
Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

An NDN-based Query Processing Framework for Networked

Databases

Zhu-hua LIAO, Zeng-de TENG*, Jian ZHANG and Yi-zhi LIU

School of Computer Science and Engineering, Hunan University of Science and
Technology, Xiangtan, China

Key Lab of Knowledge Processing & Networked Manufacturing, University of Hunan
Province, China

*Corresponding author

Keywords: Named Data Networking, Relational Databases, Named-based Query,
Query Routing, Answer Integration.

Abstract. Nowadays, massive databases have accumulated and networked in the

large-scale and distributed networks, however, in which extensive data are still hard to

be directly shared to or efficiently exploited by the users as many challenges and

technical designs of query processing are arising in the networks. To address these

issues, a name-based query framework is proposed by utilizing Named Data

Networking (NDN). Based on the principles of NDN, our query scheme transforms

SQL query statements into name-based queries firstly, and then processes these queries

for routing, local querying and answers integration in distributed networks. In the

system, networked query algorithms process the complex queries and distributed

answers with hierarchical names. The primary implementation solutions illustrated in

the paper and finally the performance analysis demonstrated that the name-based query

scheme is feasible and can fulfill general network design principles.

Introduction

Nowadays, huge amounts of databases accumulated and networked in the large-scale

and distributed networks, but querying data directly from large number of databases is a

big challenge. So, extensive data stored on those networks, such as MANET (Mobile

Ad-hoc network), P2P and DTN (Delay Tolerant Network), are still hard to be directly

shared to or efficiently exploited by network applications or users. Because the

databases are distributed in the dynamic networks, the query statements with complex

claims and various constraints need to be routed to right databases, and then all

response answers should be aggregated at intermediate nodes and are returned to

corresponding clients through one or more routers. Furthermore, considering the traffic

balance and wire-speed forwarding, the query statements had better refrain from

spreading everywhere when they are routed and forwarded in networks. Besides these,

many other difficulties have to overcome in the dynamic and distributed networks, such

as query decomposition and in-network query processing [1-4].

Recently, an novel network architecture, called Named Data Networking (short for

NDN/CCN)[4], is proposed for retrieving named content from dynamic and distributed

networks. In which a routing mechanism (we called name-based routing mechanism) is

presented for routing a users' interest by a hierarchical name, which stored in the FIB

(Forwarding Information Base), rather than an IP address. Since the name-based routing

mechanism can semantically look up FIBs in routers, and wisely determine right next

hops in NDN, it is possible to route each complex query to right sources. If so, the

76

Advances in Computer Science Research (ACRS), volume 54
International Conference on Computer Networks and Communication Technology (CNCT2016)

database query will not be enslaved to the addresses of databases and sabotaged by

network topology changing and the displacement of databases on networks.

In the paper, we will address the challenges of the in-network query processing and

present a name-based query scheme for NDN. The main contributions are as follows:(1)

We introduce a name-based query scheme for the NDN that connected with relational

databases; (2) We put forward a transformation method of SQL query and a strength

name-based routing algorithm for forwarding the complex query to the right databases

in NDN; (3) We present various integration techniques for retrieving the response

answers of different SQL queries in NDN.

Related Works

Today, existing distributed RDBMS can be classified into three main paradigms:

central data repository, database federation and P2P database networks. In the central

data repository paradigm, the clients can access to the central data repository by the IP

address on the Internet. Another paradigm is the database federation [5] in which

database sources are distributed and a centralized portal is used to receive all queries

and in charge of query decomposition and distributing the sub-queries to appropriate

database sources by IP addresses. In the P2P database networks, querying the

distributed and dynamic structured data is the main objective. Early days‟ unstructured

P2P systems rely on the query flooding or random walk [6], but they have poor

scalability. To address the scalability issue, several methods are proposed, for example,

range query [7], multi-dimensional query [8] and the routing indices (RIs) [9]. These

methods rank or classified the distributed structured data and provide a list of “coarser”

topics or values towards the potential database sources for different queries. So the

query is generally unitary. The structured Peer-to-Peer system builds on the theory of

distributed hash table (DHT) which uses flat identifiers or keys to map the data's

addresses [10]. However, using flat identifiers is not inadequate for complex queries

which included SQL queries. Recently, the NDN has been proposed for efficiently

discovering the named data by issuing an INTEREST packet which carried a

hierarchical name, and returning results by a DATA packet in a network. And many

similar applications have been developed based on NDN, such as NDN-friendly file

system [11], distributed file sharing application on NDN [12] and so on. For strength

NDN to search networking data, Zahariadis et al. presents an approach of similar

content search [13], in which the ''search'' is introduced as a top level namespace and

uses the flooding to search similar named data in NDN. The relational routing scheme

[14] is devoted to routing the semantic query and aggregating the answer for querying

the semantic data in NDN, but it is not suitable for the SQL query in NDN. In this paper,

we focus on providing a name-based SQL query processing for networked databases

based on NDN.

In short, despite appearing various distributed query techniques and systems, almost

none of them are committed to processing the SQL query for networked databases in a

distributed and dynamic network. However, this capability is becoming increasingly

important as more mobile ad-hoc networks, delay tolerant networks connected to lots of

databases, and other structured data which addresses are untraceable.

77

Advances in Computer Science Research (ACRS), volume 54

SQL Query Scheme for NDN Databases

Data schema of Relational Database

Generally, relational databases can be classified into different application areas which

can be described by DB names or mined by some reverse engineering approaches

[15,16]. In a relational database, a relation (or a table) collected a type of entries (or

records) with multiple fields (or columns). Usually a relation stored a type of entries can

be classified into a category. If the names of databases and relations correctly represent

the semantics of data stored in these databases, we can use the names to reject unrelative

databases and possibly fulfill a name-based query scheme by the name-based routing

mechanism in NDN. If so, the name-based query will open a new way to retrieve or

manipulate data in networked databases by network routers.

Naming Data and Query

To newly created databases, relations and fields, their names can be uniformly naming

by referring to a globally data dictionary. But to the legacy ones, their names can be

extracted from respective local data dictionaries by using reverse engineering

approaches. Based on these names and the requirements, user can generate different

SQL query statements. For example, assumed a NDN connected a distributed database,

named ElectrionicBooks, which stored many sorts of electronic books, and the names of

all relations and fields are acquired. If a user wants to query all books' information that

belong to “Computer Science” major and “Network” area and published within the past

3 years, the SQL query statement can be written as:

In NDN, above SQL query statement should be transformed a packet which is similar

to Interest packet for semantically routing and in-network query processing. From the

above SQL query statement and the name of the databases, the following principal

information can be extracted:
Relation Classes: ElectronicBooks / BookInfo

Parent tables: MajorInfo

Entity Classes: Computer Science / Network

Semantic Constraints: (2013- Year(publishing time))<=3

 Use ElectronicBooks;

 Select Name, Author, Publishhouse, Publishtime

 From BookInfo, MajorInfo

 Where Major =“Computer Science” and Area =“Network” and

(2016- Year(publishing time))<=3

78

Advances in Computer Science Research (ACRS), volume 54

Electronic booksDatabase name

BookInfoRelation names

name

Field names id
author

publishhouse

major

Use ElectronicBooks；
Select Name, Author, Publishhouse,

Publishtime

From BookInfo,MajorInfo,...

Where Major =“Computer Science”

and Area =“Network” and (2016-

Year(publishing time))<=3 and ...

area =“Network”

 =“Computer Science”

publishtime =(2016 -

Year(publish

time))<=3

The records those

satisfied all

constraints

SQL:

FK(Au_ID,Ma_ID,Ar_ID,PH_ID)

Parent tables

Answer

Structure

Other tables

name of SQL

and answer

√
√

√

√

PK

All“√”fields

Fig.1 The hierarchical name and answer structure extraction from a SQL statement

 Here, the Relation Classes can be used to route the query and return the answers in

NDN. The Entity Classes is a further semantic division for a type of entities. The

Semantic Constraints mainly specify some restrictions to select the needed entities in a

relation. To efficiently forward a query in NDN, the name should simple as the naming

of INTEREST. In the paper, we consider the Entity Classes as a semantic constraint. So

we form a query packet which can be routed and processed in NDN by carrying the

requisite information. Fig.1 shows how to extract the hierarchical name from a SQL

query and set up the answer structure.

NDN-based SQL Query Scheme

In our scheme, we build a Global Data Dictionary firstly in Centralized controller for

network users to create databases and tables. Then, we employ a hierarchical name and

semantic constraints to constitute a query packet that similar to the INTEREST packet.

Fig.2 presents a SQL query processing framework used for databases' query in NDN.

When a client issues a SQL query, it will be translated into a NDNQL, which can be

routed by queried in NDN, by a NDNQL Translator. Then the Dispatcher will pack the

NDNQL and send the NDNQL packet to the nearest router. When a router received a

NDNQL packet, it will look up the answers in the cache for the NDNQL. If the

complete answers can be found in the cache, it will be directly returned and the NDNQL

packet will be discarded. Or else, it will be forwarded to the next routers or sources by

matching the items of FIBs with the Longest Prefix Matching (LPM) and record the

arrived face for the packet. When the NDNQL packet arrived at right sources, the

NDNQL will be transformed back to the original SQL query, and then it will be

performed in the local databases. After the query finished, the query answers will be

packed into a NDNRS packet that similar to the DATA packet and returned back via the

paths that the NDNQL packet has passed through (mainly do exactly match in PITs to

find the arrived faces), and will be integrated by integration algorithms (can refer the

algorithm in [14]) when they arrived at the rendezvous nodes. Finally, as the aggregated

results backtracked to related clients, the NDNRS packet will be unpacked as answers

and will be sent to the corresponding applications or users.

79

Advances in Computer Science Research (ACRS), volume 54

Matcher

SQL Transformation

Local Names

Dispatcher

Announcement
NDNQL

Translator

PackerUnpacker

multicast

response

query

backtrack

NDNClient
Source

Local
Database

FIB

Exact
Matcher

PIT

LPM
Matcher

Router

SQL

UI

Answers

Cache
Management

Forwarder

Query evaluation
engine

NDNQL

NDNRS

Data Definition Language

 Parameter Adjustment

user
NDNQL

NDNRS

Naming
extractor

Global Data Dictionary

Performance Assessment

Centralized
controllor

Selected names names

concast
concast

other

Fig.2 The processing framework of SQL query in NDN

NQNQL Description and Transformation

Usually, most RDBMSs mainly provide these widely used SQL query operations, such

as SELECTION, PROJECTION, AGGREGATION and JOIN. However, we found that

the query statements of these operations consist primarily of two types of information:

(1) the names of databases and relations (tables) involved in the query statements; (2)

the semantic constraints based on the names. In the networked databases, the SQL

query operations can involve into a table, multiple copies of a table or multiple different

distributed tables. Here we tend to address two operations: query operations on multiple

copies or multiple tables. Next we will present the transformation of SQL query

operations in detail.

NDNQL Description for SQL Query Statements

The SELECTION, PROJECTION, AGGREGATION operations usually involve at least

a relation (or table). So we simply take the names of database and relation(s) to form a

hierarchical name for routing, and then add the query statement to form a name-base

query for in-network processing in NDN. So, a name-based query is consisting of two

parts: naming component and query statement component. The naming component is

used for query routing and answers response.

If a SQL query involved multiple tables, including child tables and parent tables, it

would be best to find out the child tables, as the content of parent tables might be put in

child tables. So, we take the parent tables' name as an option in the hierarchical name.

A JOIN query is bound to involve at least two tables. In distributed databases, these

tables may be distributed, so we usually shift JOIN operation as semi-join operation. If

the tables located at different sources, the semi-join query should be forwarded to all

these sources in a certain order. So multiple naming components need to be added to a

NDNQL packet, and specifying an order for routing the semi-join query to the

corresponding database sources.

For processing a nested query, we should consider the execution sequence of

multiple sub-queries. In NDN, maybe these sub-queries ought to be performed in

different sources. So, we should also find out multiple naming components and rightly

use them for routing when performing different sub-queries.

80

Advances in Computer Science Research (ACRS), volume 54

Statements Transformation between SQL and NDNQL

In NDN, the format of a hierarchical name that stored in FIB is:

“Globally routable name / Organization name”

In practice, the globally routable name can be omitted that means the query targets

the whole network, or pruning lower levels of globally routable name (that is keep a

prefix of domain name) that means the query targets certain area of a network. So for

transforming a SQL query to a NDNQL statement, we design a transformation

algorithm shown in Algorithm 1.

Algorithm 1 Transform SQL to NDNQL

 Input: QueryStatement SQL

Output: NDNQLStatement(s) NDNQL

Int i=0; String[] Q, NDNQL, ES;

DbName=GetDbName(SQL);

If (MultipleSubQueries(SQL)==true) Then{

 For (;all sub-queries;)

 ES[i++]= all sub-queries in execution sequence order;

}

Else ES[i]=SQL;

For (Int j=0; j<sizeof(ES);j++){

TableNames=GetAllTableName(ES[j]);

HierName=Globallyroutablename+``/"+DbName+``/\{"+TableNames+``}";

NDNQL[j]=HierName+``;SQL:"+Q[j];

}

Return NDNQL;

When the NDNQL packet was forwarded into right sources, it should be transformed

back into the original SQL query.

NDNQL Routing and Query Processing

For routing NDNQL and response answers in NDN, we need at least two kinds of

packets, NDNQL packet and answer packet respectively, which are shown in the Fig.3.

In a NDNQL packet, the NDNQL Statement is used for NDNQL forwarding and

in-network querying, the Auth Info is used for packet and user authentication, and the

Selector is used for given the DB owners, preferences and network scope when

processing the in-network query. When a router receives the packet, it will be resolved.

Then the router will use the hierarchical name of NDNQL to match the FIB for

acquiring next hops. As the packet arrived at sources, the SQL statement in NDNQL

will be used to query local database. Soon afterwards, the answers and the

corresponding NDNQL will be packed into the answer packet (or NDNRS). Finally, the

answer packet will be forwarded back to the senders by routers which picked up from

the PIT by matching the NDNQL.

NDNQL
Statement

Nonce
Selector

(Preference,Publisher
,Scope,...)

Auth Info Answers
Signature
Technique

Timestamp

NDNQL packet Answer packet

Signed
Info

NDNQL
Statement

Fig.3 NDN Packets for name-based query

NDNQL Routing on Distributed Tables

In NDN, the implementation procedures of query routing are as follows: Firstly, when a

router received a NDNQL packet, the LPM matching between the hierarchical name

and each entry in FIB is done. If an entry is matched, forwarding the NDNQL to the

81

Advances in Computer Science Research (ACRS), volume 54

matched routers according to the values of face field until the NDNQL is forwarded to

all relevant sources. In each relevant source, the SQL statement will be extracted and

performed at the local database. After the answers are ready, they and the SQL

statement will be packed and backtrack to original requester(s) by following the trail of

„bread crumbs‟ that were left in PITs by the NDNQL packet. Fig.4 shows the

in-network routing of NDNQL packet for querying distributed tables in NDN.

Client

Sources

DBn

DB1

R1

Rn

CS check PIT check FIB check
Discard
QUERY

Return ANSWER Discard QUERY Forward QUERY

YES/NO NO NO

YES YES YES

QUERY

PIT check
ANSWER

CS
Append
ANSWER

NO
Discard
ANSWER

BAT check

Return
ANSWER

NO

YES

YES

Discard
ANSWER

Forwarder

QUERY
QUERY

QUERY

QUERY

ANSWER

ANSWER

ANSWER

ANSWER

Answer
Processing

Fig. 4 In-network query routing for querying distributed tables

NDNQL Processing on Distributed Tables

As a join query involved multiple tables and these tables are stored in different sources,

the NDNQL packet will be forwarded to these sources by our scheme. The semi-join is

a very efficient and important method for optimizing join query in distributed databases.

Fig.5(a) shows the overall processing of the semi-join query on two distributed tables in

NDN. First, a NDNQL query is routed to relevant sources by our routing scheme and a

hierarchical name (assume it included the name of table R). Then performing query in

the local database with SQL statement which is packed into the NDNQL packet. When

getting the answer, NDNQL needs to be reconstructed (the hierarchical name should

include the name of table S and the SQL should be rewritten) and forwarded to another

source. Finally, after the new SQL statement is performed at another source, the answer

will return back to the senders by NDNQL routing algorithm.

NDN

Client

(a)Semi-join

Q(R)
Answer

R
Source1

S
Source2

NDN

Client

(b)Nested semi-join

Answer

R
Source1

P
Sourcen

Πattr(R)

Πattr(R)

Πattr(S)

S
Source2

Πattr(*)

DB1 DB2 DB1

DB2

DBn
Q(S)

Q(R)

Q(S)
Q(P)

Fig. 5 In-network semi-join query on distributed tables

 The nested query is a complex query which involved more tables and multiple

sub-queries. If these tables are distributed, we should use nested semi-join operations to

realize the nested query and transform the query after executing a sub-query. Fig.5(b)

82

Advances in Computer Science Research (ACRS), volume 54

shows the overall processing of the nested semi-join query on more than two distributed

tables in NDN.

In-network Answers Integration of NDNQL

Because the in-network query processing means multiple local queries processing

performed at different sources and multiple distributed answers may be received from

different upstream routers or sources in NDN. For reducing the number of packets and

traffic flow, the answers' integration is needed to process at rendezvous sites. Here we

call the client or router a rendezvous node. But the arrival time of these answers could

be not at same time, so there are three types of answers integration which depend on

different situations.

 (1) Synchronous Answers Integration

 When multiple answers of a NDNQL arrived at a router in a short-time, they may be

merged into an answer packet and remove the duplicate content.

 The detail integration procedures are: First, storing the answers, and deleting the

duplicate content from them for the same NDNQL. Then, integrating them and

recording the arrival faces and time for these answers. To an answer packet, it may be

integrated multiply at rendezvous routers.

 (2) Asynchronous Answers Integration

 When each answer of a NDNQL arrived at a router in a different short-time window,

the duplicate content in late arrived answers need to be deleted according to the

previous answers that cached in the Content Store, but the asynchronous answers are

difficult to be merged into fewer packets.

 (3) Recursive Answers Integration

 The above mentioned that an answer packet may be integrated several times on

different routers. And the answers integration is essentially data integration in multiple

answer packets. In most case, the data integration process is simply putting the data

together. But in some case, we can choose a computing mode to prune some data and

even reduce some answer packets. For example, some AGGREGATION operations (e.g.

MAX, AVG) of database query can make a query only need to back an answer. But to

this data integration, we should be noted the computational algorithm. For example, in

the recursive answers integration of AVG query, the average calculation can be

repeatedly to all the local average values that responded from different neighbor nodes,

but it should be considered the different weights to different local average values for the

local average values that contained different number of the original data.

Analysis and Future Work

In the NDN-based query system, the performance of the distributed processing

determines the availability and applicability of our scheme. Compared to the traditional

database query schemes, such as database federation, P2P database system, our scheme

has some competitive advantages in performance issues.

(1) Traffic balance. Though one NDNQL query may get multiple answers, most

answers‟ sizes are comparatively small and multiple smaller packets can be merged into

an answer packet. So it is easy to maintain the traffic balance between queries and

answers.

(2) Wire-speed forwarding. In our scheme, the Organization name of naming

component can simply have two layers, and many FIB entities can also be aggregated,

83

Advances in Computer Science Research (ACRS), volume 54

so the match time of names in FIB, Content store, PIT are shorter, so the query

forwarding can be wire-speed.

 (3) Dynamic adaptability: Usually, in a slightly larger network, a query needs pass

through multiple hops to reach right sources. In a network, sources displacement will

happen often and the network topology also will change uncertainly. But NDN can bear

packets routing on the dynamic and distributed network by taking advantage of the

name-based routing mechanism.

 The NDN-based database query system is under active development with Java

language. It can run on any TCP/IP network as an overlay system. And we are

continually adding new features to improve the query performance and enhance the

recall and precision ratios.

Conclusions

In the paper, we present an in-network SQL query processing framework for networked

databases in NDN which can be deployed on the TCP/IP network and other ad-hoc

networks. In particular, for realizing the novel NDN-based database query, the

algorithm that transformed a SQL query into an in-network query form which suited

routing and querying in NDN. And the in-network query processing for the SQL query

in NDN are also introduced. Furthermore, as for the plethora of distributed query

answers, we presented the distributed answers integration in NDN. In the future, we

will be dedicated to the software development and applications of the SQL query in

NDN.

Acknowledgment

This work was supported by the grant from the National Natural Science Foundation of

China (Grant No.61370227) and Hunan Province Universities Innovation Platform of

Open Fund Project (Grant No.14K037).

References

[1] A. Eyal, A. Gal. :Self Organizing Semantic Topologies in P2P Data Integration

Systems. International Conference on Data Engineering (ICDE). 2009.

[2] Mario Gerla, Leonard Kleinrock. Vehicular networks and the future of the mobile

internet. Computer Networks. Vol.55, No.2, 2011.

[3] P.Padmanabhan, L.Gruenwald, et al. A survey of data replication techniques for

mobile ad hoc network databases. The VLDB Journal, Vol.17, No.5, 2008.

[4] V. Jacobson, D. K. Smetters, et al. Networking named content. the ACM CoNEXT.

New York, USA, Dec. 2009.

[5] G. Olaf and S. Steffen. Federated data management and query optimization for

linked open data. NDWDM, vol. 331, Springer, 2011.

[6] D. Fayel, G. Nachouki and P. Valduriez. Semantic Query Routing in SenPeer, a

P2P Data Management System. NBiS , LNCS 4658. 2007.

[7] F. Banaei-Kashani and C. Shahabi. SWAM: a family of access methods for

similarity-search in peer-to-peer data networks. ACM CIKM. 2004.

84

Advances in Computer Science Research (ACRS), volume 54

[8] X. Sun. SCAN: a small-world structured p2p overlay for multidimensional queries.

International World Wide Web Conference, New York, USA, 2007.

[9] A. Crespo and H. Garcia-Molina. Routing indices for peer to peer systems.

International Conference on Distributed Systems, 2002.

[10] M. Harren, J.M. Hellerstein, R. Huebsch, et al. Complex Queries in DHT-Based

Peer-to-Peer Networks. Int'l Workshop Peer-to-Peer Systems (IPTPS). 2002.

[11] Wentao Shang, Zhe Wen, Qiuhan Ding, etc. NDNFS: An NDN-friendly File

System. NDN, Technical Report NDN-0027, Revision 1: October 27, 2014.

[12] Alexander Afanasyev, Zhenkai Zhu, etc. The Story of ChronoShare, or How NDN

Brought Distributed Secure File Sharing Back, IEEE 12th International Conference on

Mobile Ad Hoc and Sensor Systems (MASS), p. 525-530, 2015.

[13] P. Daras, T. Semertzidis, L. Makris, and M. G. Strintzis. Similarity content search

in content centric networks. ACM International Conference on Multimedia, 2010.

[14] Z. Liao, G. Zhang, A. Yi, and G. Zhang. A Relation Routing Scheme for

Distributed Semantic Media Query. The Scientific World Journal, 2013.

[15] Reda Alhajj. Extracting the extended entity-relationship model from a legacy

relational database. Information Systems, 28 (2003) 597–618.

[16] D. Yeh, Y. Li, W. Chu. Extracting entity-relationship diagram from a table-based

legacy database. The Journal of Systems and Software, 81, 764–771, 2008.

85

Advances in Computer Science Research (ACRS), volume 54

