
Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

HAuth : A Novel Approach for Network Visibility Protection

Xin WANG1,2,*, Neng GAO1 and Ling-chen ZHANG1

1
State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Acoademy of Sciences, China

2
University of Chinese Academy of Sciences, China

*Corresponding author

Keywords: SDN, Host Usurp Attack, Host Authentication

Abstract. Software-Defined Networking (SDN) is a new paradigm that offers services

and applications great power to manage network. Based on the consideration that the

entire network visibility is the foundation of SDN, many attacks emerge in poisoning

the network visibility, leading to severe host hijacking. Meanwhile, many defence

approaches are proposed to patch the controller. We notice that existing patches

missed considering the situation that original IP address of the host server would be

hijacked when the host server goes offline temporarily, such as regular maintenance or

host migration. In this paper we present Host Usurp Attack, which exploits the

vulnerability above to pretend the victim server. Furthermore, we propose a security

extension HAuth, which can automatically confirm the legitimate hosts through the

authentication server and provides hosts authentication log to network providers. Our

evaluation shows that HAuth effectively guarantees the trustworthiness of the network

visibility. In particular, HAuth introduces a minor overhead on SDN controllers..

Introduction

Software-Defined Networking (SDN) has emerged as a new network paradigm to

innovate the ossified network infrastructure by separating the control plane from the

data plane, as well as providing holistic network visibility and flexible programmability.

As the brain of the network, an SDN controller provides users a great tool to design and

control the network using their own applications atop the controller's core services.

SDN, particularly its popular realization OpenFlow, has been increasingly employed in

academic environment and commercial networks. With the widespread deployment,

more and more applications have been studied to increase the efficiency of the network

and improve the network security.

The logically centralized control function maintains the state of network and

provides instructions for data plane. It takes advantage of the complete network view to

analyze and correlate the feedback of packets from the network. Benefited from this

mechanism, network can be run efficiently. Once the controller provides upper

applications and services with wrong network state, these applications will not be

trusted. Thus correct network state information is the prerequisite of SDN. Recently,

many researchers [2,4] have noticed the attacks on topology management. In these

attacks, host hijacking attacks are easy to implement and has great harm. Although

these schemes proposed solutions, they are ineffectual for high capacity attacker.

In this paper, we study network topology network of the mainstream OpenFlow

controllers and identify new vulnerabilities. Upon the exploitation of the Host Tracking

Service, an attacker can take over the location of a network server to phish its service

subscribers and even usurp the network server. The existing schemes mainly consider

128

Advances in Computer Science Research (ACRS), volume 54
International Conference on Computer Networks and Communication Technology (CNCT2016)

the situation that the network visibility will not be attacked when the host is online. But

when an important server need be offline temporarily, the attacker will detect this

situation and disguise himself as the offline server. Then OpenFlow controller will

mistake attacker as the offline server because the attacker can pass all test of existing

scheme. When origin server reboots, it may be mistaken as attacker by the protection

scheme. Our new attacks share some similarities in spirit to traditional spoofing attacks

in legacy networks (e.g., ARP Poisoning Attack), and we need effective solution to

solve them. Besides, the existing schemes[2,4] are not a perfect system as they stands

but they still catch duplicate host attachment events to detect the proposed attack. In

addition, they have no way to share those trusted hosts among multiple controllers.

In order to mitigate such attack and improve the authentication efficiency in multiple

controllers, we investigate possible defense strategies. We note that it is difficult to

simply use static configuration to solve the problem, because it's tedious and

error-prone manual effort and is not suitable for handling network dynamics, which is a

valuable innovation of SDN. To better balance the security and usability, we propose

HAuth, which uses digital certificate to authenticate network equipment automatically

and shares authentication information among multiple controllers. By using HAuth,

network administrators can easily manage the entire network access equipment and can

prevent host hijacking attack.

Background

In this section, we provide an introduction to SDN/OpenFlow and its Host Tracking

Service implemented in the existing OpenFlow controllers.

SDN/OpenFlow Background

Software Defined Networking is a new paradigm that decouples control plane of

network device from its data plane and implement all control plane as a unified

software platform which we call SDN controller. OpenFlow is a popular realization. In

SDN architecture, the firmware, where data plane stands, forwards data traffic

according to a set of rules specified by SDN controller. Different from legacy networks,

SDN controller can hold the whole network topology visibility and make the best

routing decision according to the topology information. Besides, we can easily

configure security policies in centralized controller.

Host Tracking Service in OpenFlow Controllers

Inside an OpenFlow controller, Host Profile is maintained to track the location of a host.

In an OpenFlow network, the OpenFlow controller reactively listens to Packet-In

messages to maintain Host Profile. During this procedure, the OpenFlow controller

mainly handles two relevant host events (i.e., JOIN and MOVE). The scenario for the

first event is that, when the OpenFlow controller fails to locate an existing Host Profile

according to the information from incoming Packet-In messages, it creates a new Host

Profile. In such case, the controller assumes a new host joins the network. The second

scenario occurs when the OpenFlow controller successfully locates a Host Profile but

finds mismatched location information between the Host Profile and Packet-In

messages. In the case, it assumes the host has moved to a new location and then updates

the location information inside the corresponding Host Profile.

129

Advances in Computer Science Research (ACRS), volume 54

Host Usurp Attack

In this section, we describe the vulnerabilities in Host Tracking Services and detail the

known Host Hijacking Attack. Then we propose and measure another attack

unmentioned in previous work, i.e., Host Usurp Attack.

Vulnerability in Host Tracking Service

Host Tracking Service (HTS) in the OpenFlow controllers maintains Host Profile for

each end host to track network mobility. As long as hosts (or virtual machines) migrate,

HTS can quickly react to such event. In particular, HTS recognizes the motion of hosts

by monitoring Packet-In messages. Once being aware that a particular host migrates to a

new location, i.e., DPID or ingress Port ID is different from the corresponding entry of

the Host Profile, HTS updates Host Profile and optionally raises a HOST_MOVE

event to its subscriber services. However, such update mechanism is vulnerable due to

the ignorance of authentication.

Using this vulnerability, Gu[4] first proposed Host Location Hijacking Attack. In the

attack, the adversary will craft packet with the same identifier of the target host. Once

receiving the spoofed packet, the controller will be tricked to believe that the target host

has moved to a location, which actually is the attacker's location. As a result, future

traffic to the target is hijacked by the adversary. In this procedure, the difficulty to

implement attack is that the adversary needs to race with the target host, because any

traffic initiated from the target host can correct host location information in the

controller. But when the target host is a server, this attack can be easy to implement.

Host Usurp Attack

In this part, we introduce Host Usurp Attack which can usurp the host without being

prevented by existing schemes .

In SDN when the target host is in the migration, attackers can easily launch Host

Hijacking Attack because the origin location of attacked host is empty. When the target

host re-connects the same net with original IP address, it is considered host attacker by

TopoGuard because the position with this IP is occupied by attackers and the re-access

of origin host is considered another host migration procedure. This is what we called

Host Usurp Attack. In traditional OpenFlow controller we can launch Host Hijacking

Attack directly, obviously we can launch Host Usurp Attack, too. If we continuously

detect whether the target host is online and launch Host Usurp Attack when detecting

the target host untouched, it is easy to launch Host Usurp Attack at this time.

In a LAN (Local Area Network), network policy is always the combination of DHCP

and fixed IP address. IP of important server does not always change. When some

servers need to update or upgrade and then leave the network, Host Usurp Attack is

always easy to launch. In clouds and data center networks, the migrations of VMs from

one host to another is a frequent phenomenon. In the migration, if the IP of migrated

host remains the same, these hosts are under the threat of Host Usurp Attack.

In this paper, we launched a Host Usurp Attack in our experimental environment. We

chose Floodlight with TopoGuard[4]. We deployed an Apache2 web server with IP

address "10.0.0.1" and several hosts in our customized OpenFlow topology. The

experiment scene are shown as Fig. 3. Then we launch the Host Location Hijacking

Attack as mentioned above that attacker uses Scapy to periodically inject fake packets

in the name of "10.0.0.1". When user invited "10.0.0.1", host hijacking attack is not

successful. Then we closed our server host in order to simulate server optimization.

Upon a compromised host attacker, we run a Web service and send ARP request to

130

Advances in Computer Science Research (ACRS), volume 54

probe the corresponding MAC address of "10.0.0.1". We then use Scapy to periodically

inject fake packets in the name of "10.0.0.1". Then we start up the real web server with

"10.0.0.1" again. At this time when user visits "10.0.0.1", this request will be directed to

attacker instead of the server in link 1. The newly started server is stopped by

TopoGuard because host prober in TopoGuard detects that the IP address "10.0.0.1" has

been there when "10.0.0.1" re-access the net. In traditional SDN network we can launch

Host Hijack Attack directly, but even if with existing defense schemes we can still

launch Host Usurp Attack.

Countermeasures

To defense the proposed Host Tracking Problem in SDN networks, we use dynamic

defense strategies. In order to realize the authentication of network equipment identity,

we introduce PKI technology. PKI (Public Key Infrastructure) is a universal security

infrastructure that uses public key concepts and technologies to implement and provide

security services. In PKI system, CA (Certificate Authority) is a trusted center in a

domain. Digital certificate, which tied a public key and identity information, is the data

structure obtained after the signature of the CA's private key. In network

communication, digital certificate is a series of data that mark the identity information

of the communication parties. It provides a way to verify the identity, which is similar to

the identity card in the daily life.

Identity Information of Network Equipment

In order to identify a network equipment, the easiest way is to identify IP address and

MAC address. If you use IP address of the network device as the identity, there are two

problems: first, the IP address of the network device may be changed, on the other hand,

the IP address can be fake. Therefore, we choose MAC address of the device as the

identity information. We need to fill in the MAC address of the device in the certificate

Common Name domain. The Ethernet card address of the computer requesting

certificate must be recognized by the network administrator, meanwhile it must be legal

and can be safe used, e.g. it must have a certificate issued by the network administrator.

Network Device Authentication Protocol

The design of the device authentication module uses the challenge response mechanism

to realize the authentication between the host and the device authentication module,

using PKI technology to realize digital signature and certificate management, as shown

in Fig. 1.

Host
Authentication

Server

Rb

CertA, Ra, Sig(Ra,Rb)

Figure 1. Certification Schematic

Specific steps are as follows:

1. Authentication server generates a random number Rb and sends it to the host;

2. Host generates random number Ra, and use the network equipment certificate to

sign Ra, Rb. Then host will send Certificate A, Ra and the signature to the

authentication server;

131

Advances in Computer Science Research (ACRS), volume 54

3. The authentication server will verify the result of the signature.

Hauth System

In this section, we detail the design and implementation of a new security extension

HAuth, to protect the SDN networks from Host Usurp Attack. And we also provide

those trusted hosts to network administrators and other SDN controllers in the network.

Our goal is to provide complete protection of host entity in the network and provides

network providers with trusted user information.

Overview

The basic idea of HAuth is to introduce a unified authentication server to achieve the

identity of the network equipment certification. In HAuth, we use external certification

to ensure the identity of host, and to share identity information in different networks.

In HAuth every host that wants to access the network must have a legal certificate

recognized by the network provider. The certificate must use MAC address as identity

information. In addition, every host that wants to access the net must install a program

in advance to complete the certification process mentioned in Fig. 1. In order to defend

these attacks, it is worthwhile. If SDN has become the mainstream, these measures can

be built when the host are produced.

Fig. 2 illustrates the architecture of our defense system. HAuth system consists of

two parts: HAuth in controller and authentication server. The authentication server is

used to authenticate the host and return results. HAuth in controller recognizes the

results. When the host wants to access this network, it must get the certificate approved

by network administrator.

HAuth

Authentication

Server

OpenFlow Messages

Host Manager

Host Prober

Host Entity

Process

Redire
ct to

Authentic
atio

n Server

Data Update

Figure 2. The Architecture of HAuth

Design

Host Management

In order to ensure that the access to the host is credible, Host Manager must check the

host profile when new Packet_In arrives at the controller. In Host Tracking Service, the

host profile will be directly stored in the memory. Then the controller will make

decision according to the memory. In our design, when the packet arrives at the Host

Manager module, it first check whether this host profile has been existed in Host Profile

Storage module. If the host has been existed in Host Profile Storage and it matches the

132

Advances in Computer Science Research (ACRS), volume 54

existing profile and it doesn't exceed the expiration time of the host certification, this

packet will be processed according to normal steps. If this packet is from the

authentication server, Host Management will delete the marked destination host profile

in Host Profile Storage according to the destination of this packet. Otherwise, the

packet will be transferred to Host Entity Process. In addition, Host Manager will ignore

those packets that are not associated with host (e.g. LLDP).

In our design, we use Host Profile Storage module to manage host profile

information. This module is just for easy management. Despite the host profile, Host

Profile Storage also record the expiration time of the host.

Host Entity Process

When Host Entity Process module receives the packet, it stands for that these hosts are

suspect. In our design, we use Host Entity Process to select paths for these hosts to

redirect these requests to fixed authentication server, then issue these rules to switches.

Meanwhile, we also mark this host profile and store it in Host Profile Storage.

Compared with the direct use of the authentication between the controller and the host,

although the use of external authentication server will increase more procedures, it can

significantly reduce the amount of packets between the controller and the switch. The

direct use of the controller in identifying certificate will waste much bandwidth

between the controller and the switch. Host Entity Process module will redirect this

packet to the authentication server.

Host Prober

In order to get the authentication results, the controller must communicate with the

authentication server. In our design, we use application to communicate with the

authentication server. Then we use rest api to update Host Profile Storage. In our Host

Profile Storage, we also add the expiration date of the certificate. When the packet

arrives in, Host Manager also inspect whether the authenticated host has been expired.

Host Prober is used to get the result from the authentication server and update Host

Profile Storage immediately when it receives update from authentication server.

Authentication Server

The authentication server is used to implement the authentication of the host and the

device through the challenge response mechanism. The authentication process can be

seen in Fig. 1. Once the authentication is complete, the server will store the host and its

expiration time. Meanwhile the server will also transfer the result to fixed application

host, which can be configured in advance. In addition, the authentication server also

provides an interface through which trusted host can access the authentication

information of hosts. This is a simple authentication protocol based on the challenge

response mechanism, and its security has been proved.

Implementation

We have developed a prototype implementation of HAuth on the master version of

Floodlight. We implement an authentication server with PHP and MySQL. We modify

about 300 lines of JAVA to modify the floodlight controller. In addition, we use shell

script in host to complete host response. HAuth is compatible with OpenFlow v1.1.0,

and Floodlight v0.90 controllers.

133

Advances in Computer Science Research (ACRS), volume 54

Evaluation

We evaluated a prototype implementation of HAuth to examine the effectiveness and

performance.

Our physical testbed can be seen in Fig. 3. We use five servers with Intel I5 CPUs and

12GB of RAM running 64bit Ubuntu Linux V13.11. The controller is HAuth in one of

these servers. The application server has two Rtl8139PCI NICs. Our OpenFlow

switches are NETGRARWR3800 which run OpenWRT firmware with an OpenFlow

extension.

HAuthHAuth

Authentication

Server

Authentication

Server

ApplicationApplication

RestApiRestApi

Figure 3. Experiment Environment

Effective

We first measured the effectiveness of our implementation against the attacks. Our

experiment is conducted in the OpenFlow network environment including the

Floodlight controller with HAuth. We launched aforementioned usurp attacks in the

environment and testified the reactions of the fortified Floodlight controller.

Detecting Host Usurp Attack

An adversary can spoof the identity of a target host to hijack its location information

inside OpenFlow controllers. Note that we assume the target host is not compromised

by the adversary. With only TopoGuard, when the target host left the network,

adversary could take over this IP address because this way does not violate the

precondition and the post-condition defined in SDN controller. When the target host got

back with the origin IP address, it was judged guilty because the target host in the

previous location is still there.

With HAuth, we first access to the authentication server to register the target host.

Then the host is off the line. At this time an adversary tried to launch Host Hijack

Attack with the target host. Then HAuth redirected this packet to the authentication

server. Only those who pass the verification can continue to be accessed. If the

adversary can not be verified, the visitor's request will be discarded.

Table 1. Overhead Comparison of Host Authentication

Authentication Way Authentication Time (Average)

Server 2.6ms

HAuth 3.8ms

Controller 33.5ms

134

Advances in Computer Science Research (ACRS), volume 54

Performance

Host authentication carried out in specialized authentication server, thus it puts little

pressure to OpenFlow controller performance. OpenFlow controller only handled the

result of authentication result. The performance penalty imposed by HAuth mainly

comes from data update in Host Entity Process. In this experiment, we leverage Java

System.nanoTime API to measure the running time of program snippets. In our

experiment we compare the time when Host Prober gets new authenticated host and

host authentication time. In addition, we also record the time required to carry out

certification in the controller. From Table 1 we say HAuth doesn't take too more time.

Discussion

Nowadays the concept of information security is becoming more and more important.

The appearance of SDN brings new security boundary. Solving these security boundary

issues is the key to the deployment of SDN. In SDN there exists some basic components

(e.g. Host Tracking Service). Once they are compromised, the whole network will

become no credible. These basic vulnerabilities are generally caused by the imperfect

initial design considerations. These designs are often followed by default for the correct

and are taken very little consideration of their vulnerabilities. We hope our work can

draw attention from SDN security researchers to consider more on the SDN design idea.

In addition, SDN is just a kind of design method, we shouldn't follow the fixed

openflow format blindly. We hope that our work will lead to more thought about SDN.

Related Work

In this section, we investigate security research in the SDN domain and network

verification in SDN networks.

Security Research for SDN Networks

To date, the security issue of SDN have been being widely discussed in both academia

and industry. FRESCO[1] introduces an OpenFlow security application development

framework which can provide modular composable security services for application

developers. Avant-Guard[3] shows a new attack (which is called data-to-control plane

saturation attack) against SDN networks and provide solutions to prevent such attacks.

FloodGuard[7] provides a new solution to this attack. Besides, SPHINX[2] proposes a

unified approach to use network graphs to detect attacks that violate those learned flow

graphs. TopoGuard[4] introduces a new way of port labeling which is similar with DAI

(Dynamic ARP Inspection) in normal networks. Different from their work, this paper

deeply investigates the vulnerabilities causing Host Spoofing Attacks, as well as a

low-overhead real-time defense solution. And our scheme can be easily transplanted to

their schemes.

Network Verification

Header Space Analysis[6] (HSA) leverages static analysis to detect forwarding and

configuration errors. NetPlumber[5] introduces a real-time network-wide policy

checking tool using HSA and can also verify arbitrary header modifications. All these

verification solutions verify the logic correctness of the control plane and the data plane,

however fail to locate the network topology exploitations discussed in this paper.

135

Advances in Computer Science Research (ACRS), volume 54

Our work mainly focuses on host authentication. FortNox[8] introduces a SDN

tunneling attack and presents two mechanisms, role-based authorization and security

constraint enforcement, to solve corresponding security challenges. SE-Floodlight[9]

introduces attacks caused by SDN applications conflict and provides app-based

authentication and access control to solve applications conflict and audit applications

behavior. By introducing authentication scheme, our solutions can make it perfect to

defect Network Topology Poisoning Attack.

Conclusion

In this paper, we propose new SDN-specific attack vectors, Host Usurp Attack, which

can seriously challenge the network-wide visibility of SDN. We demonstrate that even

in existing protections, Host Usurp Attack can still effectively poison the network

topology information in host migration or host maintenance. Then we present HAuth, a

new security extension to OpenFlow controllers, which provides automatic host

authentication and host authentication log. Finally, our prototype implementation

shows that using authentication server to verify the host is credible. We hope our work

can attract more attention to SDN security research.

References

[1] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson. Fresco:

Modular composable security services for software-defined networks. In NDSS'13

[2] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann. Sphinx: Detecting security

attacks in software-defined networks. In NDSS, 2015.

 [3] S. Seungwon, Y. Vinod, P. Phillip, and G. Guofei. Avant-guard: Scalable and

vigilant switch flow management in software-defined networks. In CCS'13, 2013.

[4] S. Hong, L. Xu, H. Wang, and G. Gu. Poisoning network visibility in software

defined networks: New attacks and countermeasures. In NDSS'15, 2015.

[5] P. Kazemian, M. Chang, and H. Zeng. Real time network policy checking using

header space analysis. In NSDI'13, 2013.

[6] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static

checking for networks. In NSDI'12, 2012.

[7] H. Wang, L. Xu, and G. Gu. Floodguard: A dos attack prevention extension in

software-defined networks. In DSN, 2015.

[8] P. Philip, S. Seungwon, Y. Vinod, F. Martin, T. Mabry, and G. Guofei. A security

enforcement kernel for openflow networks. In Proceedings of the First Workshop on

Hot Topics in Software Defined Networks, HotSDN ’12, pages 121–126, New York,

NY, USA, 2012. ACM.

[9] P. Phillip, C. Steven, F. Martin, S. Keith, and Y. Vinod. Securing the

software-defined network control layer. In Proceedings of the 2015 Network and

Distributed System Security Symposium (NDSS), San Diego, California, 2015.

136

Advances in Computer Science Research (ACRS), volume 54

