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Abstract. This paper proposes a new direction-of-arrival (DOA) estimation algorithm, 

which is suitable for the scenario that the number of sensors is large, and is comparable 

with the number of samples in magnitude.  Instead of utilizing classical subspace 

technique, sparse-recovery-based approach with log penalty is exploited. In detailed 

implementation, we use DC (Difference of Convex function) decomposition to solve 

the non-convex optimization problem, and weighted L1-norm penalty to provide the 

initial estimation, where the weights are constructed via the orthogonality between the 

noise subspace and signal subspace in large-scale random matrix theory framework. As 

a result, an improved DOA estimation performance is achieved. Simulation results 

validate the effectiveness of the proposed algorithm. 

Introduction 

Direction-of-arrival (DOA) estimation is an important issue in array signal 

processing fields, such as mobile communication systems, radar, sonar and acoustic 

tracking [1-2]. Existing DOA estimation algorithms mostly assume that the sensor 

number is fixed, while the snapshot number tends to infinity. In constrast, the sensor 

number is large, but the snapshot number is limited in actual detecting systems. In this 

situation, the consistency of classical statistical theory based DOA estimation 

algorithms, such as Capon [3], MUSIC [4] and ESPRIT [5],  is no longer satisfied, and 

the robustness is hard to be guaranteed.  

In order to provide improved DOA estimation performance under the scenario that 

both the number of sensors and the number of samples are large, and are comparable in 

magnitude. Xavier et al [6] first obtain some asymptotic results about MUSIC spatial 

spectrum function based on random matrix theory, and then apply them for DOA 

estimation. This algorithm (termed as G-MUSIC) outperforms the classical MUSIC 

algorithm in large array and finite sample-size situation.  

Recently, a different framework, namely sparse signal recovery, has been introduced 

in signal processing field, and many algorithms based on this framework including 

FOCUSS [7], L1-SVD [8], NSW-L1 [9] and JLZA [10] have been presented for DOA 

estimation. These kinds of algorithms show salient advantages in comparison with 

subspace based algorithm, such as high resolution and suitable for low samples number.  

By fully using sparse recovery and the asymptotic results obtained via random matrix 

theory, this paper proposes another DOA estimation algorithm under large arrays. 

Instead of utilizing general L1-norm penalty, a more appropriate log penalty [11] is 

exploited. Through jointly using DC decomposition [12] and the orthogonality between 

the noise subspace and signal subspace, the non-convex optimization problem is solved 
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efficiently, and a good DOA estimation is also guaranteed.  Finally, we verify the 

effectiveness of the proposed algorithm via several numerical simulations. 

Problem Formulation 

Assume K narrowband, uncorrelated source signals from distinct angles impinging on a 

uniform linear array (ULA) with M sensors. After sampling with a proper rate, the array 

output y can be expressed as 

( ) ( ) ( ), 1,2, ,t t t t N  y As n K                                                                                             (1) 

where A=[a(θ1),…, a(θK)] denotes M×K array steering matrix, whose kth column is 

the steering vector of k source, given by 

2 sin( )/ 2 ( 1) sin( )/
( ) [1, , , ]k kj d j M d T

k e e
        

a K                                                                         (2) 

λ and d represent the carrier wavelength and the inter-sensor spacing, respectively. 

To avoid phase ambiguity problem, typically assuing d≤λ/2. s(t)=[s1(t), …,sK(t)]
T
, n(t) 

is the zero mean Gaussian white noise embedded in the array sensors. The superscript T 

denotes the transpose operation. 

Based on Eq. 1, we can also obtain the array covariance matrix 

2{ ( ) ( )}HE t t   R y y ASA I                                                                               (3) 

where S=[P,…, PK] denotes the signal covariance matrix, I is an M×M identity 

matrix. E{·} and H denote the expectation and the conjugate transpose, respectively. 

Implementing the eigenvalue decomposition (EVD) on R, we have 

2
[ ] [ ]

s H

s n s n

M K 

 
  

 

Λ 0
R E E E E

0 I
                                                                    (4) 

where Es=[e1,…,eK] and En=[eK+1,…,eM] denote the signal subspace matrix and noise 

subspace matrix, respectively. sΛ  is a K×K diagonal matrix containing the largest 

eigenvalues of R. If the number of samples increases without bound (N→∞), whereas 

the number of sensors is set to be a fixed quantity (M<∞), then the DOA can be 

estimated accurately by the following object function 

( ) min ( ) ( )H H

n nf


   a E E a                                                                                    (5) 

However, the number of samples is finite and its magnitude is comparable to the 

number of sensors in practical applications. In this situation, the consistency of Eq. (5) 

cannot be guaranteed according to the large-scale random matrix theory [13].  

Proposed DOA Estimation Algorithm 

Unlike subspace technique, the sparse-recovery-based approach is better suited for 

DOA estimation under small number of samples. We first divide the spatial domain to 

G(>>K) sampling grid and form the overcomplete basis matrix Φ=[ a (θ1),…, a (θG)]. 

Consequently, Eq. (1) can be rewritten as 

( ) ( ) ( ), 1,2, ,t t t t N  y Φx n K                                                                                            (6) 

where x(t) is a K-sparse vector, whose ith element is nonzero and equal to sk(t) if 

source k comes from θk and zero otherwise. The matrix form of (6) is given by 
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 Y ΦX N                                                                                                              (7) 

In order to reduce the computational complexity, we take the singular value 

decomposition (SVD) on Y, which yields 

SV SV SV Y ΦX N                                                                                                              (8) 

where HY ULV , SV KY YVW , SV KN NVW ,  and [ , ]T

K KW I 0 , KI and 0 

denote K×K identify matrix and K×(M-K) zero matrix, respectively. 

Furthermore, the DOAs can be achieved by solving the following L0-norm 

optimization problem 

2
2( )

SV SV0
min . .

L

F
s t  x Y ΦX                                                                                      (9) 

where 2 2 2( ) ( ) ( )

1[ , , ]
L L L T

Gx xx K , and 2( )L

ix  denote the L2-norm of ith row of SVX .   is 

a penalized parameter that controls the tradeoff between F-norm term and L0-norm 

term. 

It is well known that the L0-norm penalty optimization problem is a NP-hard 

problem. Alternatively, we exploit log penalty to enforce sparsity, whose function is 

defined as 

   ( ) log logg x x                                                                                                  (10) 

where 0   is a tuning parameter controlling the degree of approximation. The log 

penalty is continuous and very closely approximates the L0 penalty, thus it can be 

predicted that the corresponding object function will lead to a good estimation result. 

By using log penalty, the approximation of formulation (9) can be expressed as 

 2
2( )

SV SV

1

min . .
G

L

i F
i

g x s t 


  Y ΦX                                                                            (11) 

Note that formulation (11) is also nonconvex. To deal with this issue, we exploit DC 

decomposition strategy, whose key concept is to decompose a nonconvex function to 

two lower semi-continuous, proper convex functions.  Then the optimization problem 

can be cast as the following form 

2 2
2( ) ( )
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1 1
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L L

i i i F
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where 2( )
( )

L

i ih x  ,  2 2 2( ) ( ) ( )
log( ) log( )

L L L
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 Based on iterative procedure and replacing  2( )L

ih x  by its minorization, we obtain 

2 2( ) ( )
( ) 1 1

L L

i i ih x x                                                                                     (13) 

Subsequently, the optimization problem for DOA estimation is formulated as 

2
2( )

SV SV

1

min . .
G

L

i i F
i

x s t 


  Y ΦX                                                                (14) 

where 2( )
1/ | |

L

i ix   . After the above process, the L0-norm optimization problem 

reduces to a weighted L1-norm problem, which is convex and can be solved easily via  

second-order cone programming (SOCP). 
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According to the DC decomposition theory, a good initial estimate should be 

provided to ensure the final DOA estimation accuracy, thus the weighted L1-norm 

penalty using the orthogonality between the noise subspace and signal subspace is 

adopted.  Since the number of sensors is large and comparable with the number of 

samples in magnitude, we present some theoretical results first in random matrix theory 

framework, which are shown as follows: 

Thoerem1 [6]: Under the assumptions that the entries of noise are i.i.d process with 

zero mean, variance 1/2 and a finite moment of order higher than 8, as well as the 

correlation matrix R has uniformly bounded spectral radius for all M, the quantity 
( , ) ( )M N   and the noise power 2  are consistently estimated by 
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where ˆ
k  is the kth eigenvalue of R, and 1 2

ˆ ˆ ˆ
Mv v v  L is the real-valued solutions 

to the following equation in v̂  

1

ˆ 1

ˆ ˆ
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k

k k
Nv








                                                                                                              (18) 

repeated according to the multiplicity of the kth sample eigenvalue. 

Furthermore, the initial weighted matrix is constructed by 

 ( , )ˆ ( )M N

in diag  W                                                                                                              (19) 

and the initial DOA is provided by the following optimization problem 

2
2( )

SV SV1
min . .

L

in F
s t  W x Y ΦX                                                                          (20) 

The penalized parameter is selected via discrepancy principle as shown in [8], except 

that the noise power is estimated by Eq. (16). 

Let x̂  denote the final estimation result of formulation (14), then the DOAs are 

obtained by finding the indexes of K larger coefficients. 

Simulations 

In this section, we validate the effectiveness of the proposed algorithm via numerical 

simulations. MUSIC [4], G-MUSIC [6] and Cramé–Rao lower bound (CRLB) are 

selected as the compared algorithms. Two closely spaced sources from DOAs of 35° 
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and 37° are considered. The number of sensors is fixed at 20. The root mean square 

error (RMSE) of DOA estimations is obtained by 200 independent Monte Carlo trails. 

In the first experiment, the number of samples is set to be 50, and the SNR varies 

from 0dB to 12 dB in steps of 2dB. The simulation result is shown in Figure 1, from 

which we can easily observe that the proposed algorithm outperforms the MUSIC and 

G-MUSIC algorithms in the whole SNR region, and follows CRLB well. 
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Figure 1. RMSE of DOA estimation versus SNR with 50 samples 

In the second experiment, we evaluate the performance of DOA estimations against 

the number of samples. Unlike the first experiment, we fixed the SNR to be 10dB, and 

vary the number of samples from 30 to 70 in steps of 10. The simulation result is shown 

in Figure 2. The conclusion is similar with the first experiment, the proposed algorithm 

outperforms the compared algorithms, and follows CRLB well. These two simulations 

fully verify the superiority of the proposed algorithm. 
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Figure 2. RMSE of DOA estimation versus the number of samples with 10dB SNR 

Conclusions 

This paper introduces a new algorithm for DOA estimation under large arrays. First, we 

exploit log penalty function to approximate the L0 function, and successively utilize DC 

decomposition to solve the nonconvex optimization problem. Next, we make use of the 

asymptotic results obtained in large-scale random matrix framework, to construct the 

initial weighted matrix and further achieve a good DOA estimation. Simulations 

demonstrate that the proposed algorithm performs better than the compared algorithms 

in the small-sample-size regime, where the number of sensors and the number of 

samples are comparable in magnitude. 
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