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Abstract. Three-dimensional (3D) reconstruction of fluorescence microscopic images 

is a challenging topic in the image processing, because the imaging system is very 

complex, and the point spread function (PSF) continuously varies along the optical axis. 

Generally, the more exact the PSF is, the higher the reconstruction accuracy is. An 

image reconstruction method is proposed for fluorescence microscopic sample based on 

space-variant PSF (SV-PSF) which is generated by cubic spline theory in this paper. 

Firstly, key PSFs are estimated by blind deconvolution algorithm at several depths of 

fluorescence microscopic image stack along the optical axis. Then, other PSFs are 

interpolated using cubic spline theory. Finally, a 3D microscopic specimen model is 

reconstructed by this group of SV-PSFs. The experimental results show that the 

proposed method is obviously superior to the method in which space-invariant (SI) PSF 

is used to reconstruct the simulated and real fluorescence microscopic images. 

Introduction  

Computational optical sectioning is a powerful tool for reconstructing 3D 

fluorescence microscopic images. Because of the existence of diffraction limitation and 

spherical aberration (SA) during the course of optical imaging, the fluorescence image 

is often degraded by blur and noise. The mathematic model for image formation is 

given by the following equation, 

Nhfg  .                                                                                                                             (1)  

where g is the observation image, f is the unknown true image, N is additive noise, 

and h is the blurring operator which is decided by PSF of the system. 

For simplifying the computational procedure, two assumptions are almost proposed 

in most image restoration algorithms. One is that the process of imaging is linear. The 

other is that the PSF is space- invariant. These methods [1-2], however, usually perform 

well only on thin specimen, because in the actual situation the PSF is space-variant 

along the optical axis z [3-5]. Only on the thin sample does the PSF vary tinily. 

Therefore, when data obtained from thick samples is processed using these methods, 

artifacts often occurs. On the other hand, for estimating all PSFs in the whole object 

space, extensive calculation is also an intractable problem. So some approximate 

algorithms are proposed in which a trade-off between the computational complexity 

and accuracy of image reconstruction is considered. For example, Ben Hadj et al. [6] 

obtained SV-PSFs by a convex combination of a group of SI-PSFs. And another 
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method was also proposed [7] in which the PSF was approximately regarded as a 

space-invariant one within a small range. So the image stack was divided into several 

groups, and every group was restored by a SI-PSF. But this approach is inherently 

stratified and the results are not continuous between two adjacent groups. In order to 

smooth the block effect between any two parts of the whole PSFs, Preza et al [8] 

introduced a strata interpolation method to calculate the PSFs which were located at the 

overlapping part. However the information contained only by two adjacent parts is 

considered, which limits the widespread use of this kind of method. 

Based on the above discussion, a 3D reconstruction method of fluorescence 

microscopic images is proposed using cubic spline theory. Firstly, key PSFs are 

estimated by blind deconvolution algorithm [9] at several depths of image stack along 

the optical axis z. Then, other PSFs are interpolated using cubic spline theory. Finally, a 

3D microscopic specimen model is reconstructed by this group of SV-PSFs. One of 

advantages of our method is that the interpolation result has a higher accuracy because 

all key PSFs' information in the whole sample space is considered. The other advantage 

is that the reconstruction time can be greatly reduced because only key PSFs are 

estimated by blind deconvolution method, compared with those methods in which all 

PSFs are obtained by blind deconvolution for the accuracy of PSFs. In addition, because 

of the use of interpolation method, more PSFs can be generated conveniently, which is 

helpful to smooth different PSF at the different depths and to relieve block effect in the 

whole PSFs. The sketch map of the proposed method is shown in the Fig. 1. 

 

Fig.1. The sketch map of the proposed method. 

Methodology 

Estimation of Key PSFs 

Generally, the more exact the PSF is, the higher the reconstruction accuracy is during 

the course of 3D reconstruction of fluorescence microscopic image. But because of the 

complication of the imaging system, it's too difficult to obtain all PSFs in different 

depth along the optical axis z not only by experimental measurement but also by 
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theoretical model. Although blind deconvolution method [9] can accurately estimate 

the PSF of the degraded image, it will lead to remarkable increase of 

the amount of calculation if all PSFs are estimated in the whole object space. For 

obtaining the richer and more exact PSFs without the cost of too much 

the amount of calculation, key PSFs along the optical axis z are firstly estimated using 

blind deconvolution algorithm [9]. Because 3D PSF along optical axis does not change 

very rapidly within a small range, key PSFs  mhhh ,...,, 21  may be calculated every few 

images in the image stack. In this paper key PSFs are obtained every 3 images in image 

stack. 

Generation of Other PSFs 

After obtaining a series of key PSFs, other PSFs can be generated using cubic spline 

theory. Regarding the key PSFs  mhhh ,...,, 21  as m interpolation nodes in , ],1[ mi . At the 

same time the intensities of these key PSFs are defined as the node value iv , ],1[ mi , 

here iv  is a two-dimensional matrix. 1h  is the initial node denoted by  11,vn , and mh  is 

the terminal node presented by  mm vn , . According to the theory of cubic spline, we can 

obtain an interpolation function with respect to the depth z between every two nodes. 

The complete form of interpolation function can be described as, 

   
   

   



















 mmm nnzzS

nnzzS

nnzzS

zS

,

,

,

)(

11

322

211



                                                                                  (2) 

where  zSr   1,...,2,1  mr  is a three order polynomial, and can be expressed as, 

 
 .1,...,2,1)( 23  mrdzczbzazS rrrrr                                                                                

(3) 

Given the boundary condition, the polynomial coefficients ra , rb , rc , rd  in every 

sub-region  1, rr nn can be obtained, and the PSF located in any depth can be calculated 

using the following equation: 

 tjnnzdzczbzazS rrjrjrjrjrjr ,...2,1],,[,)()()()( 1
23  

,                               
 (4) 

Where t  is the number of PSFs which are estimated in sub-region  1, rr nn .Therefore 

we can obtain  PSFs at different depth in each sub-region using the interpolation 

function S(z). So more accurate and richer SV-PSFs in the whole fluorescence 

microscopic image stack can be obtained. 

3D Reconstruction of the Specimen 

After the SV-PSFs are obtained, the fluorescence microscopic specimen can be 

reconstructed using these PSFs in 3D form. At present, a lot of 3D deconvolution 

technologies such as Richard-Lucy (RL) method [10], regularized linear least squares 

(LLS) method [11], linear maximum a posterior (MAP) method [12] and expectation 

maximization (EM) method [13] etc. can be used to reconstruct 3D fluorescence 

microscopic specimen. Here we choose Richard-Lucy with total variation constraint 

(RL-TV) [14] method to do experiments. The detailed results will be given in Section 3. 

539

Advances in Computer Science Research (ACRS), volume 54



Evaluation Criteria 

Here we measure the accuracy of the interpolated PSFs using the relative squared error 

(RSE) [15] shown as, 
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where )(xh  is the original PSF, and  xh


 is the interpolated PSF. RSE is a positive 

value smaller than 1. The smaller the RSE is, the more exactly the PSF is interpolated. 

Considering that our restoration method is applied to microscopic images, the 

performance of preserving structure detail is of great importance. Therefore, we choose 

the structural similarity (SSIM) method [16] to measure the structure detail similarity 

between the original image F and the restored image G, the equation is defined as 

     GFsGFcGFlSSIM ,,,   .                                                                                      (6) 
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where l(F,G), c(F,G) and s(F,G) denoted respectively the similarity information 

about luminance, contrast and structure between the original image and the restored 

one. F and G  are respectively the mean intensity of the original image and the 

restored image. F  and G  are respectively the standard deviation of the original 

image and the restored image, and FG  is the covariance of them. SSIM is also a 

positive value smaller than 1. On the contrary to RSE, the larger SSIM is, the more 

exactly the object is restored. 

Algorithmic Flow 

In this paper, a 3D reconstruction method of microscopic image stack is proposed. 

During the course of 3D reconstruction, it's difficult to obtain all PSFs in different depth 

along the optical axis z. Therefore, key PSFs are firstly estimated by means of blind 

deconvolution. Then other PSFs are generated using cubic spline theory. Finally, more 

exact 3D model of the fluorescence microscopic images can be reconstructed using all 

the SV-PSFs and RL-TV [14] method. 

Experimental Results 

For validating the efficiency of the proposed method, we compared our results with 

those of traditional method in terms of synthetic and real fluorescence image stack. 

Synthetic Data 

We firstly evaluated our method using synthetic image stack. The advantage processing 

synthetic image stack is that the original object and PSFs are known. Thus the quality of 

the restored object and estimated PSFs can be readily assessed. We can obtain the 

blurred and noisy image stack by convolving a group of PSFs and adding noise in every 

piece of image. We chose Gaussian function as the system's approximated PSF which 
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has the similar shape with Bessel function. The different plane could be simulated by 

the Gaussian function with different variances. The form of the 3D Gaussian PSF can 

be described as [17], 
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where 0
22

0
zzzz   , z denotes the current plane, and 0z  denotes the central 

position. 
2

0z
 and 2

z  is the variance of central position and current plane respectively.   

is the weighting function. In this paper, we set 00 z , 5.0 , 6.02

0
z , ]2,2[],2,2[  qp , 

and the interval of two slices is 0.2 m .  

So 65 PSFs were generated using Eq. (8). Fig. 2(a) is a synthetic microscopic image 

stack (75*100*65), and Fig. 2(b) is a blurred and noisy image stack by convolving these 

generated PSFs and adding noise. 

 

Fig.2. (a) The original image stack, and (b) the degraded image stack. 

For reconstructing 3D model of synthetic microscopic image stack, 17 key PSFs were 

firstly estimated by blind deconvolution method [9]. Then other PSFs were interpolated 

using cubic spline theory (Supposing that the interpolation function meets boundary 

condition, i.e. ,  ). Fig. 3(a) shows the intensities which are located in the same position 

of the estimated and interpolated PSFs. For proving the feasibility of the method, all 

PSFs in different depth were estimated using deconvolution method in advance besides 

the above mentioned 17 key PSFs. The errors between the estimated PSFs and the 

interpolated PSFs are shown in Fig. 3(b). 

 

 

Fig.3. (a) The estimated and interpolated results, and (b) RSE between the estimated and interpolated 

PSFs. 
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It can be seen from Fig. 3 (a) that cubic spline function can realize smoothing 

transition between two interpolation nodes. And Fig. 3 (b) shows that the interpolation 

error is satisfactory, although slight fluctuation occurs between z=30 and z=40. But the 

errors are less than 0.07. And most of interpolation errors almost tend to 0. The above 

results illustrates that space-variant PSFs can be generated using the proposed method 

instead of blind deconvolution method. Therefore we can significantly reduce 

calculation amount.  

Fig. 4(a) and 4(b) are the 3D models reconstructed by RL-TV method [14] using 

SI-PSFs ( , and variance  ) and our method respectively, and both the iteration numbers 

are 10. For fairly comparing the efficiency of the methods, all results are the best 

experimental ones.  

It can be seen from the Fig. 4 that the proposed method obtains the better result with 

less noise and clearer vision, compared with the method using SI-PSFs, especially in the 

edges of 3D fluorescence image model. Fig. 5 shows the SSIM values between original 

image stack and reconstructed image stack respectively using SI-PSF method (dotted 

line) and our method (solid line). 

 

Fig.4. 3D models reconstructed by (a) SI-PSFs method, and (b) our method. 

 

Fig.5. SSIM between original and reconstructed image stack respectively using SI-PSFs method (dotted 

line) and our method (solid line). 

It can be seen from Fig. 5 that SSIM values obtained from our method are larger than 

ones from SI-PSFs method except some images between z=30 and z=40 along the 

optical axis. The reason is that the PSFs which are interpolated within this range might 

not be perfectly precise. This phenomenon can also be found in Fig. 3(b). But SSIMs 

between the original and the reconstructed image stack are still very large using our 

method, which exceed 0.94.  
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Real Data 

We also do another experiment using real fluorescence image stack (512*512*65) 

obtained from Internet and we don't know the type and any parameters of experimental 

instrument. Fig. 6(a) shows the intensities which are located in the same position of the 

estimated and interpolated PSFs. The errors between the estimated PSFs using blind 

deconvolution [9] and the interpolated PSFs using cubic spline theory are shown in Fig. 

6(b).  

It can be seen from Fig. 6 that both the interpolation results and interpolation errors 

are satisfactory. The fluctuation phenomenon of fitting error also occurs in Fig. 6 (b), 

but the RSE values are very small which do not exceed  . Therefore cubic spline method 

can be adopted to generate more PSFs with the help of key PSFs. Fig. 7 (a)-(c) shows 

the 3D models of the original fluorescence microscopic image stack, the reconstructed 

image stacks by SI-PSFs method and our method respectively. 

All the experimental results show that the reconstructed 3D model by SI-PSFs 

method looks more blurring, and false edges emerge in it. Our method, however, gives 

the clear result in the light of subjective human vision. 

 

Fig.6. (a) The estimated and the interpolated results, and (b) RSE between the estimated and interpolated 

PSFs. 

 

 

Fig.7. (a) 3D model of original image stack, and the reconstructed 3D models by (b) SI-PSFs method, and 

(c) our method. 

Conclusions 

A 3D reconstruction method of microscopic image is proposed in this paper. Firstly, key 

PSFs are estimated by blind deconvolution algorithm at several depths along the optical 

axis. Then, other PSFs are interpolated using cubic spline theory. Finally, the 3D 

microscopic specimen model can be reconstructed by this group of SV-PSFs. In 
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addition, 3D Gaussian model is used to simulate the real PSF model, and SSIM and 

RSE are considered as measure criteria of the restored image stack and interpolated 

PSFs, respectively.  

We applied the proposed method to the simulated and real data. The experimental 

results show that our method gives better restored image quality in the aspect of both 

the objective criterion and subjective vision. However, it should be noted that the 

estimation accuracy of the key PSFs has great influence to the interpolated PSFs and the 

final reconstructed results. Therefore, more accurate estimation algorithm for PSF is 

our future work. 
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