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Abstract. To address the challenge of evaluating modern optical flow computation technology, this 

paper proposes a corrected evaluation methodology for optical flow of angle error based on the 

popular Middlebury benchmark. Firstly, a corrected evaluation benchmark is proposed based on the 

Middlebury benchmark. for flow error statistics, a mathematical expectation is employed instead of 

the current mathematical average as the expectation can reflect a more appropriate error distribution 

for the flow result. Secondly, several typical methods of optical flow and four classical test 

sequences chosen from the Middlebury database are employed to show the improvement attained 

by using the proposed evaluation methodology. Thirdly, evaluation results of the test methods with 

both the proposed and Middlebury benchmarks are provided in the experimental section. Finally, 

the comparison result indicates that the proposed evaluation benchmark can reflect the flow result 

performance more objectively and appropriately.  

Introduction 

In the last decade, the accuracy, robustness, and efficiency of optical flow estimation have 

undergone significant development owing to improvements in the level of computer software and 

hardware. In 1994,Barron[1] proposed an evaluation system which contained mainly the average 

angle error, the standard deviation, and the density of the computed optical flow result. To 

overcome the lack of ground truth data sets for complex scenarios, McCane[2] presented a method 

for generating motion fields from real sequences containing polyhedral objects and provided the 

Otago[3] optical flow evaluation database. 

With the development of optical flow algorithms, test image sequences in the Otago database 

could not satisfy evaluation requirements for the next generation of optical flow algorithms: a 

modern optical flow evaluation database should be closer to real scenarios that involve non-rigid 

motion, larger motion ranges, more realistic textures, independent motion, and more complex 

occlusions. To promote rapid progress in optical flow estimation, researchers at Middlebury College 

produced a new set of benchmarks for modern optical flow algorithms and made the test image 

sequence data freely available on the web at http://vision.middlebury.edu/flow/[4]in 2007, providing 

four types of image sequence data to test different aspects of optical flow algorithms: (1) sequences 

containing non-rigid motion where the ground truth flow is determined by tracking a hidden 

fluorescent texture, (2) realistic synthetic sequences with the ground truth, (3) modified stereo 
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sequences with the ground truth, and (4) high-frame-rate sequences without the ground truth. Figure 

1 shows several representative image sequences with the ground truth from the Middlebury 

database. 

 

Figure 1. From top to bottom: the reference frame of sequence and the corresponding ground truth.From left to right: 

Dimetrodon ,Grove3, Rubberwhale. and Urban2. 

Current Evaluation Methodology 

Angular Error 

In Barron’s research[5], the angular error was proposed as the spacing angle between the estimated 

optical flow and the ground truth,which can be expressed as followed: 
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where  Tvu, denotes the estimated optical flow vector and  TGTGT vu , denotes the ground truth of 

the optical flow. It is not difficult to see that the angular error formula added a third coordinate   

( was equal to 1  after the work of McCane[2]) to the estimated optical flow and the ground 

truth, which significantly lowered angle differences for large optical flows.  

Statistics 

In Barron’s research[5], the averages (Avg) and standard deviations (STD) were employed as 

statistical measures of optical flow errors through which angle error statistics can be computed as 

follows: 
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To demonstrate the performance of a test algorithm comprehensively, Baker
[6] 

proposed a novel 

statistical measure method which contained mainly robustness and accuracy statistics. Robustness 

statistics (RX) denotes the percentage of pixels that have an error measure above X while accuracy 

statistics (AX) denotes the accuracy of the error measure at the Xth percentile after sorting the 

errors from lowest to highest. Table 1 shows the statistical measure used in the Middlebury dataset 

proposed by Baker[6].  

Table 1. The statistical measure used in the Middlebury dataset 

AE Avg STD R2.5 R5.0 R10.0 A50 A75 A95 

Currently, the statistical measure of the Middlebury benchmark is the most widely acknowledged 

evaluation method for optical flows because it gives a comprehensive appraisal of optical flow 

algorithm performance.  
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Corrected Evaluation Methodology 

Corrected Angular Error 

In this paper, a corrected error measure for the angle that only reflects the angular deviation of the 

optical flow is proposed as follows: 
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Corrected Statistics 

According to the unequal probability distribution of the error of an optical flow, the average and the 

corresponding standard deviation are not suitable as statistics measures because they cannot reflect 

the error distribution accurately. To furnish more appropriate statistics measures, the expectation 

(EX) is employed instead of the average in the proposed method as below: 
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where N denotes the count of the error, ix  denotes the value of the error, and denotes the 

corresponding probability of the error, which can be computed from the error of the optical flow. 

with the proposed statistics measure of the expectation, the corresponding standard deviation can be 

rewritten as follows: 
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To provide a thorough evaluation, the robust statistics index RX and the accuracy measure index 

AX derived from the Middlebury benchmark were employed to evaluate the robustness of the 

optical flow in the proposed method. RX denotes the percentage of pixels that have an error 

measure above X and AX denotes the accuracy of the error measure at the Xth percentile. In 

contrast to the Middlebury benchmark, according to the robust statistics index RX, for the angle 

error (AE) R2.5, R5.0, and R10.0 were computed. According to the accuracy measure index AX, for 

the flow errors,A95 is computed to show the robustness of the accuracy. With the corrected error 

measures and statistics proposed above, the improved statistics measures can be rewritten as shown 

in Table 2.  

Table 2. The improved statistic measures 

AE EX EXSTD R2.5 R5.0 R10.0 A95 

Experiments and Analysis 

In this section, the proposed evaluation methodology for optical flow is discussed. The experiments 

focused mainly on differences between the proposed benchmark and the Middlebury benchmark. 

However, the comparison of optical flow results of the adopted methods is not the highlight. Owing 

to the large number of measures for the proposed evaluation methodology, several selective 

methods of optical flow were employed to show the evaluated results of the proposed benchmark 

and the Middlebury benchmark, and specific analysis was attached to each evaluation. 
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Evaluation Methods 

For intuitive comparison, the selective methods included mainly LDOF[7], SODOF[8], Correlation 

Flow[9], and Classic+nl[10].In addition, the computed parameters of the evaluation methods were 

set without careful consideration, so the parameters were set mainly as fixed values proposed by 

their respective articles, which may not be optimal for each test. Although some discussion of the 

performance of the above methods is provided, the ranking of the evaluation methods not of interest 

as the highlight of this paper is to emphasize the differences between the proposed evaluation 

benchmark and the current popular Middlebury benchmark.

Angle Error 

For the analysis of angle errors for each sequence, the statistical results of angle errors of the All 

masks show the performance of the evaluation methods with various computing challenges.  

With the statistics results of the angle error in Table 3 and Table 4, the best result of each 

statistics item for one sequence is highlighted with red and bold text. the first thing to note is that 

the distribution of the best results for the proposed benchmark is mainly unchanged compared with 

the Middlebury benchmark except for minor changes in a few statistics items, indicating that the 

proposed evaluation methodology would not influence the existing rank of the Middlebury 

benchmark drastically,the statistic results of the AE with the Middlebury benchmark are as follows. 

Table 3. The statistic results of the AE with the Middlebury benchmark 

METHOD Avg STD R2.5 R5 R10 A50 A75 A90 

LDOF Dimetrodon ALL 

 

2.182 2.441 0.701 0.919 0.980 1.451 2.816 6.607 

Grove3 4.476 12.655 0.733 0.840 0.915 1.075 2.728 16.542 

RubberWhale 3.975 11.748 0.794 0.878 0.928 1.039 2.051 15.736 

Urban2 2.377 8.081 0.817 0.920 0.959 0.495 1.889 8.002 

SODOF Dimetrodon ALL 3.838 3.767 0.469 0.740 0.943 2.711 5.122 10.668 

Grove3 6.548 13.752 0.511 0.700 0.859 2.400 6.239 24.941 

RubberWhale 4.278 9.512 0.577 0.849 0.932 2.143 3.576 13.209 

Urban2 2.944 7.299 0.715 0.860 0.944 1.025 2.940 10.961 

Correlation 

Flow 

Dimetrodon ALL 5.004 6.234 0.474 0.694 0.873 2.688 6.156 18.497 

Grove3 4.342 10.759 0.622 0.817 0.929 1.726 3.841 12.986 

RubberWhale 2.474 5.639 0.741 0.932 0.979 1.531 2.551 6.059 

Urban2 3.419 8.010 0.691 0.824 0.925 1.048 3.343 13.646 

Classic+nl Dimetrodon ALL 2.306 2.309 0.681 0.889 0.989 1.490 3.115 6.914 

Grove3 4.207 13.645 0.770 0.878 0.932 1.026 2.308 13.464 

RubberWhale 2.516 8.643 0.867 0.940 0.967 1.002 1.668 6.056 

Urban2 1.798 6.717 0.847 0.939 0.977 0.513 1.491 5.804 

More importantly, the statistics results of EX indicate that the expectation cannot be replaced by 

the average because the expectation reflects the distribution of the error; the statistical results of 

Dimetrodon, Grove3, and Urban2 in Table 4 demonstrate that pixels with small angle error are of 

large probability in these sequences for the evaluation methods and pixels with large angle error are 

of large probability in the Rubberwhale sequence, the statistic results of the AE with the proposed 

benchmark are as follows. 
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Table 4. The statistic results of the AE with the proposed benchmark 

METHOD EX EXSTD R2.5 R5 R10 A95 

LDOF Dimetrodon ALL 1.748 2.649 0.760 0.913 0.974 7.109 

Grove3 4.208 13.345 0.739 0.847 0.920 16.246 

RubberWhale 5.486 21.529 0.805 0.885 0.924 20.152 

Urban2 2.704 10.778 0.807 0.897 0.955 9.239 

SODOF Dimetrodon ALL 3.326 4.327 0.520 0.758 0.934 11.545 

Grove3 6.508 15.617 0.555 0.715 0.857 28.159 

RubberWhale 5.159 17.792 0.625 0.834 0.927 15.374 

Urban2 3.152 10.584 0.755 0.860 0.937 12.392 

Correlation 

Flow 

Dimetrodon ALL 4.741 7.282 0.515 0.707 0.864 21.064 

Grove3 4.218 12.050 0.642 0.812 0.922 14.436 

RubberWhale 2.519 9.631 0.735 0.915 0.969 7.114 

Urban2 4.219 13.843 0.720 0.827 0.909 16.659 

Classical+nl Dimetrodon ALL 1.952 2.433 0.696 0.880 0.980 7.394 

Grove3 4.067 14.419 0.775 0.872 0.931 13.963 

RubberWhale 3.128 15.310 0.860 0.936 0.962 6.746 

Urban2 2.139 9.360 0.851 0.919 0.965 7.743 

For standard deviation, the numeric values of EXSTD for the proposed benchmark are generally 

larger than the numeric values of STD in the Middlebury benchmark, and the small numeric values 

of EXSTD indicate the error fluctuation of the evaluation methods as EXSTD expresses the real 

distribution of the angle errors. For the robust statistics index RX and the accuracy measure index 

AX, the statistical results show the robustness and convergence of the evaluation methods, and the 

accuracy measure index AX was decreased to one index A95 compared with the Middlebury 

benchmark. 

Conclusions 

In this paper, an improved evaluation methodology for optical flow of angle error based on the 

current evaluation benchmark was presented. For the problem of objective evaluation, this paper 

proposed an improved evaluation benchmark by modifying the metrics and statistics of optical flow 

error. In addition.For flow error statistics, we offered a mathematical expectation and corresponding 

standard deviation instead of the currently popular mathematical average and standard deviation, 

and the proposed expectation provides a more appropriate error distribution for the flow result. In 

the experimental section, we conducted several typical methods of optical flow with synthetic and 

real sequences chosen from the Middlebury database, and we provided the evaluation results of the 

test methods with both the proposed benchmark and the Middlebury benchmark. The comparison 

results indicated that the proposed evaluation benchmark reflected the performance of the flow 

result more objectively and appropriately, even though the ranking of the evaluation methods by the 

proposed benchmark was approximately the same as for the Middlebury benchmark.  
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