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Abstract. This paper presents a method of automatically generating the Verilog 

implementation of pipelined micro-processors. Based on the RTL descriptions of 

instructions, all types of hazards in pipelining are addressed optimally, especially in 

avoiding redundancy, reducing resource utilization and improving instruction 

throughput. Moreover, out-of-order execution mechanism is adopted in order to 

support multi-cycle instructions more efficiently. Besides, all the multiplexers and 

logics of control signals are analyzed and produced all by the method. The synthesized 

implementations of both pipelined controllers and datapaths are generated 

automatically, based on non-fixed architectures. A case study based on MIPS 

architecture not only explains the framework from input to simulation, but also 

illustrates the method gains almost equal performance with manual work. 

Introduction 

Hazards are the major hurdles of the pipelining, a widely-used technique in modern 

microprocessors0. As many combinations of instructions and corner cases may lead to 

hazards in unanticipated ways eventually, it is difficult to guarantee complete 

considerations and perfect strategies for solving them all by manual development. 

Motivated by these situations, many studies have proposed some method in pipelining 

and they can be divided into two groups due to the degree of automation. 

Using parameterizing and organizing the whole units, a pipelined microprocessor 

can be automatically generated[2,3,4]. These studies are usually based on one particular 

architecture and rely on more manual design work, but with good performance. The 

other group focuses on generating the major units, controllers and datapaths, 

completely automatically in non-fixed pipeline stage[5,6]. Even though the hazards can 

be resolved correctly, the performance of the final implementation can be easily 

damaged due to their strategies. Some potential redundancies exist in their method, 

which leads to more hardware resources and bad performance. In addition, he also does 

not mention the solutions to structural hazards related to multi-cycle instructions.  

Above all, we aim to find solutions to handle automatically in all types of hazards 

and better support in multi-cycle instructions, since multiply and division operations 

are very common in real applications. Firstly, we briefly discuss our method of 

generating controller and datapath according to the sequences of instructions’ Register 

Transfer Language (RTL). Next, we demonstrate the mathematical model to resolve 

data hazards and out-of-order mechanism to solve multi-cycle instructions with better 

performance. Finally, we compare the performance of our method with manual work. 
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Automatic Generation 

Describe the Instructions Using RTL 

Let uppercase letters X, Y,⋯indicate the modules and lowercase letters a, b,⋯ indicate 

the ports of the modules. Therefore, sequences like X. a → Y. b are used to represent 

that the port a  of module X  connects with the port b  of module  Y . Furthermore, 

sequences like X. a ≫  are used to indicate the data from port a  are needed to be 

pipelined. Fig. 1 is the example of an ADD instruction based on 5-stage MIPS 

architecture. 

 

Fig. 1 An RTL example of ADD instruction 

Pipelined Controller 

Control signals can be naturally divided into two groups. One of them is called external 

control signals since they are directly appeared in RTL so that their logic could be 

integrated directly from RTL sequences, such as GPR.wr which denotes whether GPR 

is written or not. Since RTL sequences should contain their specific value for every 

instruction, we could easily get the combinational logic. On the contrary, other signals 

generated by synthesizing all RTL sequences are called internal control signals. 

Selecting signals of multiplexers are the most typical ones and can be divided into two 

kinds according to their functions. One of them is called Port Mux which one data 

should be selected from multiple data for different instructions. As different source 

ports may connect with the same target port after hashing all the RTL sequences, Port 

Mux is apparently required in order to choose the right source as input according to 

opcode of instructions. The other type is called Send Mux because bypassing implies 

the connections between the sending data and the functional units. The main difference 

between these two types is how to generate the logic of selecting signals. We will 

discuss the conditions of bypassing in the next section. After all the control signals are 

established, a controller can be easily implemented. 

Pipelined Datapath 

Datapath of pipelined microprocessor usually consists of core units, multiplexers, 

pipeline registers and the connections between them. The basic information about core 

units is parsed from user-defined verilog files, multiplexers generated automatically, 

pipeline registers produced by merging sequences like X. a ≫at each stage. The set of 

X. a are just the inputs of pipeline registers. In the end, after appending the outputs of 

controller to the inputs of datapath, the datapath would be formed up eventually. 
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Hazard Resolution 

Data Hazards 

Since there are many possible combinations of instructions that can lead to data hazards, 

it is imperative to find a formula to choose bypassing or stalling properly. For a better 

explanation, let𝑃𝐷be the decode stage and 𝑃𝑊be the write-back stage. A register model 

is denoted by 𝑅. An𝑟𝐼𝑛𝑠𝑛 is the instruction which reads the register when a data hazard 

occurs. The stage of rInsnis denoted by𝑃𝑟𝐼𝑛𝑠𝑛 . Similarly, a wInsnis an instruction that 

writes the register when a data hazard occurs. The stage of wInsn is denoted by𝑃𝑤𝐼𝑛𝑠𝑛 . 

𝑃𝑈  indicates the earliest stage for the rInsn using contents of register R, andP𝐸indicates 

the stage that wInsnjust finishes calculating the result to write back.  

Firstly, we can easily define the simplest case, which consists of both rInsnand 

wInsn: 

  𝑃𝑟𝐼𝑛𝑠𝑛 , 𝑃𝑤𝐼𝑛𝑠𝑛  |∀𝑃𝑟𝐼𝑛𝑠𝑛 𝜖 𝑃𝐷 , 𝑃𝑈 , ∀𝑃𝑤𝐼𝑛𝑠𝑛 𝜖 𝑃𝑟𝐼𝑛𝑠𝑛 + 1, 𝑃𝑤  }.                                (1) 

Since 𝑃𝑊 is usually the last stage and wInsn should be issued earlier than rInsn, 

consequently𝑃𝑤𝐼𝑛𝑠𝑛 falls into the range of  𝑃𝑟𝐼𝑛𝑠𝑛 + 1, 𝑃𝑤  . While for 𝑃𝑟𝐼𝑛𝑠𝑛 , only 

ranges from 𝑃𝐷  to 𝑃𝑈  is needed to be considered, this is because as long as the expected 

value is obtained at the 𝑃𝑢  stage, that value is held at ∀𝑃𝑖 , 𝑃𝑖 > 𝑃𝑢  stage with the help of 

pipeline registers.  

To address this case, we can stall the microprocessor until the expected values are 

finally calculated. This strategy is defined by 

  H 𝑃𝑟𝐼𝑛𝑠𝑛 , 𝑃𝑤𝐼𝑛𝑠𝑛  =   
𝑏𝑦𝑝𝑎𝑠𝑠𝑖𝑛𝑔, ∀𝑃𝑤𝐼𝑛𝑠𝑛 𝜖 𝑃𝐸 , 𝑃𝑤  

𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑔,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                            (2) 

Table 1 shows how data hazards are solved by applying (2) when P𝐷 = 2, P𝑊 =
10, P𝑈 = 6, 𝑃𝐸 = 7. 

Unfortunately there are two major defects in (2): 

1) Redundancies are hidden. 

As stalling usually indicates rInsn stays still while wInsnmoves forward, some 

hazard pairs may never appear during actually running. In Table 1, stalling is adopted 

when 𝑃𝑟𝐼𝑛𝑠𝑛 = 2, 𝑃𝑤𝐼𝑛𝑠𝑛 = 3 . One cycle later,𝑃𝑟𝐼𝑛𝑠𝑛
′ = 2, 𝑃𝑤𝐼𝑛𝑠𝑛

′ = 4 which means 

pairs like𝑃𝑟𝐼𝑛𝑠𝑛 = 3, 𝑃𝑤𝐼𝑛𝑠𝑛 = 4 or 𝑃𝑟𝐼𝑛𝑠𝑛 = 4, 𝑃𝑤𝐼𝑛𝑠𝑛 = 5never exists. Consequently, 

the solutions to these pairs become redundant eventually. 

2) Not all stalling is necessary. 
Without doubt, as long as the expected value is achieved at 𝑃𝑈  stage in time, the data 

hazard is settled. However,(2) indicates stalling cannot be stopped until wInsn leaves the 
P𝐸  stage. However, considering this situation, when PrInsn = 2, PwInsn = 7 with no 
suspending, it becomes 𝑃𝑟𝐼𝑛𝑠𝑛

′ = 3, 𝑃𝑤𝐼𝑛𝑠𝑛
′ = 8after a cycle and exactly fulfils the 

Table 1. Resolution to the case of hazard pairs 

 3 4 5 6 7 8 9 10 

2 stall stall stall stall stall bypass bypass bypass 

3  stall stall stall stall bypass bypass bypass 

4   stall stall stall bypass bypass bypass 

5    stall stall bypass bypass bypass 

6     stall bypass bypass bypass 

 

𝑃𝑤𝐼𝑛𝑠𝑛  
𝑃𝑟𝐼𝑛𝑠𝑛  
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condition of bypassing. Consequently rInsn can still obtain the expected value, stalling 
is unnecessary at this particular time. 

Equation         (3) is further solution to overcome previous two defects: 

   H 𝑃𝑟𝐼𝑛𝑠𝑛 , 𝑃𝑤𝐼𝑛𝑠𝑛  =  

 
 
 

 
 

𝑏𝑦𝑝𝑎𝑠𝑠𝑖𝑛𝑔, 𝑃𝑟𝐼𝑛𝑠𝑛 = 𝑃𝐷 , 𝑃𝑤𝐼𝑛𝑠𝑛 ∈  𝑃𝐸 , 𝑃𝑊 

𝑏𝑦𝑝𝑎𝑠𝑠𝑖𝑛𝑔, 𝑃𝑟𝐼𝑛𝑠𝑛 ∈  𝑃𝐷 , 𝑃𝑈 , 𝑃𝑤𝐼𝑛𝑠𝑛 = 𝑃𝐸 + 1,
𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑔, 𝑃𝑟𝐼𝑛𝑠𝑛 = 𝑃𝐷 , 𝑃𝐸 > 𝑃𝑈 ,                          

𝑃𝑤𝐼𝑛𝑠𝑛 ∈  𝑃𝐷 + 1, 𝑃𝐷 + 𝑃𝐸 − 𝑃𝑈 

𝑢𝑛𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (3) 

PROOF. We can prove it from two aspects: 

1) 𝑃𝑤𝐼𝑛𝑠𝑛 > 𝑃𝐸  
When 𝑃𝑟𝐼𝑛𝑠𝑛 = 𝑃𝐷 , 𝑃𝑤𝐼𝑛𝑠𝑛 > 𝑃𝐸 , it indicates wInsn has already finished computing 

the write-data according to the definition of 𝑃𝐸 . Bypassing can be established correctly.  
When 𝑃𝑟𝐼𝑛𝑠𝑛 ≠ 𝑃𝐷 , 𝑃𝑤𝐼𝑛𝑠𝑛 = 𝑃𝐸 + 1 , it means wInsn has recently finished 

computing. Thus it is the proper timing to forward the data from 𝑃𝑤𝐼𝑛𝑠𝑛 stage to 𝑃𝑟𝐼𝑛𝑠𝑛  
stage.  

When 𝑃𝑟𝐼𝑛𝑠𝑛 ≠ 𝑃𝐷 , 𝑃𝑤𝐼𝑛𝑠𝑛 ≠ 𝑃𝐸 + 1 , apparently at this moment 𝑃𝑟𝐼𝑛𝑠𝑛 > 𝑃𝐷  and 
𝑃𝑤𝐼𝑛𝑠𝑛 > 𝑃𝐸 + 1. As a result, let us compute∆𝑟𝐼𝑛𝑠𝑛 = 𝑃𝑟𝐼𝑛𝑠𝑛 − 𝑃𝐷 , ∆𝑤𝐼𝑛𝑠𝑛 = 𝑃𝑤𝐼𝑛𝑠𝑛 −
(𝑃𝐸 + 1). If ∆𝑟𝐼𝑛𝑠𝑛≤ ∆𝑤𝐼𝑛𝑠𝑛 , thereby ∆𝑟𝐼𝑛𝑠𝑛  cycles before, they were 

𝑃𝑟𝐼𝑛𝑠𝑛
′ = 𝑃𝑟𝐼𝑛𝑠𝑛 − ∆𝑟𝐼𝑛𝑠𝑛 = 𝑃𝐷 , 

𝑃𝑤𝐼𝑛𝑠𝑛
′ = 𝑃𝑤𝐼𝑛𝑠𝑛 − ∆𝑟𝐼𝑛𝑠𝑛≥ 𝑃𝑤𝐼𝑛𝑠𝑛 − ∆𝑤𝐼𝑛𝑠𝑛 = 𝑃𝐸 + 1. 

which means at this particular moment the data from wInsn should have been forwarded 
to rInsn. On the other side, if ∆𝑟𝐼𝑛𝑠𝑛 > ∆𝑤𝐼𝑛𝑠𝑛 , then∆𝑤𝐼𝑛𝑠𝑛  cycles before, they were 

𝑃𝑟𝐼𝑛𝑠𝑛
′ = 𝑃𝑟𝐼𝑛𝑠𝑛 − ∆𝑤𝐼𝑛𝑠𝑛 > 𝑃𝑟𝐼𝑛𝑠𝑛 − ∆𝑟𝐼𝑛𝑠𝑛 > 𝑃𝐷 ,  

𝑃𝑤𝐼𝑛𝑠𝑛
′ = 𝑃𝑤𝐼𝑛𝑠𝑛 − ∆𝑤𝐼𝑛𝑠𝑛 = 𝑃𝐸 + 1. 

which indicates rInsn has also obtained the expect value. It is also unnecessary. 

2) 𝑃𝑤𝐼𝑛𝑠𝑛 ≤ 𝑃𝐸  
Let us introduce some auxiliary variables at first: 

∆𝑟𝐼𝑛𝑠𝑛 = 𝑃𝑈 − 𝑃𝑟𝐼𝑛𝑠𝑛 + 1, ∆𝑤𝐼𝑛𝑠𝑛 = (𝑃𝐸 + 1) − 𝑃𝑤𝐼𝑛𝑠𝑛 + 1. 

∆𝑟𝐼𝑛𝑠𝑛 is denoted how long it will take rInsn to reach 𝑃𝑈  stage and ∆𝑤𝐼𝑛𝑠𝑛  is denoted 
how long it will cost wInsn to arrive at 𝑃𝐸stage. The difference between them is 

∆= ∆𝑤𝐼𝑛𝑠𝑛 − ∆𝑟𝐼𝑛𝑠𝑛 = 𝑃𝐸 − 𝑃𝑈 + 𝑃𝑟𝐼𝑛𝑠𝑛 − 𝑃𝑤𝐼𝑛𝑠𝑛 + 1.                                               (4) 

If ∆> 0,itactually indicates wInsn needs more cycles to finish the computation, which 
leads to invalid bypassing. If 𝑃𝑟𝐼𝑛𝑠𝑛 = 𝑃𝐷  at this moment, stalling becomes the only 
choice. Otherwise, when 𝑃𝑟𝐼𝑛𝑠𝑛 > 𝑃𝐷 , then (𝑃𝑟𝐼𝑛𝑠𝑛 − 𝑃𝐷) cycles before, they were 

𝑃𝑟𝐼𝑛𝑠𝑛
′ = 𝑃𝑟𝐼𝑛𝑠𝑛 −  𝑃𝑟𝐼𝑛𝑠𝑛 − 𝑃𝐷 = 𝑃𝐷 , 

𝑃𝑤𝐼𝑛𝑠𝑛
′ = 𝑃𝑤𝐼𝑛𝑠𝑛 −  𝑃𝑟𝐼𝑛𝑠𝑛 − 𝑃𝐷 , 

𝑃𝑟𝐼𝑛𝑠𝑛
′ − 𝑃𝑤𝐼𝑛𝑠𝑛

′ = 𝑃𝑟𝐼𝑛𝑠𝑛 − 𝑃𝑤𝐼𝑛𝑠𝑛 , 

∆′= 𝑃𝐸 − 𝑃𝑈 + 𝑃𝑟𝐼𝑛𝑠𝑛
′ − 𝑃𝑤𝐼𝑛𝑠𝑛

′ + 1 = ∆. 
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Since𝑃𝑟𝐼𝑛𝑠𝑛
′ = 𝑃𝐷 and∆′= ∆> 0 , stalling should be adopted just as the former 

condition. Consequently, (𝑃𝑟𝐼𝑛𝑠𝑛 − 𝑃𝐷) cycles later, although wInsn would arrive at 
𝑃𝑤𝐼𝑛𝑠𝑛 stage, it is impossible for rInsn to reach 𝑃𝑟𝐼𝑛𝑠𝑛 stage. It is redundant. 

Conversely, ∆≤ 0 indicates that rInsn has not used the operand yet by the time wInsn 
has just finished calculating. Then (P𝐸 + 1 − 𝑃𝑤𝐼𝑛𝑠𝑛 ) cycles later, they will be 

𝑃𝑟𝐼𝑛𝑠𝑛
′ = 𝑃𝑟𝐼𝑛𝑠𝑛 +  𝑃𝐸 + 1 − 𝑃𝑤𝐼𝑛𝑠𝑛  = 𝑃𝑈 + ∆, 

𝑃𝑤𝐼𝑛𝑠𝑛
′ = 𝑃𝑤𝐼𝑛𝑠𝑛 +  𝑃𝐸 + 1 − 𝑃𝑤𝐼𝑛𝑠𝑛  = 𝑃𝐸 + 1 

As ∆≤ 0 , then 𝑃𝑟𝐼𝑛𝑠𝑛
′ ≤ 𝑃𝑈  indicates bypassing from wInsn to rInsn can be 

established at this moment. Thus we know data hazards would be resolved after all, it is 
unnecessary to be considered right now.  

Above all, pairs of data hazards can be resolved by         (3). Besides, stalling only 
happens when necessary and the expected value is also forwarded once so that no further 
resources are required for this data hazards.Via  3 , as Table 2 shows, only 8 output 30 
cases are necessary in the same case of Table 1. 

Now let us consider the complex situation, which is 

        {(𝑃𝑟𝐼𝑛𝑠𝑛 , 𝑃𝑤𝐼𝑛𝑠𝑛
 0 , 𝑃𝑤𝐼𝑛𝑠𝑛

 1 , ⋯ )|𝑃𝑟𝐼𝑛𝑠𝑛 ∈  𝑃𝐷 , 𝑃𝑈 ,

𝑃𝑤𝐼𝑛𝑠𝑛
 𝑖 ϵ 𝑃𝑟𝐼𝑛𝑠𝑛 + 1, 𝑃𝑊 , 𝑃𝑤𝐼𝑛𝑠𝑛

 𝑖 < 𝑃𝑤𝐼𝑛𝑠𝑛
 𝑖+1 }                              (5) 

This defines the situation that at least one wInsn exists along with only one rInsn 
when a data hazard occurs. However, only the latest updated value is eager. As the 

subsequence (𝑃𝑤𝐼𝑛𝑠𝑛
 0 , 𝑃𝑤𝐼𝑛𝑠𝑛

 1 , ⋯ ) is monotonously increasing according to 

                     (5). Actually only the conflict between 𝑃𝑟𝐼𝑛𝑠𝑛 and 𝑃𝑤𝐼𝑛𝑠𝑛
 0 

 is essential to be 

considered andH(𝑃𝑟𝐼𝑛𝑠𝑛 , 𝑃𝑤𝐼𝑛𝑠𝑛
 0 )is the resolution. We can easily construct a priority 

circuit based on the values of 𝑃𝑤𝐼𝑛𝑠𝑛
 𝑖 

.  

Finally let us solve the most difficult case when multiple data hazards occur 
simultaneously. In other words, some instructions may have hazards with previous 
instructions as a rInsn, meanwhile as a wInsn has data hazards with subsequent 
instructions. According to         (3), we discover that when ∀𝑃𝑟𝐼𝑛𝑠𝑛 > 𝑃𝐷 ,rInsn either 
has already obtained the desirable data or would definitely receive it after several cycles. 

So let us consider the data hazards when min 𝑃𝑟𝐼𝑛𝑠𝑛
 0 , 𝑃𝑟𝐼𝑛𝑠𝑛

 1 , ⋯  = 𝑃𝑟𝐼𝑛𝑠𝑛
 𝑗  

= 𝑃𝐷  at first. 

Then it is easy to determine the set of previous wInsn interrelated to this𝑟𝐼𝑛𝑠𝑛(𝑗 )denoted 
by S𝑤𝐼𝑛𝑠𝑛 . The instructions in S𝑤𝐼𝑛𝑠𝑛 either do not have data hazards with previous 
writing instructions or the data hazard could be solved or even already solved by 
bypassing. Eventually it turns into the case defined by                      (5)  and 

H(𝑃𝑟𝐼𝑛𝑠𝑛 , 𝑃𝑤𝐼𝑛𝑠𝑛
 𝑗  

)is the resolution. Similar conclusion can be drawn when 𝑃𝑟𝐼𝑛𝑠𝑛
 𝑗  

> 𝑃𝐷 . 

 

Table 2. Optimized resolution to previous case 

 3 4 5 6 7 8 9 10 

2 stall     bypass bypass bypass 

3      bypass   

4      bypass   

5      bypass   

6      bypass   

 

𝑃𝑤𝐼𝑛𝑠𝑛  𝑃𝑟𝐼𝑛𝑠𝑛  
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Structural Hazards 

Structural hazards are usually emerged when multiple instructions are requiring the 
same unit simultaneously. Multi-cycle(MC) instructions, which take several cycles to 
finish operations, may easily cause structural hazards. In fact, multiplication and 
division instructions are the most typical MC instructions. Since stalling can easily 
damage to the performance, out-of-order execution is adopted here to avoid that as far as 
possible. As irrelevant instructions are allowed to enter the stage while a multiplication 
or division instruction is keeping at the same stage in Multiply and Divide Unit(MDU), 
compilers will gain more flexibility to schedule instructions efficiently. Unfortunately 
structural hazards are hidden in the following situations:  

1) Several instructions that require the same unit are issued in a certain period. E.g. 
many multiplication instructions are issued continuously and this would lead to 
structural hazards of MDU. 

2) An MC instruction may enter the same stage along with another independent 
instruction. A structural hazard of the pipeline register between two stages is 
produced as both instructions need to move to the next stage at the same time. 

The key point to avoid this hazard is to insulate the instructions which use the same 
hardware resource. In addition, shadow registers are used to latch the information of MC 
instructions like address and data of instructions in case of restoring execution of the 
MC instructions. Let N𝑚𝑐𝑜𝑝  be the number of cycles to finish the multiple operations 

and obviously N𝑚𝑐𝑜𝑝 > 1  is reasonable. Let P𝑚𝑐𝑜𝑝  be the stage of the multiple 

operations. Only stalling could guarantee that an MC instruction finishes operations at 

P𝑚𝑐𝑜𝑝  stage, meanwhile only a bubble steps into the same next stage. It is reasonable to 

make the MC instruction move to the next stage as soon as possible by ignoring the 
bubble. Actually the timing for the stalling is ∆ = N𝑚𝑐𝑜𝑝 − 1  cycles after the MC 

instruction leaves the P𝐷  stage. An MC instruction would finish operations at the 
P𝑚𝑐𝑜𝑝 stage when P𝑚𝑐𝑜𝑝 + N𝑚𝑐𝑜𝑝 − P𝐷 cycles after leaving the P𝐷 stage. And non MC 

instruction would take P𝑚𝑐𝑜𝑝 − P𝐷 + 1 cycles to leave P𝑚𝑐𝑜𝑝  stage. Then the difference 

between them is the exact timing for the instruction may enter the same stage along with 
MC instruction: 

∆=  P𝑚𝑐𝑜𝑝 + N𝑚𝑐𝑜𝑝 − P𝐷 −  P𝑚𝑐𝑜𝑝 − P𝐷 + 1  = N𝑚𝑐𝑜𝑝 − 1                                 (6) 

A counter starts to count down from ∆ as long as the MC instruction leaves P𝐷 stage. 

A stalling would be impulse when the counter changes to zero. Table 3depicts the case 

when P𝑚𝑐𝑜𝑝 = 𝑃𝐸 , N𝑚𝑐𝑜𝑝 = 4 . At the 6th cycle, normally both AND and MULT 

instructions would enter the P𝑀  stage at the same time. In order to prevent the structural 

hazard of the pipeline register between  P𝐸  stage and  P𝑀  stage, pipeline should be 

stalled at the 5th cycle as well as ∆= 3  cycles after MULT leaves the P𝐷  stage. 

Consequently the structural hazard is settled just as expected. 

 

 

Table 3. A case of structural hazard of pipeline register 

 1 2 3 4 5 6 7 8 

mult r1, r2 F D 𝐸1 𝐸2 𝐸3 𝐸4   

nop  F D E M W   

nop   F D E M W  

and r3,r2,r4 
   F D E   

     D E M 

 

Cycle Inst. 

stall 
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Control Hazards 

Static predicting and delay slot are used to resolve control hazards. Many studies have 
already done this part efficiently. For more details, please refer to [6].  

A Case Study 

The Aforementioned methods was adopted to implement a textbook 5-stage MIPS 
microprocessor which supports 53 instructions. 35 students, who have been taught 
related knowledge for a whole semester, implemented the same architecture by hand.We 
compare the average value of manual work and automatic work in four aspects: clock 
frequency, the number of Flip-Flops(FF), the number of BELs (which includes all basic 
logic primitives like LUT, MUXCY, etc.) and power. From the result in Table 4, it is 
obvious to conclude that automatic method has comparable performance as average of 
manual works and gain the best clock frequency with a little more resources. 

 

Conclusions 

We introduce an overall method for automatically generating pipelined controllers and 
pipelined datapaths at first. For data hazards, we propose the resolution that can 
guarantee all the strategies are necessary to gain better performance. We also explain 
how to support multi-cycle instructions with out-of-order execution and how to resolve 
structural hazards caused by them. At last, a case study shows that the generated 
microprocessors have nearly equal performance with the manual work. 
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