
Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

A Method for Automatically Implementing FPGA-based
Pipelined Microprocessors

Yu-xiang ZENG1,a,Han WAN1,b,*,Bo JIANG1,cand Xiao-peng
GAO1,d

1Beihang University, Beijing, China

aturf1013@buaa.edu.cn, bwanhan@buaa.edu.cn, cjiangbo@buaa.edu.cn,
dgxp@buaa.edu.cn

*Corresponding author

Keywords: Pipeline, Automatic, Stall, Bypass, Multi-cycle

Abstract. This paper presents a method of automatically generating the Verilog

implementation of pipelined micro-processors. Based on the RTL descriptions of

instructions, all types of hazards in pipelining are addressed optimally, especially in

avoiding redundancy, reducing resource utilization and improving instruction

throughput. Moreover, out-of-order execution mechanism is adopted in order to

support multi-cycle instructions more efficiently. Besides, all the multiplexers and

logics of control signals are analyzed and produced all by the method. The synthesized

implementations of both pipelined controllers and datapaths are generated

automatically, based on non-fixed architectures. A case study based on MIPS

architecture not only explains the framework from input to simulation, but also

illustrates the method gains almost equal performance with manual work.

Introduction

Hazards are the major hurdles of the pipelining, a widely-used technique in modern

microprocessors0. As many combinations of instructions and corner cases may lead to

hazards in unanticipated ways eventually, it is difficult to guarantee complete

considerations and perfect strategies for solving them all by manual development.

Motivated by these situations, many studies have proposed some method in pipelining

and they can be divided into two groups due to the degree of automation.

Using parameterizing and organizing the whole units, a pipelined microprocessor

can be automatically generated[2,3,4]. These studies are usually based on one particular

architecture and rely on more manual design work, but with good performance. The

other group focuses on generating the major units, controllers and datapaths,

completely automatically in non-fixed pipeline stage[5,6]. Even though the hazards can

be resolved correctly, the performance of the final implementation can be easily

damaged due to their strategies. Some potential redundancies exist in their method,

which leads to more hardware resources and bad performance. In addition, he also does

not mention the solutions to structural hazards related to multi-cycle instructions.

Above all, we aim to find solutions to handle automatically in all types of hazards

and better support in multi-cycle instructions, since multiply and division operations

are very common in real applications. Firstly, we briefly discuss our method of

generating controller and datapath according to the sequences of instructions’ Register

Transfer Language (RTL). Next, we demonstrate the mathematical model to resolve

data hazards and out-of-order mechanism to solve multi-cycle instructions with better

performance. Finally, we compare the performance of our method with manual work.

467

Advances in Computer Science Research (ACRS), volume 54
International Conference on Computer Networks and Communication Technology (CNCT2016)

Automatic Generation

Describe the Instructions Using RTL

Let uppercase letters X, Y,⋯indicate the modules and lowercase letters a, b,⋯ indicate

the ports of the modules. Therefore, sequences like X. a → Y. b are used to represent

that the port a of module X connects with the port b of module Y . Furthermore,

sequences like X. a ≫ are used to indicate the data from port a are needed to be

pipelined. Fig. 1 is the example of an ADD instruction based on 5-stage MIPS

architecture.

Fig. 1 An RTL example of ADD instruction

Pipelined Controller

Control signals can be naturally divided into two groups. One of them is called external

control signals since they are directly appeared in RTL so that their logic could be

integrated directly from RTL sequences, such as GPR.wr which denotes whether GPR

is written or not. Since RTL sequences should contain their specific value for every

instruction, we could easily get the combinational logic. On the contrary, other signals

generated by synthesizing all RTL sequences are called internal control signals.

Selecting signals of multiplexers are the most typical ones and can be divided into two

kinds according to their functions. One of them is called Port Mux which one data

should be selected from multiple data for different instructions. As different source

ports may connect with the same target port after hashing all the RTL sequences, Port

Mux is apparently required in order to choose the right source as input according to

opcode of instructions. The other type is called Send Mux because bypassing implies

the connections between the sending data and the functional units. The main difference

between these two types is how to generate the logic of selecting signals. We will

discuss the conditions of bypassing in the next section. After all the control signals are

established, a controller can be easily implemented.

Pipelined Datapath

Datapath of pipelined microprocessor usually consists of core units, multiplexers,

pipeline registers and the connections between them. The basic information about core

units is parsed from user-defined verilog files, multiplexers generated automatically,

pipeline registers produced by merging sequences like X. a ≫at each stage. The set of

X. a are just the inputs of pipeline registers. In the end, after appending the outputs of

controller to the inputs of datapath, the datapath would be formed up eventually.

468

Advances in Computer Science Research (ACRS), volume 54

Hazard Resolution

Data Hazards

Since there are many possible combinations of instructions that can lead to data hazards,

it is imperative to find a formula to choose bypassing or stalling properly. For a better

explanation, let𝑃𝐷be the decode stage and 𝑃𝑊be the write-back stage. A register model

is denoted by 𝑅. An𝑟𝐼𝑛𝑠𝑛 is the instruction which reads the register when a data hazard

occurs. The stage of rInsnis denoted by𝑃𝑟𝐼𝑛𝑠𝑛 . Similarly, a wInsnis an instruction that

writes the register when a data hazard occurs. The stage of wInsn is denoted by𝑃𝑤𝐼𝑛𝑠𝑛 .

𝑃𝑈 indicates the earliest stage for the rInsn using contents of register R, andP𝐸indicates

the stage that wInsnjust finishes calculating the result to write back.

Firstly, we can easily define the simplest case, which consists of both rInsnand

wInsn:

 𝑃𝑟𝐼𝑛𝑠𝑛 , 𝑃𝑤𝐼𝑛𝑠𝑛 |∀𝑃𝑟𝐼𝑛𝑠𝑛 𝜖 𝑃𝐷 , 𝑃𝑈 , ∀𝑃𝑤𝐼𝑛𝑠𝑛 𝜖 𝑃𝑟𝐼𝑛𝑠𝑛 + 1, 𝑃𝑤 }. (1)

Since 𝑃𝑊 is usually the last stage and wInsn should be issued earlier than rInsn,

consequently𝑃𝑤𝐼𝑛𝑠𝑛 falls into the range of 𝑃𝑟𝐼𝑛𝑠𝑛 + 1, 𝑃𝑤 . While for 𝑃𝑟𝐼𝑛𝑠𝑛 , only

ranges from 𝑃𝐷 to 𝑃𝑈 is needed to be considered, this is because as long as the expected

value is obtained at the 𝑃𝑢 stage, that value is held at ∀𝑃𝑖 , 𝑃𝑖 > 𝑃𝑢 stage with the help of

pipeline registers.

To address this case, we can stall the microprocessor until the expected values are

finally calculated. This strategy is defined by

 H 𝑃𝑟𝐼𝑛𝑠𝑛 , 𝑃𝑤𝐼𝑛𝑠𝑛 =
𝑏𝑦𝑝𝑎𝑠𝑠𝑖𝑛𝑔, ∀𝑃𝑤𝐼𝑛𝑠𝑛 𝜖 𝑃𝐸 , 𝑃𝑤

𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑔, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

Table 1 shows how data hazards are solved by applying (2) when P𝐷 = 2, P𝑊 =
10, P𝑈 = 6, 𝑃𝐸 = 7.

Unfortunately there are two major defects in (2):

1) Redundancies are hidden.

As stalling usually indicates rInsn stays still while wInsnmoves forward, some

hazard pairs may never appear during actually running. In Table 1, stalling is adopted

when 𝑃𝑟𝐼𝑛𝑠𝑛 = 2, 𝑃𝑤𝐼𝑛𝑠𝑛 = 3 . One cycle later,𝑃𝑟𝐼𝑛𝑠𝑛
′ = 2, 𝑃𝑤𝐼𝑛𝑠𝑛

′ = 4 which means

pairs like𝑃𝑟𝐼𝑛𝑠𝑛 = 3, 𝑃𝑤𝐼𝑛𝑠𝑛 = 4 or 𝑃𝑟𝐼𝑛𝑠𝑛 = 4, 𝑃𝑤𝐼𝑛𝑠𝑛 = 5never exists. Consequently,

the solutions to these pairs become redundant eventually.

2) Not all stalling is necessary.
Without doubt, as long as the expected value is achieved at 𝑃𝑈 stage in time, the data

hazard is settled. However,(2) indicates stalling cannot be stopped until wInsn leaves the
P𝐸 stage. However, considering this situation, when PrInsn = 2, PwInsn = 7 with no
suspending, it becomes 𝑃𝑟𝐼𝑛𝑠𝑛

′ = 3, 𝑃𝑤𝐼𝑛𝑠𝑛
′ = 8after a cycle and exactly fulfils the

Table 1. Resolution to the case of hazard pairs

 3 4 5 6 7 8 9 10

2 stall stall stall stall stall bypass bypass bypass

3 stall stall stall stall bypass bypass bypass

4 stall stall stall bypass bypass bypass

5 stall stall bypass bypass bypass

6 stall bypass bypass bypass

𝑃𝑤𝐼𝑛𝑠𝑛
𝑃𝑟𝐼𝑛𝑠𝑛

469

Advances in Computer Science Research (ACRS), volume 54

condition of bypassing. Consequently rInsn can still obtain the expected value, stalling
is unnecessary at this particular time.

Equation (3) is further solution to overcome previous two defects:

 H 𝑃𝑟𝐼𝑛𝑠𝑛 , 𝑃𝑤𝐼𝑛𝑠𝑛 =

𝑏𝑦𝑝𝑎𝑠𝑠𝑖𝑛𝑔, 𝑃𝑟𝐼𝑛𝑠𝑛 = 𝑃𝐷 , 𝑃𝑤𝐼𝑛𝑠𝑛 ∈ 𝑃𝐸 , 𝑃𝑊

𝑏𝑦𝑝𝑎𝑠𝑠𝑖𝑛𝑔, 𝑃𝑟𝐼𝑛𝑠𝑛 ∈ 𝑃𝐷 , 𝑃𝑈 , 𝑃𝑤𝐼𝑛𝑠𝑛 = 𝑃𝐸 + 1,
𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑔, 𝑃𝑟𝐼𝑛𝑠𝑛 = 𝑃𝐷 , 𝑃𝐸 > 𝑃𝑈 ,

𝑃𝑤𝐼𝑛𝑠𝑛 ∈ 𝑃𝐷 + 1, 𝑃𝐷 + 𝑃𝐸 − 𝑃𝑈

𝑢𝑛𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

PROOF. We can prove it from two aspects:

1) 𝑃𝑤𝐼𝑛𝑠𝑛 > 𝑃𝐸
When 𝑃𝑟𝐼𝑛𝑠𝑛 = 𝑃𝐷 , 𝑃𝑤𝐼𝑛𝑠𝑛 > 𝑃𝐸 , it indicates wInsn has already finished computing

the write-data according to the definition of 𝑃𝐸 . Bypassing can be established correctly.
When 𝑃𝑟𝐼𝑛𝑠𝑛 ≠ 𝑃𝐷 , 𝑃𝑤𝐼𝑛𝑠𝑛 = 𝑃𝐸 + 1 , it means wInsn has recently finished

computing. Thus it is the proper timing to forward the data from 𝑃𝑤𝐼𝑛𝑠𝑛 stage to 𝑃𝑟𝐼𝑛𝑠𝑛
stage.

When 𝑃𝑟𝐼𝑛𝑠𝑛 ≠ 𝑃𝐷 , 𝑃𝑤𝐼𝑛𝑠𝑛 ≠ 𝑃𝐸 + 1 , apparently at this moment 𝑃𝑟𝐼𝑛𝑠𝑛 > 𝑃𝐷 and
𝑃𝑤𝐼𝑛𝑠𝑛 > 𝑃𝐸 + 1. As a result, let us compute∆𝑟𝐼𝑛𝑠𝑛 = 𝑃𝑟𝐼𝑛𝑠𝑛 − 𝑃𝐷 , ∆𝑤𝐼𝑛𝑠𝑛 = 𝑃𝑤𝐼𝑛𝑠𝑛 −
(𝑃𝐸 + 1). If ∆𝑟𝐼𝑛𝑠𝑛≤ ∆𝑤𝐼𝑛𝑠𝑛 , thereby ∆𝑟𝐼𝑛𝑠𝑛 cycles before, they were

𝑃𝑟𝐼𝑛𝑠𝑛
′ = 𝑃𝑟𝐼𝑛𝑠𝑛 − ∆𝑟𝐼𝑛𝑠𝑛 = 𝑃𝐷 ,

𝑃𝑤𝐼𝑛𝑠𝑛
′ = 𝑃𝑤𝐼𝑛𝑠𝑛 − ∆𝑟𝐼𝑛𝑠𝑛≥ 𝑃𝑤𝐼𝑛𝑠𝑛 − ∆𝑤𝐼𝑛𝑠𝑛 = 𝑃𝐸 + 1.

which means at this particular moment the data from wInsn should have been forwarded
to rInsn. On the other side, if ∆𝑟𝐼𝑛𝑠𝑛 > ∆𝑤𝐼𝑛𝑠𝑛 , then∆𝑤𝐼𝑛𝑠𝑛 cycles before, they were

𝑃𝑟𝐼𝑛𝑠𝑛
′ = 𝑃𝑟𝐼𝑛𝑠𝑛 − ∆𝑤𝐼𝑛𝑠𝑛 > 𝑃𝑟𝐼𝑛𝑠𝑛 − ∆𝑟𝐼𝑛𝑠𝑛 > 𝑃𝐷 ,

𝑃𝑤𝐼𝑛𝑠𝑛
′ = 𝑃𝑤𝐼𝑛𝑠𝑛 − ∆𝑤𝐼𝑛𝑠𝑛 = 𝑃𝐸 + 1.

which indicates rInsn has also obtained the expect value. It is also unnecessary.

2) 𝑃𝑤𝐼𝑛𝑠𝑛 ≤ 𝑃𝐸
Let us introduce some auxiliary variables at first:

∆𝑟𝐼𝑛𝑠𝑛 = 𝑃𝑈 − 𝑃𝑟𝐼𝑛𝑠𝑛 + 1, ∆𝑤𝐼𝑛𝑠𝑛 = (𝑃𝐸 + 1) − 𝑃𝑤𝐼𝑛𝑠𝑛 + 1.

∆𝑟𝐼𝑛𝑠𝑛 is denoted how long it will take rInsn to reach 𝑃𝑈 stage and ∆𝑤𝐼𝑛𝑠𝑛 is denoted
how long it will cost wInsn to arrive at 𝑃𝐸stage. The difference between them is

∆= ∆𝑤𝐼𝑛𝑠𝑛 − ∆𝑟𝐼𝑛𝑠𝑛 = 𝑃𝐸 − 𝑃𝑈 + 𝑃𝑟𝐼𝑛𝑠𝑛 − 𝑃𝑤𝐼𝑛𝑠𝑛 + 1. (4)

If ∆> 0,itactually indicates wInsn needs more cycles to finish the computation, which
leads to invalid bypassing. If 𝑃𝑟𝐼𝑛𝑠𝑛 = 𝑃𝐷 at this moment, stalling becomes the only
choice. Otherwise, when 𝑃𝑟𝐼𝑛𝑠𝑛 > 𝑃𝐷 , then (𝑃𝑟𝐼𝑛𝑠𝑛 − 𝑃𝐷) cycles before, they were

𝑃𝑟𝐼𝑛𝑠𝑛
′ = 𝑃𝑟𝐼𝑛𝑠𝑛 − 𝑃𝑟𝐼𝑛𝑠𝑛 − 𝑃𝐷 = 𝑃𝐷 ,

𝑃𝑤𝐼𝑛𝑠𝑛
′ = 𝑃𝑤𝐼𝑛𝑠𝑛 − 𝑃𝑟𝐼𝑛𝑠𝑛 − 𝑃𝐷 ,

𝑃𝑟𝐼𝑛𝑠𝑛
′ − 𝑃𝑤𝐼𝑛𝑠𝑛

′ = 𝑃𝑟𝐼𝑛𝑠𝑛 − 𝑃𝑤𝐼𝑛𝑠𝑛 ,

∆′= 𝑃𝐸 − 𝑃𝑈 + 𝑃𝑟𝐼𝑛𝑠𝑛
′ − 𝑃𝑤𝐼𝑛𝑠𝑛

′ + 1 = ∆.

470

Advances in Computer Science Research (ACRS), volume 54

Since𝑃𝑟𝐼𝑛𝑠𝑛
′ = 𝑃𝐷 and∆′= ∆> 0 , stalling should be adopted just as the former

condition. Consequently, (𝑃𝑟𝐼𝑛𝑠𝑛 − 𝑃𝐷) cycles later, although wInsn would arrive at
𝑃𝑤𝐼𝑛𝑠𝑛 stage, it is impossible for rInsn to reach 𝑃𝑟𝐼𝑛𝑠𝑛 stage. It is redundant.

Conversely, ∆≤ 0 indicates that rInsn has not used the operand yet by the time wInsn
has just finished calculating. Then (P𝐸 + 1 − 𝑃𝑤𝐼𝑛𝑠𝑛) cycles later, they will be

𝑃𝑟𝐼𝑛𝑠𝑛
′ = 𝑃𝑟𝐼𝑛𝑠𝑛 + 𝑃𝐸 + 1 − 𝑃𝑤𝐼𝑛𝑠𝑛 = 𝑃𝑈 + ∆,

𝑃𝑤𝐼𝑛𝑠𝑛
′ = 𝑃𝑤𝐼𝑛𝑠𝑛 + 𝑃𝐸 + 1 − 𝑃𝑤𝐼𝑛𝑠𝑛 = 𝑃𝐸 + 1

As ∆≤ 0 , then 𝑃𝑟𝐼𝑛𝑠𝑛
′ ≤ 𝑃𝑈 indicates bypassing from wInsn to rInsn can be

established at this moment. Thus we know data hazards would be resolved after all, it is
unnecessary to be considered right now.

Above all, pairs of data hazards can be resolved by (3). Besides, stalling only
happens when necessary and the expected value is also forwarded once so that no further
resources are required for this data hazards.Via 3 , as Table 2 shows, only 8 output 30
cases are necessary in the same case of Table 1.

Now let us consider the complex situation, which is

 {(𝑃𝑟𝐼𝑛𝑠𝑛 , 𝑃𝑤𝐼𝑛𝑠𝑛
 0 , 𝑃𝑤𝐼𝑛𝑠𝑛

 1 , ⋯)|𝑃𝑟𝐼𝑛𝑠𝑛 ∈ 𝑃𝐷 , 𝑃𝑈 ,

𝑃𝑤𝐼𝑛𝑠𝑛
 𝑖 ϵ 𝑃𝑟𝐼𝑛𝑠𝑛 + 1, 𝑃𝑊 , 𝑃𝑤𝐼𝑛𝑠𝑛

 𝑖 < 𝑃𝑤𝐼𝑛𝑠𝑛
 𝑖+1 } (5)

This defines the situation that at least one wInsn exists along with only one rInsn
when a data hazard occurs. However, only the latest updated value is eager. As the

subsequence (𝑃𝑤𝐼𝑛𝑠𝑛
 0 , 𝑃𝑤𝐼𝑛𝑠𝑛

 1 , ⋯) is monotonously increasing according to

 (5). Actually only the conflict between 𝑃𝑟𝐼𝑛𝑠𝑛 and 𝑃𝑤𝐼𝑛𝑠𝑛
 0

 is essential to be

considered andH(𝑃𝑟𝐼𝑛𝑠𝑛 , 𝑃𝑤𝐼𝑛𝑠𝑛
 0)is the resolution. We can easily construct a priority

circuit based on the values of 𝑃𝑤𝐼𝑛𝑠𝑛
 𝑖

.

Finally let us solve the most difficult case when multiple data hazards occur
simultaneously. In other words, some instructions may have hazards with previous
instructions as a rInsn, meanwhile as a wInsn has data hazards with subsequent
instructions. According to (3), we discover that when ∀𝑃𝑟𝐼𝑛𝑠𝑛 > 𝑃𝐷 ,rInsn either
has already obtained the desirable data or would definitely receive it after several cycles.

So let us consider the data hazards when min 𝑃𝑟𝐼𝑛𝑠𝑛
 0 , 𝑃𝑟𝐼𝑛𝑠𝑛

 1 , ⋯ = 𝑃𝑟𝐼𝑛𝑠𝑛
 𝑗

= 𝑃𝐷 at first.

Then it is easy to determine the set of previous wInsn interrelated to this𝑟𝐼𝑛𝑠𝑛(𝑗)denoted
by S𝑤𝐼𝑛𝑠𝑛 . The instructions in S𝑤𝐼𝑛𝑠𝑛 either do not have data hazards with previous
writing instructions or the data hazard could be solved or even already solved by
bypassing. Eventually it turns into the case defined by (5) and

H(𝑃𝑟𝐼𝑛𝑠𝑛 , 𝑃𝑤𝐼𝑛𝑠𝑛
 𝑗

)is the resolution. Similar conclusion can be drawn when 𝑃𝑟𝐼𝑛𝑠𝑛
 𝑗

> 𝑃𝐷 .

Table 2. Optimized resolution to previous case

 3 4 5 6 7 8 9 10

2 stall bypass bypass bypass

3 bypass

4 bypass

5 bypass

6 bypass

𝑃𝑤𝐼𝑛𝑠𝑛 𝑃𝑟𝐼𝑛𝑠𝑛

471

Advances in Computer Science Research (ACRS), volume 54

Structural Hazards

Structural hazards are usually emerged when multiple instructions are requiring the
same unit simultaneously. Multi-cycle(MC) instructions, which take several cycles to
finish operations, may easily cause structural hazards. In fact, multiplication and
division instructions are the most typical MC instructions. Since stalling can easily
damage to the performance, out-of-order execution is adopted here to avoid that as far as
possible. As irrelevant instructions are allowed to enter the stage while a multiplication
or division instruction is keeping at the same stage in Multiply and Divide Unit(MDU),
compilers will gain more flexibility to schedule instructions efficiently. Unfortunately
structural hazards are hidden in the following situations:

1) Several instructions that require the same unit are issued in a certain period. E.g.
many multiplication instructions are issued continuously and this would lead to
structural hazards of MDU.

2) An MC instruction may enter the same stage along with another independent
instruction. A structural hazard of the pipeline register between two stages is
produced as both instructions need to move to the next stage at the same time.

The key point to avoid this hazard is to insulate the instructions which use the same
hardware resource. In addition, shadow registers are used to latch the information of MC
instructions like address and data of instructions in case of restoring execution of the
MC instructions. Let N𝑚𝑐𝑜𝑝 be the number of cycles to finish the multiple operations

and obviously N𝑚𝑐𝑜𝑝 > 1 is reasonable. Let P𝑚𝑐𝑜𝑝 be the stage of the multiple

operations. Only stalling could guarantee that an MC instruction finishes operations at

P𝑚𝑐𝑜𝑝 stage, meanwhile only a bubble steps into the same next stage. It is reasonable to

make the MC instruction move to the next stage as soon as possible by ignoring the
bubble. Actually the timing for the stalling is ∆ = N𝑚𝑐𝑜𝑝 − 1 cycles after the MC

instruction leaves the P𝐷 stage. An MC instruction would finish operations at the
P𝑚𝑐𝑜𝑝 stage when P𝑚𝑐𝑜𝑝 + N𝑚𝑐𝑜𝑝 − P𝐷 cycles after leaving the P𝐷 stage. And non MC

instruction would take P𝑚𝑐𝑜𝑝 − P𝐷 + 1 cycles to leave P𝑚𝑐𝑜𝑝 stage. Then the difference

between them is the exact timing for the instruction may enter the same stage along with
MC instruction:

∆= P𝑚𝑐𝑜𝑝 + N𝑚𝑐𝑜𝑝 − P𝐷 − P𝑚𝑐𝑜𝑝 − P𝐷 + 1 = N𝑚𝑐𝑜𝑝 − 1 (6)

A counter starts to count down from ∆ as long as the MC instruction leaves P𝐷 stage.

A stalling would be impulse when the counter changes to zero. Table 3depicts the case

when P𝑚𝑐𝑜𝑝 = 𝑃𝐸 , N𝑚𝑐𝑜𝑝 = 4 . At the 6th cycle, normally both AND and MULT

instructions would enter the P𝑀 stage at the same time. In order to prevent the structural

hazard of the pipeline register between P𝐸 stage and P𝑀 stage, pipeline should be

stalled at the 5th cycle as well as ∆= 3 cycles after MULT leaves the P𝐷 stage.

Consequently the structural hazard is settled just as expected.

Table 3. A case of structural hazard of pipeline register

 1 2 3 4 5 6 7 8

mult r1, r2 F D 𝐸1 𝐸2 𝐸3 𝐸4

nop F D E M W

nop F D E M W

and r3,r2,r4
 F D E

 D E M

Cycle Inst.

stall

472

Advances in Computer Science Research (ACRS), volume 54

Control Hazards

Static predicting and delay slot are used to resolve control hazards. Many studies have
already done this part efficiently. For more details, please refer to [6].

A Case Study

The Aforementioned methods was adopted to implement a textbook 5-stage MIPS
microprocessor which supports 53 instructions. 35 students, who have been taught
related knowledge for a whole semester, implemented the same architecture by hand.We
compare the average value of manual work and automatic work in four aspects: clock
frequency, the number of Flip-Flops(FF), the number of BELs (which includes all basic
logic primitives like LUT, MUXCY, etc.) and power. From the result in Table 4, it is
obvious to conclude that automatic method has comparable performance as average of
manual works and gain the best clock frequency with a little more resources.

Conclusions

We introduce an overall method for automatically generating pipelined controllers and
pipelined datapaths at first. For data hazards, we propose the resolution that can
guarantee all the strategies are necessary to gain better performance. We also explain
how to support multi-cycle instructions with out-of-order execution and how to resolve
structural hazards caused by them. At last, a case study shows that the generated
microprocessors have nearly equal performance with the manual work.

Acknowledgement

Our thanks to the support from Beihang University's Teaching Research

Foundation(4006007).

References

[1] L. Hennessy and D. A. Patterson. ComputerArchitecture-A Quantitative Approach

(5. ed.). Morgan Kaufmann, 2012.

[2] M. Itoh, S. Higaki, Y. Takeuchi, A. Kitajima, M. Imai, J. Sato, and A. Shiomi.

PEAS-III: an ASIP design environment. ICCD’00, Sep. 2000, pages 430–436.

[3] P. Mishra, A. Kejariwal, and N. Dutt. Synthesis-driven exploration ofpipelined

embedded processors. VLSI’04, Jan. 2004, pages 921–926.

[4] H. Y. Cheah, S. A. Fahmy, and N. Kapre. Analysis and optimization of a deeply

pipelined FPGA soft processor. FPT’14, Dec. 2014, pages 235–238.

[5] D. Kroening and W. J. Paul. Automated pipeline design. DAC’01, June, 2001,

pages 810–815.

Table 4. Comparisons between manual and automatic work

 Clock
(MHz)

FF BEL
Power
(mW)

Manual
Best 137.86 1442 2373 146.67

Average 67.40 1903 4701 203.32

Automatic 155.65 1674 3143 188.15

473

Advances in Computer Science Research (ACRS), volume 54

[6] E. Nurvitadhi, J. C. Hoe, T. Kam, and S. Lu. Automatic pipelining from

transactional datapath specifications.TCAD’11, 30(3):441–454.

[7] P. Yiannacouras, J. G. Steffan, and J. Rose. Exploration and customization of

fpga-based soft processors. TCAD’07, 26(2):266–277.

474

Advances in Computer Science Research (ACRS), volume 54

