
Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

The Characteristics of Compound Models Designed for 

Internet of Things 

Jing SU, Fei MA and Bing YAO* 
 

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070 
CHINA 

*Corresponding author: yybb918@163.com 

Keywords: Power law, 2-operator, Scale-free, Cumulative distribution, Average 
degree. 

Abstract. In order to study the scale-free of more and more real-life networks, we 

design, construct a class of compound network models by the methods of graph theory 

for understand and try to simulate network models from Internet of Things (IoT), and 

we computed the parameters of models, such as: average degree, operation distribution, 

clustering coefficients, diameters. In the article we have verified the scale-free nature of 

the compound network models, that is to say, if a scale-free network M(t) as base, the 

new network model N(t) have built through the network operation on the basis of M(t), 

it is still a scale-free network. 

Introduction and Concepts 

From the point of view of mathematics, it is natural to form a complex network M(t) 

from smaller and simpler subnetworks Mi(t) with i=1,2,, m. Conversely, one also 

hope to decompose a larger network M(t) into regular and easy-handle subnetworks 

Mi(t) with i=1,2,, n. In the above two processes, one want to keep some important 

properties in them. For example, if each smaller subnetwork Mi(t) is scale-free, so is the 

larger network M(t), and vice versa. Moreover, one want to build up high quality 

networks by economic methods, and maintain economically them for a long time. We 

will face the following problems: How to compare two networks we familiar with? By 

what standards to understand and characterize those networks we are interested on? By 

what methods to construct network models as we desired? 

    Doubtless, mathematics occupied an important role in researching networks. 

Bollobás and Riordan introduced important mathematical results on scale-free random 

graphs (Ref. [4]). Newman wrote over 150 articles on networks, such as: Random 

hypergraphs and their applications, random acyclic networks. His The structure and 

function of complex networks was received the most citations of any paper in 

mathematics between 2001 and 2011 (Ref. [5]). Newman, Barabási and Watts pointed 

out: ``Pure graph theory is elegant and deep, but it is not especially relevant to 

networks arising in the real world. Applied graph theory, as its name suggests, is more 

concerned with real-world network problems, but its approach is oriented toward 

design and engineering.''(Ref. [6]) Thereby, we design a class of network models, 

called the compound models, for trying to answer our problems in this article.  

A. Concepts and Definitions 

A network model in this article is a mathematical and dynamic model. A 2-operator Oi,j 

of a 2-operator set O is a network operation on two generators (also network models), 

for example, the join (see Fig.1) is a 2-operator, the cartesian product (see Fig.2) of two 
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networks/graphs is a 2-operator too. Two fractal 2-operations are shown in Fig.6 and 

Fig.7 (Ref. [1], [2], [3],[9]). Three Sierpinski models S(0), S(1) and S(2) are shown in 

Fig.5, and furthermore S(1) and S(2) are constructed by the fractal 2-operation. 

Especially, ``joining a vertex (or generator) with another vertex (or generator) by an 

edge'' is regarded as a 2-operator on them, especially, write this 2-operator by Oo, and 

the 2-operator set O contains it in any  time. In the real world, a 2-operation may work 

on the parts of networks. For example, we can take two subsets V1*={x,z} and  

V2*={c,d,e,f} from two models L1 and L2, and then do a 2-operator on them (see Fig.3), 

or a cartesian product (see Fig.5). Of course, the above graph operations are not deeded 

to appear in IoT. 
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Fig.1 A join product L1L2 of two 

models L1 and L2. 

Fig.2 A Cartesian product L1 L2 

of two models L1 and L2. 

Fig.3 Two operation sets V1*={x,z} 

and V2*={c,d,e,f} from L1 and L2 

shown in Fig. 1 produce a partial join. 

    For the purpose of simplicity, we require that each generator of a generator set 

L(t)={Li(t):1 i n} to be connected (in general, it allows that each generator is 

connected or not), and the numbers of vertices and edges of the jth generator Li(t) are 

denoted by nv
j
(t)2 and ne

j
(t)1, respectively; any two generators of L(t) can be operated 

by a certain 2-operator Oi,j of the 2-operator set O, here after. We define a type of 

models that are main objects in this article. 

Definition 1. Suppose that M(t) is a network model having mv*(t) vertices, I(t) is a 

connected kernel of M(t), L(t)={Li(t): 1 i n} is a generator set and O={Oi,j:1 i,j m} 

is a 2-operator set with t[a,b], defined in the above. There exists a compound network 

model, denoted as CM | I, L, O(t), such that: (i) each edge xy of the kernel I(t) 

corresponds to a 2-operator Ox,y which connects two generators Lx(t), Ly(t) 

corresponding to the ends x,y of the edge xy; (ii) each vertex uV(M(t))\V(I(t)) that is 

adjacent to a vertex v of I(t) is joined with a certain vertex of the generator Lv(t) 

corresponding to the vertex v. 
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Fig.4 Two operation sets V1*={x,z} 

and V2*={c,d,e,f} shown in Fig.3 

produce a partial cartesian product. 

Fig.5 Three Sierpinski models: (a) 

S(0); (b) S(1); (c) S(2). 

Fig.6 Sierpinski model S(1) is the 

result of a fractal 2-operation. 

B. Compound Models and Their Properties 

We call a compound network model CM|I, L, O(t) to be deterministic (resp. random) 

if M(t) in Definition 1 is deterministic (resp. random). In network literature, a connected 
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kernel of a network model M(t), very often, is an induced graph over some specifical 

subset X of vertex set V(M(t)), such as, X is a dominating set, or X is a set of hub vertices 

(having larger degrees in general), and so on. The base-model space S(M|I,L,O)(t) 

contains all compound network models CM|I, L, O(t) defined in  Definition 1. Vividly 

speaking, each CM|I, L, O(t) is a network network. The kernel I(t) in the compound 

network model CM|I, L, O(t) varies, so does the base M(t). Clearly, this evolution 

needs an earlier introduction for the dynamic property of the model. Let N(t)=CM|I, L, 

O(t) for the purpose of simplicity here after.  

Six fractal 2-operations

The result of six fractal 2-operations
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Fig.7 Sierpinski model S(2) is the 

result of a fractal 2-operation. 

Fig.8 A compound model G(1)(t). Fig.9 A compound model G(2)(t). 

C. Average Degrees of Compound Models 

A compound network model N(t) defined in Definition 1 has its kernel I(t) that is 

connected and not stable and  quite active with M(t). We may meet two situations: 

I(t)=M(t), for the purpose of convenience, we write N(t) by G
(1)

(t); or I(t) is a proper 

sub-model of M(t), we write N(t) by G
(2)

(t) (see Fig.8 and Fig.9). For computation of 

degree spectrums of two compound models G
(1)

(t) and G
(2)

(t) at time step t, let nv
(s)

(t) 

and ne
(s)

(t) be the numbers of vertices and edges of G
(s)

(t) with s=1,2, respectively; nv
i
(t) 

and ne
i
(t) are the numbers of vertices and edges of the ith generator Li(t); vi,j

(s)
(t) and 

ei,j
(s)

(t) are the numbers of vertices and edges after doing a 2-operator Oi,j on two 

generators Li(t) and Lj(t) corresponded by two ends xi and xj of en edge xixj of the kernel 

I(t) in G
(s)

(t) with s=1,2. By Definition 1, we have 
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with s=1,2, where qv
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(l)>0 and qe
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(l)>0 with l=0,1,2,,t; and 

cs,i(t)=0 means that the ith generator Li(t) of the generator set L(t) does not appear in 

G
(s)

(t), cs,i(t)>1 indicates that the jth generator Li(t) appears cs,i(t) times, and the vertex 
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mean-average degree of G
(s)

(t) with s=1,2, where 
)(

)(2
)(

tn

tn
tk

i
v

i
e

i
  is the average number 

of Li(t) with i=1,2,,n at time step t. For the first compound model G
(1)

(t), we have 

I(t)=M(t) and |V(I(t))|=mv*(t), and 
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Similarly with the form (2), we have 
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Therefore, G
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above facts give us a result 

Theorem 1. The base-model space S
(1)

={G
(1)

(t):M|I, L, O} is closed to the sparseness 

if each generator Lj(t) and M(t) are sparse in G
(1)

(t). 

The from (2) and the result (3) show that G
(1)

(t) is spares if every generator of the 

generator set L(t) is spares, since the main average degree 
)(
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However, we can not say that the second compound model G
(2)

(t) to be spares, since 

it is not easy to show the main average degree )(~)(
)2(*

2
tktk  for large t. For dealing 

with various parameters of G
(2)

(t), we have to consider the values of two numbers X
(2)

 

and Y
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(t) 

and qe
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(t) may be quite large or active extensively. 

D. Operation Distribution of G
(1)

(t) 

Since the kernel I(t) is equal to the base M(t) in G
(1)

(t), we define: Ki* is an operation 

degree for which a randomly selected generator Li(t) having been operated with other 

Ki* generators in G
(1)

(t); P(Ki*) is the operation distribution of G
(1)

(t), that is, the 

probability of a randomly selected generator Li(t) operated with other Ki* generators; 


j jii tKtK )()( ***  is the probability of a new added generator Lj(t) operated with a 
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generator Li(t) that was already operated with other generators Ki* times. Very often, 


j jii tKtK )()( ***  is called the linear preferential attachment (Ref. [7]). 

Experiment. By means of BA-model, we add a new generator to G
(1)

(t－1) and 

operate it with m generators of G
(1)

(t－1) by using m 2-operators, so we have a dynamic 

operation equation (Ref. [10], [11], [12], [13])of G
(1)

(t) as 
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Suppose that G
(1)

(0) has been generated by n0 generators and m0 operators used. At 

time step t, G
(1)

(t) contains n0+t generators and m0+mt operators in total. Thereby, 
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    In general, we say G
(1)

(t) to be a scale-free operation model if G
(1)

(t) holds its own 

operation distribution P(K)K
λ

 with 2<λ<3. Such models having the scale-free 

operation can be found in social networks in the the real life. The above facts induce a 

concept as follows 

Definition 2. A compound model N(t) is a uniformly scale-free model if each 

generator Li(t) of the compound model holds its own degree distribution Pi(k) ik
 with 

2<i<3 and the compound model has its own operation distribution P(K)K
－λ

 with 

2<λ<3. 

As refering ``joining a vertex (or generator) with another one by an edge'' as a 

2-operator, so Definition 2 can be applied to each compound model defined here. Let 

P(k) be the degree distribution of G
(1)

(t), PM(t)(k) be the degree distribution of the base 

M(t), the notation 1)(
1


n

j tL  indicates that each generator Lj(t) contracts to a vertex. 

Thereby, we have  a connection of three distributions of G
(1)

(t) as follows 

)()()(lim )(
1)(

1

KPkPkP tM
tL

n
j




                                                                                                     (6) 

E. Clustering Coefficients of G
(1)

(t) 

We define the base-clustering coefficient 
)1(

base
c  of the compound model G

(1)
(t)  is the 

clustering coefficient of the base M(t) in G
(1)

(t). In other words, 
)1(

base
c  is a clustering 

coefficient between  networks, rather than between vertices in G
(1)

(t). The  clustering 

27

Advances in Computer Science Research (ACRS), volume 54



coefficient 
j

c  of the jth generator Lj(t) is called a partial clustering coefficient of 

G
(1)

(t), denoted as 
jj cc  . So, we have the mean-clustering coefficient 
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It can be thought that 
)1(

c  is local, 
)1(

base
c  is universal. We define the efficient 

clustering coefficient of G
(1)

(t) as follows. 
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Similarly, it can define various clustering coefficients for the compound model 

G
(2)

(t). 

F. Diameters of Compound Models 

Bolloba ś and Riordan [8] have proven that the diameter diam(Gm
n
) of a scale-free 

graph n
mG  on n vertices holds 

n

n
G

n

n n
m

loglog

log)1(
)(diam

loglog

log)1(  



                                                                                         (9) 

Some papers quote: Scale-free graphs of order n have diameters no more than 

nnc logloglog  (or nnc lnlnln ). Similarly with the deduction in the previous 

subsection, we have 

Theorem 2. If M(t) and all generators of N(t) are small-world, then the base-model 

space S(M | I, L, O)(t) is closed to the small-world property of networks. 

Conclusion and Problems 

The researchers rarely involved in the network operation research, in this paper we 

defines several network operation, and on the basis of it we have designed two types of 

compound models G
(1)

(t) and G
(2)

(t) from social and logistical networks. Furthermore, 

we discuss the properties of the compound models, such as degree distribution, 

diameter, average degree, clustering coefficient, and so on. Based on the particular 

construction of G
(1)

(t), the operation distribution of G
(1)

(t) is a new concept. In the 

article we have verified the scale-free nature of the compound network models, our 

works on network have a certain guiding role for the later research in compound 

network models. As further works on designing network models, we present some 

problems on the compound models. 

Problem 1. Find some connections between the degree distribution P(k) and the 

operation distribution P(K) of a compound model. 

Problem  2. If a compound model is uniformly scale-free, is it  scale-free? 
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