
Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

A SQLite Recovery Method for Various Primary Key and B+tree

Reorganization

Jiang DU and Ming-jian LI*

College of Computer Science and Technology

Chongqing University of Posts and Telecommunications, China

*cqupt_limingjian@163.com

Keywords: SQLite, Recovery, Primary key, Free block, Free page.

Abstract. Free blocks and free pages have tremendous forensic potential. Based on

analyzing layouts of cells which have different types of keys, the mechanism of deletion

and free blocks coalescing, a new recovering method with byte level accuracy is

proposed. First, aiming at multiple keys’ types and rewriting cases, improved methods

mentioned in this study were used to calculate the values of renewed bytes. Then,

coalescent free blocks were split dynamically. In addition, deleted data also was

extracted from trunk leaf pages because of tree structure and the free page generating

principle. The results indicate that the method is suitable for different deleted data. The

recovery rate relative to free blocks is over 90% in the case of the integer key. The rate

can also archive 89% even if the key is not the integer.

Introduction

A The number of embedded device using SQLite has been increasing. Extracting

data from embedded device has shown a significant increase. One of the most

controversial issues about arguments involving digital forensics matters is how to

recover deleted data and improve the recovery rate.

There have been a great number of studies in SQLite record recovery which have

already begun in 1983.Haerder [1] and Pereira [2] both suggested that deleted record

can be recovered by using several transaction files. R. Felix [3] thought index structures

contained redundant data. Some researchers analyzed specific app’s use of SQLite. C.

Anglano [4] extracted some data from WhatsApp’s chat database. Even though this

method had a high recovery rate and a timeline of operation could be built, it was only

applicable to specific applications.

Q. Li [5] and B. Wu [6] recovered historical deleted WAL and database files from file

system by using the features of file system. The timeline of operations was built

successfully.

The most basic study is analyzing structure of database file and the mechanism for

space using. S. Jeon [7] suggested the size of payloadsize, rowId, and headersize could

be traversed simply. In addition, to reduce the time complexity of the algorithm, Q.

Fang [8] proposed a method that detects and estimates each Type field in one free block.

However, there are still no observations at present about the case that one free block

contains more than one cell and is not suitable for No-Intkey tables. A study conducted

by J. Bai [9] who researched on the layout of No-Intkey table attempted to recover data

from No-Intkey table, ignoring that adjacent free blocks were coalesced.

In this paper, the structure of the database file, mechanism of deletion and

defragment has been studied. The layout of No-Intkey cell and the phenomenon of

109

Advances in Computer Science Research (ACRS), volume 54
International Conference on Computer Networks and Communication Technology (CNCT2016)

coalescing free blocks and reducing the number of free block resulting from

reorganizing of B+tree are also discussed. An effective recovery method with wide

application range and high recovery rate is proposed. Many tests proved that the rate

maintained a high level of recovery even if we increase deletion and insert operation.

SQLite Format

The file format of SQLite databases is described detailly in the official document [10].

For an understanding of the following chapters it is summarized below.

File Header: The first 100 bytes are header which contain global information of

database (big endian) .16 bytes start at file is “SQLite format 3”, a signature of SQLite.

The head page number of FreeList is specified as 4-byte integer at an offset of 32. It is

followed by a count of free pages which occupy 4 bytes too.

Page: Sizes of pages in same database are same. The first half part of page is header

stored from up to bottom. The first byte is a page type with value of 0x05 (interior page)

or 0x0D (leaf page). Offsets 1 and 2 are 2-byte integer indicating the first free block

offsets and the value is 0 if the page has no free block. Offsets 5 and 6 sepcify the first

cell in the page. Every two bytes can be indicated an offset of cell which in later half part

named content area and allocated from bottom to up. central part is free area. Fig. 1

shows the structure of the page. Both content area and free area contain cells, free

blocks and fragments. Cells in leaf page (lp) store records.

Cell in lp : The one-to-one mapping is proved between record and cell which is

elementary unit of record if ignore overflow page. Cell size, types of columns and

length of data exist in cell with big endian mode. Fig. 2 illustrates the cell’s structure.

Header cell pointer array free area cell freeblock cell

P R H 1D nD

nT1T 

Figure 1. Layout of Page Figure 2. Layout of Cell

, , , iP R H T everyone is variant integer described by 1-9 bytes. P is the byte numbers

from H to nD . R is number of keys. As indicated by sqlite3.c (line 57445, version

3150100), value of R is primary key value if key’s type is integer. H is the length of

header which includes H and 1 nT T . Record data is stored in 1 nD D . 1 nT T

represent n columns’ type and length which meaning of value showed in official

document [10]. Since length of iD is depended on iT , theory length of 1 nD D can be

obtained by calculating with 1 nT T . 1T =0x00 if primary key’s type is integer and the

value of the key exists in R . 1T still depends the length of first column in the situation

that key’s type is No-Integer.

SQLite Deletion

If one cell is not overwritten after being deleted, database will transfer the cell to free

block instead of clearing its data and add it into list [11]. We give two definitions of

recovery rate. One is Relative Recovery Rate which is the ratio of cell recovered to the

number of free blocs: /r rc fbc . Another one is Absolute Recovery Rate which is the

ratio of cell recovered to the number of deleted records: /R rc dc .

Stage of Single Free Block: First two bytes of free block which exists in a list indicate

the offset of next block and its value will be 0 if the fb is the end of the list. Offsets 3

110

Advances in Computer Science Research (ACRS), volume 54

and 4 present length of this block including the first 4 bytes. Formalization description

of free block as follows: 1 2(, , , ,)nfb len b b b  , len is length of free block and

1 2, , , nb b b are bytes in free block. Set of fb : { | 1,2, , }iSetfbs fb i n   can be

obtained by traversing every lp .

Because () 3len P R H   and only first four bytes will be rewritten when one cell

is deleted, 2 1,n nT T D D  will remain, but 1T may be changed. Let pre represent the

number of bytes between cell start and 1T . Two different cases are shown.

(1) 4pre  . 1T does not located in the first four bytes and 1 1,n nT T D D  will not be

changed, so 1pre could be the beginning of analysis and extraction. This case

presented in Fig 3. (2) 3pre  . As indicated in Fig 4, 1T will be renewed.

P R H 1D nD
nT1T  P R H 1D nD

nT1T 

Figure 3. Situation pre >=4 Figure 4. Situation pre = 3

For this case, as discussed previously, 1T always be 0x00 if primary key’s type is

integer while it will depend the length of 1D if the key is No-Intkey. The value of 1T

must be identified accurately. Because one byte has 8 bits, let the value of byte whose

position is 1pre increase from 0x00 to 0xFF. For each value, analysis and extraction

can be applied. Exceptionally, per the principle of variant long integer, 0x80 is

meaningless. In this paper’s method, this value will be ignored.

Stage of Free Block Reorganizing: In sqlite3.c, function freeSpace (line 59811) and

function defragmentPage (line 59576) will reorganized B+tree pages with the growth of

times of deletions. All cells are moved to the end of the page and all free space is

collected into one big FreeBlk that occurs in between the header and cell pointer array

and the content area as well as coalescing adjacent fb . ()pre len P R H   will occur

if reorganization happened. What’s more, one fb may contains more than one cells or

half-cell after reorganizing and in this case, the fb must be split.

Stage of Free Page: Source code sqlite3.c(line 58776) indicates that the page will

becomes a free-list page fp if all its data is deleted. Fig. 5 presents Free List’s format.

first fp addr

fileHeader

flp count

next PageNum

flpNum···flpNum

flp flp

flp count

next PageNum

flpNum···flpNum

flp flp

Figure 5. Structure of FreeList

TrunkPage: 1(, , ,)ntp nextNum flp flp  ,if =0nextNum , it`s the end of the List.

TLeafPage: 1 2(, ,), {0 0 ,0 0 ,0 05,0 02}nflp type c c c type x D x A x x   

By traversing the list, a list of free leaf pages whose types are 0x0D can be obtained:

1

(() . 0x0)
n

i

i

SetFlp getflp flp flp type D


  , ()igetFlp tp represents getting all flp .

In addition, numbers of fb will decrease because of reorganizing which leads to the

increasing of number of fp . In this reason, if we only recover data from fb , the

111

Advances in Computer Science Research (ACRS), volume 54

decreasing of R is not avoidable though r remains at a high level. This paper suggests

it is necessary that recovering data from fp after recovering from fb .

Based on mechanism discussed in previous paper, this paper put forward an effective

method named ESR based on analyzing fb , estimating 1T and splitting fb ,which is

widely suitable for database file and has high R .

Recovery Method

Some symbols defined here: Judging-State of fb : (, ,)Fb pre n fb pre ’s value is

estimated position of 1T in fb and n represents the number of one table’s columns.

Set of Fb : { | . (3,)}j jSetFbs Fb Fb pre len  . One ifb corresponds to 3len

judging-states because of 1T ’s varied beginning positions. Each ifb will generate a set of

judging-states: (| 1,2, ,)i ifb i n SetFbs  .

Set of unsuccessful fb : { | 1,2, , }iSetFailfbs fb i n   means ifb is recovered

unsuccessfully by Algorithm 1.

Set of recovered cells: { | 1,2, , }iSetCells cell i n  

Functions of Recovering

255

0

(,), . 3
()

(), . (4, . .)

i

RC Fb i Fb pre
RcCell Fb

rc Fb Fb pre Fb fb len






 
 


 (1)

255

0

(,)
i

RC Fb i


 contains the following operations: Traversing possible value of 1T ,

from 0x00 to 0xFF. Analyzing will be executed for every statement that one value

corresponds just as shown in the following formula: 4. . , ()Fb fb b i rc Fb . The return

value is depended on ()rc Fb . If true is returned, stop traversing.

()rc Fb whose target is to return a Boolean value indicates whether effective cell

could be got from the Fb . Detail operations as follows: Start with a byte in

position . 1Fb pre , 1 nT T are identify as variant long integers. Three numbers will be

got:
1

()= ()
n

i

i

len T len T


 :bytes count of 1 nT T ;
1

()
n

i

i

realDLen len pre len T


   :real

length of Data ;
1

= ()
n

i

i

theoryDLen val T


 : theory length of Data calculated by 1 nT T .

realDLen theoryDLen means one effective deleted cell which hided in the Fb could

be extract and True will be returned. Otherwise, False will be returned.

Algorithms

Algorithm 1. First, beginning with rootPageNum , lps existing in B tree will be

traversed. As described in previous paper, we will get n iSetFbs by collecting all fb .

Second, Eq. 1 will be applied in every
jFb belongs to iSetFbs .if false returned,

jumping to next Fb . if true returned, a cell will be extracted from the Fb using function

()getCell Fb which means getting deleted cell from Fb .

112

Advances in Computer Science Research (ACRS), volume 54

Then, adding the recovered cell into SetCells if it is effective and jumping to step 5. If

the cell is invalid, continue to judging next Fb and jump to step 1.

Forth, if there is no effective cell after traversing iSetFbs , add the corresponding ifb

into SetFailfbs .

Fifth, 1i i  ,judging next iSetFbs .

Algorithm 2. A preliminary result including SetCells and SetFailfbs will be got

after the execution of Algorithm1. Two-level mapping will be applied in the SetFailfbs :

1) let the judging value of .fb len increase from 4 to 3len with step size 1. A set is

got: { | . , (4,)}i ij ijSetTempfbs fb fb len j j len   ; 2) Each
ijtempfb corresponds one

iSetFbs , so we could get a set of iSetFbs generated by
ijtempfb in iSetTempfbs .

Merging those iSetFbs , we will get a temp set of judging-states:

1

n

i

i

SetTempFbs SetTempFbs


 . Applying Algorithm 1 in SetTempFbs . Specially,

using the following step to instead of the step 5 in Algorithm 1: 1i i  , deleting

brother iSetTempFbs (generated from same ifb), judging next iSetTempFbs .

Algorithm 3. To build SetFlp , all tp will be searched beginning from offsets 32,33 of

file header; Trying to extract every complete cell in iflp which belongs to SetFlp . If one

cell is effective, add it into SetCells as shown in following formula:

(), , . 0x0i i iSetCells GetCell flp flp SetFlp flp type D   , ()GetCell flp means getting

complete cell from flp . Pseudocode as shown in Table 1.

Table 1. Algorithms of data recovering

Algorithm 1:Preliminary Recovering Algorithm 2:Splitting Analyzing

input: SetFbs , n

output: SetCells , SetFailfbs

input: SetFailfbs , n

output: SetCells

for iSetFbs in SetFbs

for
j iFb in SetFbs

if . 3jFb pre 

for 0 255i to

if

(,)!jRC Fb i null and Effective

 (,)jadd getCell Fb i to SetCells

isFind = true;

break;

else // . 4jFb pre len 

 if ()!jrc Fb null and Effective

 ()iadd getCell Fb to SetCells

isFind = true;

if isFind == true

 break; // end current SetFbs

 if isFind == false

iadd fb to SetFailfbs

end for

for ifb in SetFailfbs

for 4 .len to fb len

.ifb len len

execute two-level mapping

change step 5 and call Algorithm 1

Algorithm 3:Free pages recovering

input: 0tp

output: SetCells

while(. 0itp nextNum )

if (). 0x0igetFlp tp type D

() ;

1;

()

i

i

Add getFlp tp to SetFlp

i i

tp getNextTp nextTpAddr

 

 ；

for jflp in SetFlp

()iadd GetCell flp in SetCells

113

Advances in Computer Science Research (ACRS), volume 54

Experiment

To confirm those algorithms proposed previously, some tests were conducted. Because

tables’ key types were different, two groups of tests were executed. One was for the

integer key while another one for the text key(No-Intkey). In each group, the following

operations were executed: 1) Generating 4 tables that had same structures and each

table occupied one database file. 2) The original records count of those were 10000,

7500, 5000 and 2500 respectively. 3) Imitating a user, deleting and inserting records

randomly until records count was 0. 4) Appling Algorithm 1, 2 and 3 in those tables,

r and R were obtained, and R ’s value would be renewed after executing Algorithm

3.Statistical results of r are shown in Fig. 6 and Fig 7.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Delete Rate

r
o
f

In
tk

e
y

ESR

M1

M2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delete Rate

r
o
f

T
e
x
tK

e
y

ESR

M1

M2

Figure 6. trend of r of Intkey Figure 7. trend of r of No-Intkey

It was evident from the result that relative recovery rate r kept at a high level in most

cases. r of M1(proposed in references [8]) were 84.826% and 81.273%, in the

meantime, M2’s (proposed in references [9]) were 54.323% and 55.738%. The r in

ESR are 90.403% and 89.321%, were much higher than previous in many cases.

In this case, which fbs were coalesced or renewed as the results of deleting rate

increasing, estimating 1T , splitting fb were mentioned in ESR method to improve r .

As shown in Fig. 8, it is consistent with being discussed previously that R reduced to

0 gradually even the corresponding r remains steady. With increasing of deleting rate,

defragment operations were executed to reduce the number of fb . Extracting data

from fp is necessary. Fig. 9 shows the Algorithm 3 result considering fp .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delete Rate

R

ESR

M1

M2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Delete Page

R

No Free Page

With Free Page

Figure 8. trend of R Figure 9. R with algorithm 3

As anticipated, even though R in Algorithm 2 reduced to 0, R seems to maintaining a

high level by adopting Algorithm 3 in most cases. Average of it is 45.53% which higher

than 31.596% generated by Algorithm 2.

114

Advances in Computer Science Research (ACRS), volume 54

Conclusions

We have discussed the structure of SQLite and the deletion mechanism, and explained

the differences between Intkey and No-Intkey. This paper provides an effective method

named ESR to recover data, which based on, estimating 1T , splitting fb and reading fp .

As evident from the last four figures, this method improves the recovery rate for tables

whose keys are the integer. Especially, it is much more valid than other methods in the

case of No-Intkey. ESR also shows a superior result in the case of high deletion rate.

Future work will focus on extracting data from free space and auxiliary files such as

WAL, journal file, etc.

Acknowledgement

The research is supported by Innovation Fund for Technology based Firms (Project No.

13C26215115075).

References

[1] Haerder T, Reuter A. Principles of transaction-oriented database recovery[J]. ACM

Computing Surveys (CSUR), 1983, 15(4): 287-317.

[2] Pereira M T. Forensic analysis of the Firefox 3 Internet history and recovery of

deleted SQLite records[J]. Digital Investigation, 2009, 5(3): 93-103.

[3] Ramisch F, Rieger M. Recovery of SQLite Data Using Expired Indexes[C]//IT

Security Incident Management & IT Forensics (IMF), 2015 Ninth International

Conference on. IEEE, 2015: 19-25.

[4] Anglano C. Forensic analysis of WhatsApp Messenger on Android smartphones[J].

Digital Investigation, 2014, 11(3): 201-213.

[5] Li Q, Hu X, Wu H. Database management strategy and recovery methods of

Android[C]//Software Engineering and Service Science (ICSESS), 2014 5th IEEE

International Conference on. IEEE, 2014: 727-730.

[6] Wu B, Xu M, Zhang H, et al. A recovery approach for SQLite history recorders

from YAFFS2[C]//Information and Communication Technology-EurAsia Conference.

Springer Berlin Heidelberg, 2013: 295-299.

[7] Jeon S, Bang J, Byun K, et al. A recovery method of deleted record for SQLite

database[J]. Personal and Ubiquitous Computing, 2012, 16(6): 707-715.

[8] Fang Q, Zhang Q, Dong R. Research on Recovery Method of Deleted Data for

Android System [J]. Computer Engineering, 2014, 40(10): 275-280.

[9] Bai J, Sun H, Hu Z. A recovery Method of Deleted Data Based on SQLite3 File

Format [J]. Journal of Chinese Computer System, 2016, 37(3): 505-509.

[10] Information on https://sqlite.org/fileformat2.html

[11] Owens M. The Definitive Guide to SQLite[M]. New York, USA: Springer-Verlag,

2006

115

Advances in Computer Science Research (ACRS), volume 54

https://sqlite.org/fileformat2.html

