The k-spined Cubes and Its Properties Xin-Yun QIN ${ }^{1}$ and Dao-Yun XU ${ }^{2}$
${ }^{1}$ Department of Mathmantics and Statistics, Guizhou University, Huaxi(550025), Guiyang, P.R.China
${ }^{2}$ Department of Computer Science, Guizhou University,Huaxi(550025), Guiyang, P.R.China
${ }^{1}$ xyqin163@yeah.net, ${ }^{2}$ dyxu@gzu.edu.cn.

Keywords: Interconnection network, K-spined cubes, Neighbors and Spin $_{k}$, Distance, Diameter.

Abstract

The diameter of hypercube and its properties is an important issue for improving thecommunication efficiency of interconnection network. A new variant $S Q_{n}^{k}$ of the n-dimensionalhypercube is introduced by a spinningfunction \emptyset_{k}. In this variant, called k-spined cubes, neighbors of any node can be quickly obtained by using matrix method. The k-spinedcubes $S Q_{n}^{k}$ hasdiameter $\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) k$ for $k \geq 4$ and $n \geq 6$. The method can be freely used to constructing minimal diameter hypercube network by choosing a proper value for k.

Introduction

With the development of technology, especially the advent of VLSI circuit it madepossible to build a large parallel and distributed system involving thousands or even tens of thousandsof processors. One crucial step on designing a large-scale parallel and distributed system is todetermine the topology of the interconnection network[1,2].Because the network topological structure properties directly impact on a variety of hardware and software of the parallel and distributed systems design. Thus, an interconnection network plays important roles in a large-scale parallelcomputer system.

Thecommunication efficiency of interconnection network is a significant parameter in a large-scale parallel computer system. The efficiency of communication can be improved by minimizing thediameter. As a result, with a given fixed number of interconnection resources (i.e., nodes and edgesof an interconnection network), being able to construct an interconnection network with a diameteras small as possible is a very significant factor in the design of an interconnection network [3]. Asfar, to achieve smaller diameter with the same numbers of nodes and links, a number of hypercubevariants were proposed [4-10].

An interconnection network can be modeled as an undirected graph $Q_{n}=$ $\left(V\left(Q_{n}\right), E\left(Q_{n}\right)\right)$.Thedistance between two nodes x and y of graph Q_{n}, denoted $\mathrm{d}(x, y)$ is the length of a shortest pathbetween x and y. The diameter of G is defined as the maximal value of the distances between allpairs of nodes in G , denoted $\operatorname{diam}(\mathrm{G})$, (i.e., $\operatorname{diam}(\mathrm{G})=\max \{\operatorname{dist}(x, y) \mid x, y \in \mathrm{~V}(\mathrm{G})\})$. Some otherdefinitions and notations not given in this paper are referred to [11,12] and the reader is referred toref. [13] for fundamental graph-theoretic terminology.

In this paper, we present a new k-spined cubes network $S Q_{n}^{k}$ by modifying the n -dimensionalcube Q_{n} definitions, similar but not identical definitions, to explore its
properties. We explore thediameter and the minimal diameter of $S Q_{n}^{k}$ by choosing the value k, n.

The remainder of this paper is organized as follows: Section 1 provides the preliminaries. Section 2 define dimension of neighbors and adjacent-decide matricesin $S Q_{n}^{k}$. Section 3 gives the distanceand several properties of $S Q_{n}^{k}$. In section 4, we give the expression for the diameter of $S Q_{n}^{k}$, andindicate the method of choosing k for the minimal diameter in $S Q_{n}^{k}$.

Preliminaries

In this section, we will de_ne some basic notations for BC graphs.
A string $x=x_{1} x_{2} \ldots \bar{x}_{n}$ in $\{0,1\}^{\mathrm{n}}$ is viewed as a vector $x=x_{1} x_{2} \ldots x_{n}$ on $\{0,1\}$. We use \oplus to denote (modulo 2) sum of two bits aand b ($\mathrm{a}, \mathrm{b} \in\{0,1\}$). For two strings $x=x_{1} x_{2} \ldots x_{n}$ and $y=y_{1} y_{2} \ldots y_{n}$ of length n in $\{0,1\}^{\mathrm{n}}$, we define $x \oplus y$ (modulo 2) sum of x and y where $(x \oplus y)_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \oplus \mathrm{y}_{\mathrm{i}}$ for $\mathrm{i}=1, \ldots, \mathrm{n}$. It is equivalent to $x \oplus y=\left[x_{1} \oplus y_{1}, \ldots, x_{n} \oplus y_{n}\right]$. For a vector $x=\left[x_{1} x_{2} \ldots x_{n}\right]$ and two positive integersi, $j(1 \leq i \leq j \leq n)$, denote $[i: j]=\left[x_{i}, x_{i+1}, \ldots, x_{j}\right]$.

In this paper, a string $x_{1} x_{2} \ldots x_{n}$ and a vector $\left[x_{1} x_{2} \ldots x_{n}\right]$ are viewed as the same.
In the graph Q_{n}, for any two distinct nodes x and y, the distance between x and y is Hammingdistance $\operatorname{dist}_{H}(x, y)$, and computed by

$$
\operatorname{dist}_{H}(x, y)=\sum_{i=1}^{n}\left(x_{i} \bigoplus y_{i}\right)
$$

Proposition 1 [14] For any two vertices $x, y \in Z_{2}^{n}$ in the graph Q_{n}, the distanced $(x, y)=\left|\left\{\mathrm{i} \in[\mathrm{n}]: x_{i} \neq y_{i}\right\}\right|$, and then the diameter $\operatorname{diam}\left(Q_{n}\right)=\mathrm{n}$.

For a fixed string ω with length s , we can get a bijection $\phi_{\omega}: Z_{2}^{n} \rightarrow Z_{2}^{n}$ defined by
$\psi_{\omega}(x)=\left\{\begin{array}{lc}x & n-s \leq 0 \\ {\left[\left(\omega_{(2 s-n)+1} \oplus x_{1}\right), \ldots,\left(\omega_{s} \oplus x_{(n-s)}\right), x_{(n-s)+1}, \ldots, x_{n}\right]} & 1 \leq(n-s) \leq s \\ {\left[\left(\omega_{1} \oplus x_{1}\right), \ldots,\left(\omega_{s} \oplus x_{s}\right), x_{s+1}, \ldots, x_{n}\right](n-s) \geq s+1}\end{array}\right.$
Clearly, $\psi_{\omega}\left(\phi_{\omega}(x)\right)=x$.
In the definition of ψ_{ω}, the vector w is called spined factor. The following definition of thefunction comes from [10]. For any positive integer k, we define a bijection ϕ_{k} from Z_{2}^{n} to itself asfollows:

$$
\phi_{k}(x)=\left\{\begin{array}{lr}
x & n \leq k \\
x[k+1: n] \oplus x[1:(n-k)]^{-} x[(n-k+1): n] & 1 \leq(n-s) \leq n \\
x[(n-k+1): n] \oplus x[1: k]^{-} x[(k+1): n] & n \geq 2 k+1
\end{array}\right.
$$

where $x^{-} y$ is a vector by contacting x with y, e.g., $[1,0,1]^{-}[0,0,1]=[1,0,1,0,0,1]$.
In fact, $\phi_{k}(x)=\psi_{x[(k+1): n]}(x)$ for a vector x of length n and $1 \leq \mathrm{k}<n$.
It is seen in the definition of ϕ_{k} that we take the suffix $\left[x_{n-k+1}, \ldots, x_{n}\right]$ with length k of thevector $\mathrm{x}=\left[x_{1}, \ldots, x_{n}\right]$ itself as spined factor.

Please note under the action of ϕ_{k} that $x[n-k: n]=\phi_{k}(x)[n-k: n]$, i.e., the lost k bits areunchanged.
For example, $\quad \phi_{6}([1,0,0,1,0,1])=[\mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1}], \quad \phi_{3}([1,0,0,1,0,1])=$ $[0,0,1, \mathbf{1}, \mathbf{0}, \mathbf{1}], \phi_{4}([1,0,0,1,0,1])=[1,1, \mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1}]$.
Based on the function ϕ_{k}, we can introduce a variant of n-dimensional hypercube, the basic ideacomes from [10].
Definition 1 (The k-Spined cubes) For a fixed integer k, the k-Spined cubes $S Q_{n}^{k}$ is defined recursivelyas follows:
(1) $S Q_{1}^{k}$ is the graph K_{2}, where two vertices labeled 0 and 1;
(2) For $n \geq 2, S Q_{n}^{k}$ is obtained from two copies of $S Q_{n-1}^{k}, 0 S Q_{n-1}^{k}$ and $1 S Q_{-1}^{k}$, by adding edges connecting $0 x$, and $1 \phi_{k}$ for $x \in V\left(S Q_{n-1}^{k}=Z_{2}^{n-1}\right)$.

It is easy to check $S Q_{n}^{2}=S Q_{n}$ defined in [3], and $S Q_{n}^{k}=\mathrm{Q}_{n}$ for $k \geq n$.
For example, let $x=10110101$ and $k=3$, we have a path in $S Q_{8}^{3} .10110101 \rightarrow$ $01100101 \rightarrow 00001101 \rightarrow 00100101 \rightarrow 00111101 \rightarrow 00110101$

Please note that both Q_{n} and $S Q_{n}$ are n-regular graphs. The following Figure 1 gives the graph $S Q_{1}^{3}$.

Figure 1: The graph $S Q_{3}^{1}$
Theorem 1[3] For then ≥ 14, the diameter $\operatorname{diam}\left(S Q_{n}^{2}\right)=\lceil n / 3\rceil+3$.
Neighbors and adjacent-decide matrices in $S Q_{n}^{k}$
For fixed $1 \leq k<n$ we define dimension of neighbors in the k-spined cubes $S Q_{n}^{k}$.
(1) For two distinct vertices x and y, ifx $[1:(n-k)]=y[1:(n-k)]$, and $x\left[\begin{array}{ll}n & k\end{array}\right.$ $+1): n]$ andy $[(n-k+1): n]$ are adjacent in $S Q_{k}$, then call that x and y are adjacent in 0-hierarchy adjacentor 0-dimensional adjacent.
(2) For $1 \leq m \leq(n-k)$, we call that x and y are m-adjacent or m-dimensional adjacent, if thefollowing three conditions are held
(2.1) $x[1: n-(m+k+1)]=y[1: n-(m+k+1)]$,
(2.2) $x_{n-(k+m)}=1 \oplus y_{n-(k+m)}$, and
(2.3) $x[n-(k+m)+1: n]=\phi_{k}(y[n-(k+m)+1: n])$.

Thus, the vector $x=\left[x_{1}, x_{2}, \ldots, x_{n-k}, x_{n-k+1}, \ldots, x_{n}\right]$ has the following nneighbors:
$\left[\left(1 \oplus x_{1}\right)\right]^{-} \phi_{k}(x[2: \mathrm{n}])(n-k$-dimensional $)$,
$\left[x_{1},\left(1 \oplus x_{2}\right)\right]^{-} \phi_{k}(x[3: \mathrm{n}])(n-k-1$-dimensional $)$,
$\left[x_{1}, x_{2},\left(1 \oplus x_{3}\right)\right]^{-} \phi_{k}(x[4: n])(n-k-2$-dimensional $)$,

$$
\begin{aligned}
& \quad\left[x_{1}, x_{2}, \ldots, x_{n-k-1},\left(1 \oplus x_{n-k}\right)\right]^{-} \phi_{k}(x[(n-k+1): n]) \\
& =\left[x_{1}, x_{2}, \ldots, x_{n-k-1},\left(1 \oplus x_{n-k}\right), x_{n-k+1}, \ldots, x_{n}\right](1 \text {-dimensional }), \\
& {\left[x_{1}, x_{2}, \ldots, x_{n-k},\left(1 \oplus x_{n-k+1}\right), x_{n-k+2}, \ldots, x_{n}\right](0 \text {-dimensional }),} \\
& {\left[x_{1}, x_{2}, \ldots, x_{n-k+1},\left(1 \oplus x_{n-k+2}\right), x_{n-k+3}, \ldots, x_{n}\right](0 \text {-dimensional }),} \\
& \ldots \ldots, \\
& {\left[x_{1}, x_{2}, \ldots, x_{n-1},\left(1 \oplus x_{n}\right)\right](0 \text {-dimensional }) .}
\end{aligned}
$$

We see the following Figure 2.

Figure 2: Neighbors of the node 10110101
Denote $\mathbf{0}_{\mathbf{m}}$ as the zero-vector of length m. For a vector $\omega=\left[\omega_{1}, \omega_{2}, \ldots, \omega_{k}\right](1$ $\leq k<n$), wedefine the following ($n-k$) vectors:

$$
\begin{aligned}
& \mathrm{S}_{\omega}^{(1, k)}=[1]^{-}\left[\omega_{1}, \omega_{2}, \ldots, \omega_{k}\right]^{-} \mathbf{0}_{\boldsymbol{n}-(\mathbf{2 k + 1})}{ }^{-} \mathbf{0}_{\boldsymbol{k}} \\
& \mathrm{S}_{\omega}^{(2, k)}=[0,1]^{-}\left[\omega_{1}, \omega_{2}, \ldots, \omega_{k}\right]^{-} \mathbf{0}_{\boldsymbol{n}-(\mathbf{2 k + 2})}{ }^{-\mathbf{0}_{\boldsymbol{k}}} \\
& \ldots \\
& \mathrm{S}_{\omega}^{(n-2 k, k)}=\mathbf{0}_{\boldsymbol{n}-\mathbf{2 k}-\mathbf{-}}{ }^{-}[1]^{-}\left[\omega_{1}, \omega_{2}, \ldots, \omega_{k}\right]^{-} \mathbf{0}_{\boldsymbol{k}} \\
& \left.\left.\mathrm{S}_{\omega}^{(n-2 k+1, k)}=\mathbf{0}_{\boldsymbol{n}-\mathbf{2 k}}-\right]^{-}\right]^{-}\left[\omega_{1}, \ldots, \omega_{k}\right]^{-} \mathbf{0}_{\boldsymbol{k}} \\
& \ldots \\
& \mathrm{S}_{\omega}^{(n-k-2, k)}=\mathbf{0}_{(\boldsymbol{n}-\boldsymbol{k}-\mathbf{3})}-[1]^{-}\left[\omega_{k-1}, \omega_{k}\right]^{-} \mathbf{0}_{\boldsymbol{k}} \\
& \mathrm{S}_{\omega}^{(n-k-1, k)}=\mathbf{0}_{(\boldsymbol{n}-\boldsymbol{k}-\mathbf{2})}-[1]^{-}\left[\omega_{k}\right]^{-} \mathbf{0}_{\boldsymbol{k}}
\end{aligned}
$$

andintroduce a matrix $\operatorname{Spin}_{\omega}$, called spined matrix with factor ω, is shown in Figure 3:

$$
\operatorname{Spin}_{w}=\left[\begin{array}{c}
S_{w}^{(1, k)} \\
\vdots \\
S_{w}^{(n-k-1, k)} \\
\mathbf{e}_{(\mathbf{k}+\mathbf{2})} \\
\vdots \\
\mathbf{e}_{\mathbf{n}}
\end{array}\right] \quad \operatorname{Spin}_{w}=\left[\begin{array}{cccccccc}
1 & w_{1} & w_{2} & w_{3} & 0 & 0 & 0 & 0 \\
0 & 1 & w_{1} & w_{2} & w_{3} & 0 & 0 & 0 \\
0 & 0 & 1 & w_{2} & w_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & w_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Figure 3
Where \boldsymbol{e}_{i} is i-th unit vector of length n for $i=k+2, \ldots, n$.
For example, let $n=8$, and $w=\left[w_{1}, w_{2}, w_{3}\right]$, the Figure 4 gives the model.
For a vector $x=\left[x_{1}, \ldots, x_{n}\right]$ and $1 \leq k<n$, the matrix $\operatorname{Spin}_{k}\left(=\operatorname{Spin}_{w}\right)$ is called the spinedmatrix of x with respect to k, where the spined factor w is the suffix with length k of x. The spinedmatrix is corresponded to the adjacent-decide matrix in [3].

By the spined matrix $S p i n_{k}$, we can get all adjacent nods of x in $S Q_{n}^{k}$, which is defined by a matrix B_{k}^{x}, where the i-th row $B_{k}^{x}(i,:)$ is defined by $x \oplus \operatorname{Spin}_{k}(i,:)=\left[x_{1} \oplus \operatorname{Spin}_{k}(i, 1), \ldots, x_{n} \oplus \operatorname{Spin}_{k}(i, n)\right]$
For the vector $x=[1,0,1,1,0,1,0,1]$ in the Figure 2, and $k=3$, we take $w=[1,0$, 1], which isthe suffix with length k of x, and then show in Figure 5.

$$
B_{3}^{x}=\left[\begin{array}{lllll|lll}
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
\hline 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Figure 5
It is easy to check the following lemma.
Lemma 1 Let x be n-dimension vector on $\{0,1\}$ and, and let Spined ${ }_{k} b e$ the spinedmatrix of x with respect to k. Then, are ($\mathrm{n}-\mathrm{k}$)-dimensional,...,1-dimensional neighbors of x respectively, and are0-dimensional neighbors of x.

Distance in $S Q_{n}^{k}$

In this section, we consider the distance between two nodes in the graph $S Q_{n}^{k}$, where $1 \leq k<n$.
We now introduce some concepts and notations. A string y can be spined from x by w at i-thbit $(1 \leq i<n)$, if $y=x_{1} \ldots x_{i-1}\left(1 \oplus x_{i}\right) \phi_{\omega}(x[i+1: n])$, denoted by $x \vdash_{\omega, i} y$. The string y can bespined from x by w , if y can be spined from x by w at i-th bit for some $(1 \leq i<n)$, denoted by $x \vdash_{\omega} y$. The string y can be k-spined from x, if y can be spined from x by some string w of length k, denoted by $x \vdash_{k} y$.
For example, let $x=[1,0,1,0,0,1,1,1], w=[1,0,1]$. We have $x \vdash_{\omega, 3}[1,0,0,1,0,0,1,1]$.
A string y can be spin-generated from x by w, if there exists a sequence of strings x, $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}-1}, \mathrm{y}$, denoted by $x \vdash_{\omega}^{m} y$, such that

$$
\mathrm{x} \vdash_{\omega} X_{1}, X_{1} \vdash_{\omega} X_{2}, \ldots, X_{m-2} \vdash_{\omega} X_{m-1}, X_{m-1} \vdash_{\omega} y .
$$

Note that the sequence is associated with a sequence i_{1}, \ldots, i_{m} of integers, such that $x \vdash_{\omega, i_{1}} X_{1}, X_{1} \vdash_{\omega, i_{2}} X_{2}, \ldots, X_{m-2} \vdash_{\omega, i_{m-1}} X_{m-1}, X_{m-1} \vdash_{\omega, i_{m}} y$. Here, mis called as generated length.

For example, let $x=[0,1,1,1,0,1,1,1], w=[1,0,1]$ and $y=[0,0,0,0,0,0,0,0$, $0]$. Then,
$x \vdash_{\omega, 2}[0,0,0,1,1,1,1,1] \vdash_{\omega, 4}[0,0,0,0,0,1,0,1] \vdash_{\omega, 6}[0,0,0,0,0,0,0,0]$.
If we take proper different spined factor string for fixed length $k=3$, then we get shortersequence:

$$
[0,1,1,1,0,1,1,1] \vdash_{110,2}[0,0,0,0,0,1,1,1] \vdash_{011,6}[0,0,0,0,0,0,0,0] .
$$

Generally, for a string x of length n, we take at most $l=\left\lceil\frac{n}{k+1}\right\rceil$ strings $\omega_{1}, \omega_{2}, \ldots, \omega_{l}$ with length k, and then get a zero vector $[0, \ldots, 0]$ of length n in l steps.

Lemma 2Let x and y be two nodes in $S Q_{n}^{k}$ and $1 \leq k<n$. The distance $d(x, y)$ is at $\operatorname{most}\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) k$.
Proof:Assume that $x=\left[x_{1}, \ldots, x_{n}\right]$ and $y=\left[y_{1}, \ldots, y_{n}\right]$. Let $z=x \oplus y$, then we have $y=z \oplus x$ and $x=z \oplus y$.

Denote $x^{\prime}=\left[x_{1}, x_{2}, \ldots, x_{n-k}, z_{(n-k)+1}, \ldots, z_{n}\right]$

$$
=\left[y_{1} \oplus z_{1}, y_{2} \oplus z_{2}, \ldots, y_{n-k} \oplus z_{n-k}, z_{(n-k)+1}, \ldots, z_{n}\right]
$$

$$
\mathrm{y}^{\prime}=\left[y_{1}, y_{2}, \ldots, y_{n-k}, z_{(n-k)+1}, \ldots, z_{n}\right],
$$

$$
\omega_{x}=\left[x_{(n-k)+1}, \ldots, x_{n}\right], \quad \omega=\left[z_{(n-k)+1}, \ldots, z_{n}\right], \omega_{y}=\left[y_{(n-k)+1}, \ldots, y_{n}\right]
$$

Consider the path $x \sim x^{\prime} \sim y^{\prime} \sim y$. Then,

$$
\begin{aligned}
\mathrm{d}\left(x, x^{\prime}\right) & =d_{H}\left(\omega_{x}, \omega\right) \leq k \quad \mathrm{~d}\left(y, y^{\prime}\right)=d_{H}\left(\omega_{y}, \omega\right) \leq k \\
\mathrm{~d}\left(x^{\prime}, y^{\prime}\right) & =d\left(z^{\prime}, \mathbf{0}^{n-k}\right) \leq\left\lceil\frac{n-k}{k+1}\right\rceil \cdot k
\end{aligned}
$$

wherez $^{\prime}=\left[z_{1}, \ldots, z_{n-k}\right]$ and $\mathbf{0}^{\boldsymbol{n - k}}=[0,0, \ldots, 0]$. Thus, $\mathrm{d}(x, y) \leq\left(2+\left\lceil\frac{n-k}{k+1}\right]\right) \mathrm{k}$.
We now introduce three distance functiond ${ }_{H}(x, y), d_{\omega}(x, y)$, and $d_{k}(x, y)$, where $|x|=|y|=\mathrm{n},|\omega|=\mathrm{k}$ and $1 \leq k<n$.
(1) Hamming Distance $\mathrm{d}_{H}(\cdot, \cdot) \mathrm{d}_{H}(x, y)=\left|\left\{i \in[n]: x_{i} \neq y_{i}\right\}\right|$.
(2) Spinning Distance $d_{\omega}(\cdot, \cdot)$

$$
d_{\omega}(x, y)=\min \left\{m: x \vdash_{\omega}^{m} \quad y\right\}, \text { where } 1 \leq|\omega|<n .
$$

(3) k-Spinning Distance $d_{k}(\cdot, \cdot)$

$$
\left.d_{k}(x, y)=\min ^{\operatorname{li}} d_{\omega}(x, y): \omega \in z_{2}^{k}\right\}, \text { where } 1 \leq k<n
$$

Clearly, $\mathrm{d}_{H}(x, y)=\mathrm{d}_{0^{k}}(x, y)$ for any $1 \leq \mathrm{k}<n$.
For $\quad x=\left[x_{1}, x_{2}, \ldots, x_{n-k}, x_{(n-k)+1}, \ldots, y_{n}\right] \quad$ and $y=\left[y_{1}, y_{2}, \ldots, y_{n-k}, y_{(n-k)+1}, \ldots, y_{n}\right]$, thevector $z=x \oplus y$ is represented as $\left[z_{1}, z_{2}, \ldots, z_{n-k}, 0, \ldots, 0\right] \oplus\left[0,0, \ldots, 0, z_{(n-k)+1}, \ldots, z_{n}\right]$.

Consider the path $x \leadsto x^{\prime} \leadsto y^{\prime} \sim y$, then, the distance between x and y

$$
\mathrm{d}(x, y) \leq \mathrm{d}_{H}\left(x, x^{\prime}\right)+d_{\omega}\left(x^{\prime}, y^{\prime}\right)+\mathrm{d}_{H}\left(y^{\prime}, y\right), \text { where } \omega=\left[z_{(n-k)+1}, \ldots, z_{n}\right] .
$$

In fact, we have.
Theorem 2 In the k-spined cubes $S Q_{n}^{k}(1 \leq k<n)$, for any two distinct nodes x and y, the $\operatorname{distanced}(x, y) \leq d_{H}\left(x, x^{\prime}\right)+d_{\omega}\left(x^{\prime}, y^{\prime}\right)+d_{H}\left(y^{\prime}, y\right)$,
where $\quad x^{\prime}=\left[x_{1}, x_{2}, \ldots, x_{n-k}, x_{(n-k)+1} \oplus y_{(n-k)+1}, \ldots, x_{n} \oplus y_{n}\right], \quad y^{\prime}=$ $\left[y_{1}, y_{2}, \ldots, y_{n-k}, x_{(n-k)+1} \oplus y_{(n-k)+1}, \ldots, x_{n} \oplus y_{n}\right], \quad \omega=x[(n-k+1): n] \oplus y[(n-$ $k+1): n]$.
Proof: For $1 \leq k \leq 4$ and $k \leq n<5$, this is obvious. Assume $4 \leq k<n$. To prove Theorem 2, itsuffices to prove the following inequality.

$$
d(x, y) \leq d_{H}\left(x, x^{\prime}\right)+d_{\omega}\left(x^{\prime}, y^{\prime}\right)+d_{H}\left(y^{\prime}, y\right)
$$

By Lemma 2, there is a path in $S Q_{n}^{k}$ from x to y of distance at $\operatorname{most}\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) \mathrm{k}$. Thus, weonly need to prove that there exist two nodes x and y in $S Q_{n}^{k}$, such that the length of any path $d(x, y)$ between x and y satisfies $d(x, y) \geq\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) \mathrm{k}$.
$\operatorname{Let} d(x, y): \mathrm{x}, \mathrm{X}_{1}, X_{2}, \ldots, X_{m-1}, y, \quad|\omega|=k, \quad \forall x=\left[x_{1}, x_{2}, \ldots, x_{n}\right], \quad y=$ $\left[y_{1}, y_{2}, \ldots, y_{n}\right] \in S Q_{n}^{k}(4 \leq \mathrm{k}<n), \mathbf{0}^{n}$ is a zero vector of length n. Then any path $d(x, y): x, X_{1}, X_{2}, \ldots, X_{m}, y$ between x and y can be divide into the following three cases.

Case 1 The path $d(x ; y)$ only contains nodes of 0 -dimensional. By defining of the 0 dimensional adjacent points in the $S Q_{n}^{k}$. If the X_{i} and X_{i+1} in 0 -dimensional, then they have atleast 1 bit the same. So x and y have at least $\mathrm{n}-1$ different points for any integer i with $0 \leq \mathrm{i}<k$, this means that $d(x, y)=d\left(z, 0^{n}\right) \geq\left\lceil\frac{n-k}{k+1}\right\rceil k$.

Because $\left\lceil\frac{n-1}{k+1}\right\rceil k-\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) k=\left(\left\lfloor\frac{n-k}{k+1}\right\rceil+(k-1)\right) k-2 k-\left\lceil\frac{n-k}{k+1}\right\rceil k$
(The Property of supremum)

$$
=(k-4) k
$$

Thus, when $\mathrm{k} \geq 4, \mathrm{n} \geq \mathrm{k}+2$, we obtain $d(x, y) \geq\left\lceil\frac{n-1}{k+1}\right\rceil k \geq\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) k$.

Case 2 The path $d(x, y)$ contains at least one node of n - k-dimensional. There must betwo edges in the path, one of which is used for routing from node of 0-dimensional to node of n - k-dimensional and other of which is used for routing back to node of 0 -dimensional. Thus,we have

$$
d(x, y)=d\left(z, 0^{n}\right) \geq\left(\left\lceil\frac{n-k}{k+1}\right\rceil+\left\lceil\frac{k}{k+1}\right\rceil+2\right) n \geq\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) k
$$

Case 3 The path $d(x, y)$ only contains nodes of n - k-dimensional. By defining of then- k-dimensional adjacent points in the $S Q_{n}^{k}$, if the X_{i} and X_{i+1} in n - k-dimensional, theyhave the same k bit for any integer i for $0 \leq i<k$. This means that $d(x, y)=$ $d\left(z, 0^{n}\right) \geq\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) k$.

In summary, we have

$$
d(x, y) \geq\left(2+\left\lceil\frac{n-k}{k+1}\right]\right) k \geq d_{H}\left(x, x^{\prime}\right)+d_{\omega}\left(x^{\prime}, y^{\prime}\right)+d_{H}\left(y^{\prime}, y\right) .
$$

By the distance between x and y, we easily get

$$
d(x, y) \leq d_{H}\left(x, x^{\prime}\right)+d_{\omega}\left(x^{\prime}, y^{\prime}\right)+d_{H}\left(y^{\prime}, y\right)
$$

Thus, we have

$$
d(x, y)=d_{H}\left(x, x^{\prime}\right)+d_{\omega}\left(x^{\prime}, y^{\prime}\right)+d_{H}\left(y^{\prime}, y\right) .
$$

Theorem 2 is oblivious as the path selected for the interconnection network is only dependent onsource and destination nodes of the addresses, and has nothing to do with the route between them.In other words, route selections are made by a distributed computing in the course of routing. If so,the each intermediate node for selecting the next node need only linear time, so as to improve theefficiency of the Internet communication.

We also get a direct result.
Theorem 3In the k-spined cubes $S Q_{n}^{k}(1 \leq k<n)$, for any two distinct nodes x and y, let $\mathrm{z}=\mathrm{x} \oplus \mathrm{y}=\mathrm{z} 1, \ldots, \quad \mathrm{zn}-\mathrm{k}, \quad \mathrm{zn}-\mathrm{k}+1, \ldots, \quad \mathrm{zn}$, the distance $d(x, y)=2 *$ $d_{H}\left(z[(n-k+1): n], \mathbf{0}^{\boldsymbol{k}}\right)+d_{k}\left(z[1: n-k], \mathbf{0}^{n-k}\right)$. where $\mathbf{0}^{\boldsymbol{m}}$ is a zero vector of length m.
Proof:By Lemma 2, we obtain

$$
\begin{aligned}
& \mathrm{d}\left(x, x^{\prime}\right)=d_{H}\left(\omega_{x}, \omega\right)=d_{H}(x[(n-k+1): n], z[(n-k+1): n]) \\
& \mathrm{d}\left(y^{\prime}, y\right)=d_{H}\left(\omega_{y}, \omega\right)=d_{H}(y[(n-k+1): n], z[(n-k+1): n]) \\
& d_{\omega}\left(x^{\prime}, y^{\prime}\right)=d\left(z^{\prime}, \mathbf{0}^{n-k}\right)=d_{k}\left(z[1: n-k], 0^{n-k}\right)
\end{aligned}
$$

Beause

$$
d(x, y)=d_{H}\left(x, x^{\prime}\right)+d_{\omega}\left(x^{\prime}, y^{\prime}\right)+d_{H}\left(y^{\prime}, y\right) \text { inTheorem } 2 .
$$

So, we easily get

$$
d(x, y)=2 * d_{H}\left(z[(n-k+1): n], \mathbf{0}^{\boldsymbol{k}}\right)+d_{k}\left(z[1: n-k], \mathbf{0}^{n-k}\right) .
$$

(where $\mathbf{0}^{\boldsymbol{k}}$ is a zero vector of length k).

Diameter and the minimal Diameter of $S Q_{n}^{k}$

From the argument of Definition 1 and Theorem 2, we immediately obtain
Theorem 4Let $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $y=\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ be two nodes of $S Q_{n}^{k}$.
(1) Ifk $\geq n$, then $S Q_{n}^{k}=Q_{n}$.
(2) If $k<n$, then $d(x, y)=d_{H}\left(x, x^{\prime}\right)+d_{\omega}\left(x^{\prime}, y^{\prime}\right)+d_{H}\left(y^{\prime}, y\right)$.

Theorem 5 (1) $\operatorname{diam}\left(S Q_{n}^{k}\right)=n$ for $k \geq n$;
(2) $\operatorname{diam}\left(S Q_{n}^{k}\right)=\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) k$ for $k \geq 4$ and $n \geq 6$.

Proof: (1) By Proposition 1, we have $d(x ; y)=\left|i \in[n]: x_{i} \neq y_{i}\right|$ for any two vertices $x, y \in z_{2}^{n}$ inthe graph Q_{n}, and then the diameter $\operatorname{diam}\left(Q_{n}\right)=n$. So $\operatorname{diam}\left(S Q_{n}^{k}\right)=\operatorname{diam}\left(Q_{n}\right)=n$ fork $\geq n$.
(2) Let $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $y=\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ be two distinct nodes of $S Q_{n}^{k}$ for $\mathrm{k}<\mathrm{n}$. Weexamine three possibilities.

Case 1 The path $d(x, y)$ only contains nodes of 0-dimensional. By Theorem 2, we haved $(x, y) \geq\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) k$ for $\mathrm{k} \geq 4$ and $\mathrm{n} \geq \mathrm{k}+2$.

Case 2 The path $d(x, y)$ contains at least one node of n - k-dimensional. It follows from Theorem 2 that $d(x, y) \geq\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) k$.

Case 3 The path $d(x, y)$ only contains nodes of n - k-dimensional. Similarly Case 1, we can derived $(x, y) \geq\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) k$.

From the above discussions, we conclude $\operatorname{diam}\left(S Q_{n}^{k}\right) \geq\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) k$ for $\mathrm{k} \geq$ 4 and $\mathrm{n} \geq \mathrm{k}+2$.

On the other hand, consider the two nodes x and y in $S Q_{n}^{k}$ and $1 \leq k<n$.
According to Lemma 2, we haved $(x, y) \leq\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) k$.
So $\operatorname{diam}\left(S Q_{n}^{k}\right) \geq\left(2+\left\lceil\frac{n-k}{k+1}\right]\right) k$ for $\mathrm{k} \geq 4$ and $\mathrm{n} \geq \mathrm{k}+2$.
In summary, for $\mathrm{k} \geq 4$ and $\mathrm{n} \geq 6, \operatorname{diam}\left(S Q_{n}^{k}\right)=\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) k$
Lemma 3When $k=1,2$, $\operatorname{diam}\left(S Q_{n}^{k}\right)=\lceil n / 3\rceil+3$ is the minimal diameter in $S Q_{n}^{k}$ for $\mathrm{n} \geq 14$.
Proof:By Theorem 1 and Theorem 5, we obtain

$$
\begin{gathered}
\operatorname{diam}\left(S Q_{n}^{k}\right)=[n / 3\rceil+3 \text { for } \mathrm{k}=1,2, \mathrm{n} \geq 14 \\
\operatorname{diam}\left(S Q_{n}^{k}\right)=\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) k \text { fork } \geq 4 \text { and } \mathrm{n} \geq 6 .
\end{gathered}
$$

Because

$$
\left(2+\left\lceil\frac{n-k}{k+1}\right\rceil\right) k-(\lceil n / 3\rceil+3)=(2 k-3)+\left(\left\lceil\frac{n-k}{k+1}\right\rceil k-\lceil n / 3\rceil\right)
$$

$$
>0 \quad(k \geq 4, n \geq 14) .
$$

So, when $k=1,2, \operatorname{diam}\left(S Q_{n}^{k}\right)=\lceil n / 3\rceil+3$ is the minimal diameter in $S Q_{n}^{k}$ for $n \geq 14$.
The following Corollary give additional properties of $S Q_{n}^{k}$.
Corollary 1 For any integer n, $\operatorname{diam}\left(S Q_{n}^{3}\right) \leq n-3$.
Proof: According to mathematical induction, we can quickly verify this Corollary.

Conclusions and Future Works

In this paper, we have defined a new variant of n-dimensional cube based on the function ϕ_{k}, viz. the k-spinedcubes $S Q_{n}^{k}$. When $k \geq n, S Q_{n}^{k}=Q_{n}$, which the properties of Q_{n} have been developed. So,we have laid emphasis on the study of the k-spined cubes properties for $k<n$. We define dimensionof neighbors in $S Q_{n}^{k}$ for fixed $1 \leq k<n$ by two new different ways. Next, we have considered theconsidered the distance between two nodes in $S Q_{n}^{k}$ and explored the relationship betweend $_{H}(x, y), d_{\omega}(x, y)$, and $d_{k}(x, y)$. On the basis of this discovery, we have shown that the diameter of $S Q_{n}^{k}$ is $\left(2+\left\lceil\frac{n-k}{k+1}\right]\right) k$ for any integer with $\mathrm{k} \geq 4, \mathrm{n} \geq 6$. Finally, we get minimal diameter in $S Q_{n}^{k}$ bychoosing $k=1,2$.

There still have a lot of problems about $S Q_{n}^{k}$. Its topological propertieshave not yet been investigated. The performance of $S Q_{n}^{k}$ should be compared with that of hypercube or other hypercube variantsin communication situation in the future.

Acknowledgement

This research was financially supported by National Nature Science Foundation of China (No.612602006).

References

[1] Li Jing. K-yuan n-cube of the road and circle. ShanxiUniversity, 2011.
[2] Junming Xu. Topological Structure and Analysis of Interconnection Networks. Springer Publishing Company, Incorporated, 2010 7(2-3):969-970.
[3] Wujun Zhou, Jianxi Fan, XiaohuaJia, and Shukui Zhang: submitted to Information ProcessingLetters, 111(2011):561-567.
[4] S. Abraham, K. Padmanabhan: submitted to J.ParallelDistrib. Comput. 13 (1) (1991) 104-110.
[5] Efe K: submitted to IEEE Transactions on Computers, 1991, 40(11):1312-1316.
[6] P. Cull, S.M. Larson: submitted to IEEE Transactions on Computers, 54 (2) (1995) 647-659.
[7] D. Wang and L. Zhao: submitted to Journal of Computer Science and Technology, (1999), 14(2):181-187.
[8] X. Yang, D.J. Evans, G.M. Megson: submitted to International Journal of Computer Mathematics 82 (4) (2005) 401-413.
[9] Yang Li, Heng Qi, Zhiyang Li and Kequi Li, \The Exchanged Folded Hypercube,"IEEE Inter.Conf. on High Perf. Comp. and Communication.pp 45-50, 2013.
[10] Xuding Zhu: submitted to Mathematics (2015).
[11]J.A. Bondy and and U.S.R. Murty, Graph Theory with Applications (Macmillan Press, London,1976).
[12]D.B. West, Introduction to Graph Theory (Prentice Hall, 2001).
[13]Harary, F., 1969, Graph Theory (Reading: Addison-Wesley).
[14]XiaoYuan Dong: submitted to China Science and technology information, 2009 (20) 275-276.

