0.2347    0.1327    0.1847         0        0.1397    0.1830
    0.1580    0.1107    0.1267    0.1813    0.1170    0.1523    0.0610    0.1397         0        0.0667
    0.1627    0.1373    0.1113    0.1487    0.1117    0.1437    0.0797    0.1830    0.0667         0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Step 2. We still use the orthogonal clustering method to 
make analysis. Firstly, we choose the confidence level 
λ  and construct the corresponding λ -cutting matrix. 
Then we can group the accidents into several clusters as 
follows: 
(1) If 0 0.1813λ< ≤ , then we get 

1 2 3 4 5 6 7 8 9 10{ , , , , , , , , , }A A A A A A A A A A . 
(2) If 0.1813 0.1830λ< ≤ , then we get 

1 2 3 4 5 6 7 8 10 9{ , , , , , , , , },{ }A A A A A A A A A A . 
(3) If 0.1830 0.2017λ< ≤ , then we get 

1 2 3 4 5 6 7 8 9 10{ , , , , , , , },{ },{ }A A A A A A A A A A . 
(4) If 0.2017 0.2123λ< ≤ , then we get 

1 2 3 4 5 6 8 7 9 10{ },{ , , , , , },{ },{ },{ }A A A A A A A A A A . 

(5) If 0.2123 0.2240λ< ≤ , then we get 
1 3 4 5 2 6 8 7 9 10{ },{ , , },{ , , },{ },{ },{ }A A A A A A A A A A . 

(6) If 0.2240 0.2347λ< ≤ , then we get 
1 3 4 5 2 6 8 7 9 10{ },{ , , },{ },{ , },{ },{ },{ }A A A A A A A A A A . 

(7) If 0.2347 0.2423λ< ≤ , then we get 
1 3 4 5 2 6 8 7 9 10{ },{ , },{ },{ },{ , },{ },{ },{ }A A A A A A A A A A . 

(8) If 0.2423 1λ< ≤ , then we get 
1 3 4 5 2 6 8 7 9 10{ },{ },{ },{ },{ },{ },{ },{ },{ },{ }A A A A A A A A A A . 

To compare these two distance measures, we 
combine the final clustering results in one table. See 
Table 6. 

From the above numerical example, we can 
find that the clustering results by using these 
two measures are quite different. Firstly, the accidents 
can just be clustered into eight groups if using 
the traditional distance measure, while the results 
derived by using our measure can be more exquisite. 
Secondly, there exist some differences among the 
results. For example, in the class 5, if we use the 
traditional Euclid distance, then the result is 

1 2 3 4 5 6 8 7 9 10{ },{ , , , , , },{ },{ },{ }A A A A A A A A A A . While if 
we use the distance measure proposed in this paper, then 
the result becomes  

1 2 5 7 8{ , , , , },A A A A A  4 6{ , },A A 3 9 10{ },{ },{ }A A A . 
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Table 6. Clustering results 
Classes Distance in this article Euclid distance [10] 

10 1 2 5 8 4 6

3 7 9 10

{ },{ },{ },{ },{ },{ },
{ },{ },{ },{ }

A A A A A A
A A A A

 1 3 4 5 2 6 8

7 9 10

{ },{ },{ },{ },{ },{ },{ },
{ },{ },{ }

A A A A A A A
A A A

 

9 1 2 5 8 4 6 3

7 9 10

{ },{ },{ , },{ },{ },{ },
{ },{ },{ }

A A A A A A A
A A A

 dull 

8 1 2 5 8 4 6 3

7 9 10

{ },{ },{ , },{ , },{ },
{ },{ },{ }

A A A A A A A
A A A

 1 3 4 5 2 6 8

7 9 10

{ },{ , },{ },{ },{ , },
{ },{ },{ }

A A A A A A A
A A A

 

7 1 2 5 8 4 6 3 7

9 10

{ },{ , , },{ , },{ },{ },
{ },{ }

A A A A A A A A
A A

 1 3 4 5 2 6 8

7 9 10

{ },{ , , },{ },{ , },
{ },{ },{ }

A A A A A A A
A A A

 

6 1 2 5 7 8 4 6

3 9 10

{ },{ , , , },{ , },
{ },{ },{ }

A A A A A A A
A A A

 1 3 4 5 2 6 8

7 9 10

{ },{ , , },{ , , },
{ },{ },{ }

A A A A A A A
A A A

 

5 1 2 5 7 8 4 6

3 9 10

{ , , , , },{ , },
{ },{ },{ }

A A A A A A A
A A A

 1 2 3 4 5 6 8

7 9 10

{ },{ , , , , , },
{ },{ },{ }

A A A A A A A
A A A

 

4 1 2 4 5 6 7 8

3 9 10

{ , , , , , , },
{ },{ },{ }

A A A A A A A
A A A

 
 
dull 

3 1 2 3 4 5 6 7 8

9 10

{ , , , , , , , },
{ },{ }

A A A A A A A A
A A

 1 2 3 4 5 6 7 8

9 10

{ , , , , , , , },
{ },{ }

A A A A A A A A
A A

 

2 1 2 3 4 5 6 7 8 9 10{ , , , , , , , , },{ }A A A A A A A A A A  1 2 3 4 5 6 7 8 10 9{ , , , , , , , , },{ }A A A A A A A A A A  

1 1 2 3 4 5 6 7 8 9 10{ , , , , , , , , , }A A A A A A A A A A  1 2 3 4 5 6 7 8 9 10{ , , , , , , , , , }A A A A A A A A A A  

 
The main reason is that the distance measure 

proposed in this paper does not extend the shorter HFE 
until all the considered HFEs have the same length, and 
thus, we do not change the original information. 
Furthermore, in this paper, we take the hesitation degree 
into account. It is also an essential parameter when 
comparing and clustering the HFSs. In the following, 
we give some discussions: 

(1) By comparing the original information, we can 
easily find that 1A  is close to 7A  and 2A  is close to 7A  
too. It indicates that the pirate crimes happened in 1A , 

2A  and 7A  are similar by coincidence. That is to say, 
the pirates who make 1A , 2A  and 7A  be the same. 
While, if we extend the shorter HFE using the 
traditional distance, then the original information will be 
changed. Thus, 1A  is totally different from 7A . In this 
way, the distance measure proposed in this paper is 
more convincing. After clustering the accidents, we can 
analyze the characteristics of these issues, speculate the 
strengths of these pirates, such as the armed equipment 
and so on. When handling these information, we can 
give advice to the passing ships and the local navy. 
Accurate analysis can reduce much loss and it can 
guarantee the security of international shipping. 

(2) Comparing these two results, we can find that 
the result calculated by the distance measure proposed 
in this paper is more detailed and convincing. Since the 
lengths of HFEs differ very much, adding numbers to 
the shorter one change the original information greatly. 
Therefore, the clustering results will be totally different. 
From this example, we can see that it is essential and 
important to consider the influence of hesitation degrees 
and the original information. Only we consider all the 
influence factors, can the results be more convincing. 

6. Concluding remarks 

In order to keep the original information and consider 
the influence factors more comprehensively, in this 
paper, we have proposed a novel distance measure 
which combines the improved hesitation degree. What’s 
more, a new method called orthogonal clustering 
method has been proposed and applied to cluster 
hesitant fuzzy information. Computational tests on the 
novel distance measure and the new clustering method 
have shown that the orthogonal clustering method is 
available and efficient. Furthermore, compared to the 
hesitant fuzzy netting clustering method 27 in the 
numerical example, we have found that the two methods 
have the same clustering results, while the hesitant 
fuzzy netting clustering method 27 needs people to 
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recognize, which is much more inconvenient. In 
addition, the distance measure proposed in this paper 
take the hesitation degrees into consideration, which has 
not changed the original information and thus is more 
reasonable and convincing. 
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