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Abstract. In this paper, a novel method is constructed to estimate the time delay. The 

purpose of this article is to deal with the lack of measurement data in small sample 

(single snapshot) and low signal to noise ratio environment during wireless location. 

First, the sparse representation model of received signals is established. And then the 

measurement matrix is proofed to achieve the restricted isometry property. The idea of 

subspace pursuit is to find the subspace which consist of the received signal. Therefore, 

the delay estimation can be achieved using the corresponding relation between the time 

delay and the measurement matrix. Finally, simulations show that the subspace pursuit 

algorithm is suitable for small sample environment. The method can achieve a higher 

precision than greedy algorithms such as orthogonal matching pursuit and Regularized 

orthogonal matching pursuit algorithm. Furthermore, the subspace pursuit algorithm 

has a better performance in anti-multi channels. 

Introduction 

The delay estimation is widely applied to radar, sonar, wireless location [1] and other 

fields, which is the research emphasis on this field in complex environment. In order to 

solve the insufficiency of the current algorithm in the conditions of small sample and 

the low signal-to-noise ratio, many new methods are introduced into the delay 

estimation problem. The classification method of rooting multiple signal is applied to 

the two-dimension parameter estimation to solve the parameter directly so that the 

arrival time of the pulse wireless system is achieved with combined estimation for the 

arrival direction, which the performance is still qualified in the condition of low 

signal-to-noise ratio, but the method require smooth frequency domain, so the 

estimation accuracy is reduced much in the condition of single-snapshot [2]. The 

Markov chain Monte Carlo method is applied to the passive radar location, which the 

mean square error still approaches the CRB in the conditions of single-snapshot and 

low signal-to-noise ratio, but this method is easily into stable condition in process of 

Markov chain sampling [3]. At the same time, that the compressed-sensing 

sparse-reconstruction method was proposed in recent years is widely applied to the 

signal processing field [4]. After processing of the time domain interference elimination 

and related issues, the DOA super resolution estimation is obtained by 

sparse-reconstruction method in the condition of single-snapshot [5]. The optimal 

sparse model of equal sine space based on source signal is proposed, in which the signal 

reconstruction and DOA estimation are achieved [6]. The measurement matrix obtained 

from the decomposition of Gauss random matrix's orthogonal triangle and the reception 

matrix of low-dimensional data obtained from the singular value decomposition are 

reconstructed by the formed algorithm based on compression of sensing beam, which 
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the high resolution DOA estimation is achieved [7]. Single channel and multi-channel 

delay estimations in the condition of knowing sending signal are achieved by using 

orthogonal matching pursuit (OMP) algorithm, and then the sparse reconstruction 

method is introduced into the delay estimation, but the method is provided with a 

certain probability to select suboptimum atom that will cause incorrect estimation [8]. 

In [9], the regularized orthogonal matching pursuit (ROMP) algorithm is proposed to 

improve the style of choosing atoms. The compressed sensing subspace pursuit (CS-SP) 

algorithm can decrease the disadvantage in choosing atoms by updating the subspace 

that the signal is located in [10]. 

In the condition of knowing sending signal, one receiving signal model is constructed 

here based on the sparse representation in the article, and then the steering vector matrix 

is constructed to the measurement matrix according to the model, finally the CS-SP 

algorithm is used to reconstruct the gain coefficient vector. The delay unbiased 

estimation is obtained by one to one correspondence between the gain coefficient vector 

and the delay. Compare the three algorithms of the CS-SP algorithm, OMP algorithm 

and ROMP algorithm by the simulation experiment, which the result shows the 

superiority of the CS-SP algorithm applied in this article. 

Mathematical Model and Estimation Principle 

Mathematical Model 

If the signal sent by radiating source is  s t , considering of the multi-channel 

propagation effect of the wireless channel, the multi-channel is pL , and the received 

signal is: 

     
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In the formula, ia  is the gain coefficient of various channels, and  n t  is the additive 

Gauss white noise. The discrete Fourier transform is conducted for the received signal, 

which the frequency domain can be expressed as: 
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In the formula, 0,1, 1k K   is the carrier frequency; f  is the frequency sampling 

interval;  N k  means that the equalizing value is 0; the additive Gauss white noise 

with mean square deviation of 2  is recorded as    2N 0,N k  . That convert the (2) 

formula to vectorial form is: 

= +Y SVa N                                                                                                                 (3) 

In the formula, 

     
T

= 0 , 1 , , 1y y y K   Y                                                                                (4) 

     0 , 1 , , 1diag s s s K   S                                                                           (5) 
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The formula (4) is discrete Fourier transform of  y t ; (5) is the vector of radiating 

source signal; (6) and (7) are steering vectors; The formula (8) is the gain coefficient 

vector; The formula (9) is the additive Gauss white noise vector. 

Estimation Principle 

Conduct the delay estimation by using the method of sparse reconstruction, which the 

sparse representation of the signal is the premise. The rational construction of the 

measurement matrix and the design of the signal reconstruction algorithm are the core 

of correct estimation. Fig.1 is the flow graph of delay estimation based on sparse 

reconstruction. 

In the model of wireless location, the signal can be represented as the sparse form by 

selecting suitable sparse representation matrix. Measure the wireless multi-channel 

based on the time domain, the propagation delay is various with various channels and 

the delay representation in the time domain is sparse, so that it can be directly 

constructed to the form of sparse signal. 

Compressive 

Observation

Sparse 

Transform
Signal 

Reconstruction
 

Fig. 1. The algorithm flow graph of delay estimation based on sparse reconstruction 

 As the indication of Fig.2, the whole time domain is divided into N  parts according 

to the delay, which is   0 1 1= , , N   
  ，τ . Assume that any delay division 

 0,1, , 1l l N      is corresponded with one potential channel. “ ” indicates the 

existent channel, and “  ” indicates the non-existent channel. So each line of the matrix 

   0 1 1

T
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   a  is corresponded with one potential 

channel, in order to reflect the sparse degree of the signal in the time domain, the 

potential multi-channel's quantity shall be much more than the practical multi-channel, 

that is pN L , so that a  is the representation matrix of the signal gain coefficient. 
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Fig. 2. Sparse representation of the delay in the time domain 

Since the steering matrix       0 1 1= , N    
 

  ，V v ,v v  includes all information of 

the delay, so that 
0 =Φ SV  can be assumed as the measurement matrix. 
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The coefficient sparse vector a  is reconstructed accurately based on the observed 

value of 
0= +Y Φ a N  the optimal 0  norm question of formulas (10) , and then the 

multi-channel delay estimation shall be obtained according to one-to-one 

correspondence relationship between τ  and a . 

Estimation Algorithm of Sparse Reconstruction Delay 

For the solution of the formula (10), all pL

NC   kinds of combination that are nonzero 

value shall be exhausted in the   so that it is not available to solve directly. The column 

vector (atom) that is matching with the signal optimally can be selected in the 

measurement matrix 0Φ  to solve. The optimal matching atom is that the atom provided 

with the maximum projection value on the space constructed by atoms. The projection 

value is the absolute value of the inner product between the signal and each atom, which 

is: 

 0| , , 1, 2,
jj ju u u j N   Y Φ                                                                       (11) 

Therefore, the norm question solution of the optimal 0  can be converted to the 

solution of linear programming question. 

Measurement Matrix 

That the necessary and sufficient condition of the coefficient sparse matrix is 

reconstructed successfully by the measurement matrix is the isometry criterion of the 

measurement matrix meeting the constraint, which is deduced by the literature [11]. For 

the sparse signal a  of with sparse degree of  pL  , the definition of RIP: provided that 

the inequality       
2 2 2

0
2 2 2

1 1
p pL L    a Φ a a  is satisfied, if 0 1

pL  , 
0Φ  is the 

linear operator taking parameter 
pL to meet RIP criterion. To prove whether a 

determined matrix 
0Φ  meets the RIP criterion is a combination question, and it is 

impractical to calculate by using all combinations 
pL when value pL  is high. Candès 

and other people proved that the RIP criterion can be described equivalently as: if any 

p2L  of 
0Φ  is unrelated with the linearity, 

0Φ  satisfies the RIP criterion. 
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Assuming 
1 2 21 0 2 0 2 0 0

p Lp
La a a   Φ Φ Φ , since the rows of V  are provided with 

similar structure with coefficient difference of e   index only, if the above formula is 

required to satisfy, only assume 1 2 2 0
pLa a a     , so that any p2L  row of  

0Φ  is 

unrelated with the linearity, and 
0Φ  satisfies the RIP criterion. 

Reconstruction Algorithm 

Reconstruct the signal by using the OMP algorithm, which the algorithm shall select the 

atom from the measurement matrix, which is matched with the signal in maximum 

range, and then sparsely approach and work out the surplus, finally the signal shall be 

indicated in linearity by selected atom after the iteration. Since the OMP algorithm only 

selects the atom with the maximum projection value by the signal in the constructed 

space by atoms, so the atom that is provided with several projection value will occur at 

the same time in the condition of the sparse degree less than 1, so that it will select the 

suboptimum atom. 

The ROMP algorithm is evolved from OMP. As one of the greedy algorithms, 

ROMP algorithm is simple and easy to realize. At the same time, several atoms that 

meet the certain conditions are joined instead of only one atom. For K  sparse signal, 

after K  iterations, we can estimate the value of delay of the signal in a high precision. 

Therefore, the computation is further reduced compared with the OMP algorithm. 

Furthermore, another advantage of the ROMP algorithm is that the reconstruction 

accuracy is higher than that of the OMP algorithm. 

In the compressed-sensing sparse-reconstruction algorithm, the most important thing 

is to determine which subspace that received signal y  is located in. These subspaces 

are generated by the atoms in the measurement matrix
0Φ . Once the correct subspace is 

determined, the nonzero coefficients of a  can be calculated by using the pseudo inverse 

of the subspace. An important feature of CS-SP algorithm is to find a method to 

generate K  atoms of the correct subspace. The algorithm consists of K  atoms of the 

list in
0Φ , the initial estimation of the subspace is the K  atoms which get the largest u  

values according to the formula (14). In order to correct the initial estimation of the 

subspace, CS-SP algorithm will detect whether the existing subspace can reconstruct 

the signal in an ideal error. If not, the subspace will be updated. The rule of updating is 

that the residual of the signal reconstructed by the updated-subspace is lower than that 

by the not-updated-subspace. CS-SP can ensure that a better subspace can be found in 

the next iteration based on the above conditions. 

The subspace pursuit delay estimation algorithm flow chart is as follows: 

1. Input: Sparsity K ; Measurement matrix
0Φ  ; Received signal y . 

2. Initialization: Use the formula (11) to calculate the projection valueu  , and select 

K  atoms which have the maximum values ofu . Set the initial subspace 0T  with these 

K  atoms. 
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3. Calculate the residual. 
0

0 (y, )r Ty resid    

4. Iteration: Extend the subspace. 1m mT T   {the largest K  atoms corresponded 

with  1m

ry  } 

5. Reconstruct the signal. †

lTpx y   

6. Update the subspace. 1m mT T   { K indices corresponding to the largest element 

of px  } 

7. Update and compare the residual. (y, )
m

m

r Ty resid   , quit the iteration and 

let 1m mT T   . 

8. Output: The reconstructed signal x . 

Performance Simulation 

The article here conduct study for the delay estimation algorithm in the wireless 

location model, and the OFDM signal is planned to be used as the sending signal. The 

system parameters are set as Table 1. 
Table 1. System Parameters Settings 

System Parameters 

Subcarrier wave number 64 

Carrier frequency 2.4GHz 

System band width 20MHz 

Intervals 0.2MHz 

In order to verify the practicability and the robustness of the algorithm applied in this 

article, the Monte Carlo experiment shall be conducted to compare and analyze the 

CS-SP algorithm, OMP algorithm and ROMP algorithm. 

Firstly the signal-to-noise ratio can be defined as: 

 

 

2

2
10lg

y t
SNR

n t
                                                                                                   (14) 

In the formula (14),  y t is the received signal, and  n t  is the additive Gauss white 

noise. 

Mean square error is: 
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1
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m ii i p

m

RMSE i L
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 


 
    

 
                                                             (15) 

In (15), M  is the Monte Carlo simulation times; ,m i    is the delay estimation of the 

No. i channel's No. m time of Monte Carlo experiment; i  is the No. i channel's true 

value of the delay. 

Simulation 1 

It is supposed that the arrival time of multi-channel received signal's channels quantity 

(sparsities) 2pL   are separately 1=100ns  and 2 =700ns , with snapshot number of 1. 

If SNR=25dB, conduct Monte Carlo simulation with M=200 by the algorithm proposed 

in this article, which the distribution diagram of the obtained delay estimation value is 
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showed in the Fig.3. In the figure, the two squares represent the local amplification 

values of the delay estimation. According to the Fig.3, the CS-SP algorithm applied in 

this article is able to achieve unbiased estimation in the condition of single-snapshot. 
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Fig. 3. SNR=25dB, the distribution diagram                 Fig. 4. Contrast diagram of mean square    

of the delay estimation in the condition of 2pL          error for various algorithms 

Simulation 2 

Under the identical conditions, the CS-SP algorithm shall be compared with OMP 

algorithm and ROMP algorithm. The mean square error curves of the above algorithms 

shall be made. The curves are indicated in Fig.4. According to this diagram, in the 

condition of single-snapshot, the sparse reconstruction method can achieve a better 

performance compared to existing estimation approaches such as the RootMusic 

algorithm, since the sparse reconstruction method only needs to collect a single 

snapshot data, by using the 0l   norm sparse constraint, and then get the delay estimation 

values through the reconstruction algorithms. The RootMusic algorithm can hardly 

achieve an effective estimation in the single snapshot environment. The estimation 

performance of the CS-SP algorithm is obviously better than the greedy algorithms such 

as OMP and ROMP. Since the CS-SP algorithm update the subspace where the signal is 

located in, so that its performance is better than greedy algorithms. Therefore, the 

accuracy and the robustness of the delay estimation performance of the CS-SP 

algorithm is better than the OMP and ROMP algorithm. 

Simulation 3 

The CS-SP, OMP and ROMP algorithms shall be simulated in various multi-channel 

quantity (sparsity), and the result is indicated in Fig.5. Now define the exact 

reconstruction rate is the ratio of the numbers of the accurate estimated channels to the 

numbers of the real channels, which is decreasing following the increase of sparsities. 

The CS-SP algorithm can achieve a better anti-multi-channel performance according to 

the diagram. 
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Fig. 5. Exact reconstruction rate in different sparsities 

Conclusions 

In the wireless location system, the current sparse reconstruction delay estimation 

method is provided with better estimation performance in the conditions of 

single-snapshot and low signal-to-noise ratio, but it has a certain probability to select 

suboptimum atom in the process of atom selection. For this problem, the CS-SP 

algorithm is applied in the article. The CS-SP algorithm can decrease the disadvantage 

in choosing atoms by updating the subspace that the signal is located in, which the 

estimation performance is better than algorithms of OMP and ROMP in the condition 

of low signal-to-noise ratio. Comparing with the OMP and ROMP algorithms, the exact 

reconstruction rate is higher in the high value of sparsities, which means the CS-SP 

algorithm has a better performance in anti-multi-channel. The simulation result proves 

that the algorithm is stable, reliable and excellent. 
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