
Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Industrial Big Data Platform Based on Open Source Software

Wen YANG1,2, Syed Naeem Haider1, Jian-hong ZOU 1 and
Qian-chuan ZHAO1,*

1
Center for Intelligent and Networked Systems, Department of Automation, Tsinghua

University, Beijing, 100084, China

2
Key Laboratory of Space Launching Site Reliability Technology, Haikou 570100,

China

whutyw@126.com, haider.gillani12@gmail.com, zoujh13@mails.tsinghua.edu.cn,
zhaoqc@tsinghua.edu.cn

Keywords: Industrial Big Data, Open source, Industry 4.0, Industrial Internet.

Abstract. Deep integration of industrial system and information technology triggered

the fourth industrial revolution-Industry 4.0 which based on cyber physical system and

Industrial Big Data. Although many researchers have discussed the basic concept of

industry 4.0 and Industrial Big Data, as we known no literatures about how to design

and develop an Industrial Big Data platform. Business solutions are generally not open

to the public, so little is known about how to achieve it. Open source big data tools have

widely used in the Internet field, but it is not clear how these tools are used in the

industrial field. We focus on how to use open source big data tools to build a big data

platform for industrial systems and a systematically designed framework is proposed

including data acquisition, transmission, processing, storage and visualization.

Introduction

The information technology as key drivers of productivity, has been gradually

penetrating and changing our society in every way since the birth of the Internet. In

recent years, Internet is gradually integrated with traditional manufacturing and

industrial control to achieve intelligent manufacturing and individual character

manufacturing. This triggered the birth of industry 4.0 [1,2] which refers to the fourth

industrial revolution that was first announced by Germany as one of the key initiatives

of its high-tech strategy in 2011 and aim to meet the challenges of the production

process complexity and uncertainty and eventually realize intelligent factory. Industry

4.0 can be defined as a data driven intelligent manufacturing which draws together

Cyber-Physical Systems [3], the Internet of Things [4]. In order to provide useful

insight to the factory management and gain correct content, data has to be processed

with advanced tools (analytics and algorithms) to generate meaningful information. In

2013, GE first proposed Industrial Internet which is the result of the integration of the

global industrial system and advanced computing, analysis, induction and Internet [5].

Industrial Big Data generally refers to a large amount of diversified time series

generated at a high speed by industrial devices [6], and is the core of both industry 4.0

and industrial Internet. The term emerged along with the concept of industrial Internet

and Industry 4.0, and diverges from Big Data, which is more popular in information

technology. Industrial Big Data created by industrial devices might hold more potential

business values [7]. A research conducted by Accenture and General Electric forecasted

that the values created by Industrial Internet of Things and Industrial Big Data could be

worth $500 billion by 2020 [8].

649

Advances in Computer Science Research (ACRS), volume 54
International Conference on Computer Networks and Communication Technology (CNCT2016)

Industrial Big Data has captured the interest of the research community due to its

widespread application value. In [9], authors proposed a unified 5-level architecture as

a guideline for implementation of CPS which is architecture for Industry 4.0 based

manufacturing system. The service innovation and smart analytics for the big data

environment are discussed in [10]. From the IT-perspective, the requirements of

Industry 4.0 are analyzed in [11] and it shows how the requirements can be matched to

the capabilities of Big Data software solutions. Big data software and process of content

analysis were proposed, the specific software tools and platforms, however have not

been discussed in depth. [12] presented a survey of the open source technologies that

support big data processing in a real-time/near real-time fashion, including their system

architectures and platforms. In [13], authors provided a systematic evaluation of various

big data platforms based on characteristics that are pertinent to big data analytics in

order to aid the users with better understanding about the suitability of these platforms

for different problem scenarios. At present, the literatures are concerned with the

architecture and framework, however as it has no explanations to the realization of

these architecture, and no one knows how these architectures are implemented. Some

business solutions for Industrial Big Data have been presented. Since GE released the

industrial internet, the industrial Internet platform Predix [14] is presented and allows

developers to connect with the user, and it can be used to develop customized data

analysis and solutions in accordance with the needs of users on the platform. IMS and

NI have co-developed the Watchdog Agent [15] based on LabView. The user can solve

the problem of industrial application based on this platform. However, these systems

and platforms are provided by the Business Companies and unable to understand the

technical details.

In software field, open source technology develops rapidly and benefited from

extensive technical support provided by technical experts and organization. The

non-profit Apache Software Foundation (ASF) is a group of developers that have

created and developed many famous open source projects, such as the Apache Web

server and the Axis Web services framework. Open source Big Data tools have played a

central role in Internet field, and have become the foundation and core of all big data

platform. Due to the maturity and efficiency of the open source big data tools, we

believe they are also applicable to sensor data, and used to build big data platforms for

Industrial system.

The major contributions of this paper is that a real time data acquisition scheme

based on publish/subscribe pattern and message architecture for large-scale sensor

nodes is proposed. Then on the base of these, an Industrial Big Data platform is brought

forward base on open source software, and its system architecture is shown in Fig. 1.

Compared with the traditional industrial monitoring system, it has advantages in data

transmission, storage, processing and visualization which are shown in Table 1.

650

Advances in Computer Science Research (ACRS), volume 54

OPC Server Modbus Server

Actuators Sensors Actuators Sensors

PyOPC modbus-tk

MQTT Client

(Paho)

MQTT Borker

(Mosquit to)

MQTT Kafka Bridge

Messaging system

(Kafka)

Data

Acquisition

Data

Transmission

Stream Data Processing

(Storm)

Time series Database

(InfluxDB)

Data mining

(Spark) Data

Processing

Echarts Grafana HTML5
Data

Visualization

Figure 1. Architecture of Industrial Big Data platform based on the open source software.

Table 1. Comparison between our platform and the existing monitoring platform

Feature
Existing industrial

monitoring system
Our industry big data platform

Data acquisition mode pull data publish-subscribe

QoS No

QoS 0: At most once delivery

QoS 1: At least once delivery

QoS 2: Exactly once delivery

Acquisition and processing synchronization asynchronous

datagram structure Byte array JSON

storage data type numerical values numerical value, text, image

scalability of storage Scale up Scale out

reliability difficult Distributed fault-tolerant

Data mining No
Integrated mainstream machine learning

algorithm

Visualization 2D 2D/3D, Map, hierarchical display

The remainder of the paper is organized as follows. In section 2 data acquisition is

described. Data transmission program based on publish/subscribe models proposed in

section 3. In section 4 the others parts of platform are discussed which are

pre-processing module, data storage module, data mining analysis module and data

visualization. Section 5 concludes with discussion and implication to future work.

Data Acquisition

Data Acquisition Interface

For some technology and business reasons, devices produced by different

manufacturers have different data interface. Among them the most common are OPC,

Modbus and DNP3. Although these data interfaces are detailed in the open

specification, it is not easy to develop the software that supports these data interfaces,

especially in the case of ensuring security and reliable.

651

Advances in Computer Science Research (ACRS), volume 54

There are several OPC frameworks are available that introduce simple building of

client and server applications. However, most of these frameworks are not freely

available or are based on Microsoft's .Net framework and are therefore platform

dependent. Due to these limitations, the PyOPC framework [16] was developed, which

fully implements the OPC XML-DA standard, and provides the features such as open

source, Multi-platform capable (Microsoft Windows, Linux, Mac OS X and others),

extensible and reusable, enabling developers to build OPC XML-DA based

applications in an easy way. In literally less than 4 lines of code we have the foundation

for a complete read data from an OPC server.

//import the OpenOPC module

1. import OpenOPC

//create OpenOPC instance ()

2. opc = OpenOPC.client()

//connect to OPC Server

3. opc.connect('opc server name')

//reading a single item

4. opc.read('Tag name')

The Modbus.org site offers links to third-party sites for Modbus users' and

developers' convenience. The developer’s main purpose in making these tools available

is to make the development of testing tools as easy as possible. There are several open

source library for Modbus, including pymodbus, MinimalModbus and Modbus-tk.

They are all based on the python language which is flexible and easy to learn.

Data Structure

Sensors data is a typical time series data, which have onto many points, one for each

discrete sample of the metric. In order to distinguish and describe the measurement

information of different sensors, the following information should be considered

carefully.

a) Measurement. It is used to describe a sensor’s measurement object or physical

process, such as a room.

b) Tags. Tags are an optional part of data structure and they are useful for storing

commonly-queried metadata.

c) Fields. The key-value pair data structure that records metadata and the actual data

value. Field keys are strings and they store metadata. Field values are the actual data;

they can be strings, floats, integers, or Booleans.

d) Time. The date and time associated with a point. The consistence of the data

acquisition time is important for data analysis.

In order to describe the collected data, we define a data structure for sensor data

based on JSON (JavaScript Object Notation) which is a lightweight data-interchange

format. JSON is easy for humans to read and write and easy for machines to parse and

generate simultaneously. It is completely language independent but uses conventions

that are familiar to programmers of the C-family of languages, including C, C++, C#,

Java, JavaScript, Perl, Python, and many others. These properties make JSON ideal

data-interchange language.

The measurement data of a temperature sensor T1 can be described as follows and

this data structure is compatible with time series database InfluxDB that will be

discussed in Section 4.1. This means the data can be writing to InfluxDB directly.

652

Advances in Computer Science Research (ACRS), volume 54

[

 {

"measurement": "room temperature",

"time": "2016-10-10T23:00:00Z”,

"tags": { “sensor id”: “IoT://city/building1/floor1/room2/T1”},

"fields": {"value": 0.64}

 }

]

Data Transmission

As the characteristics of the industrial system itself, industrial data transmission needs

to meet several requirements.

1) Real time. In industrial field, data transmission delay may cause hidden problems

cannot be found in time, so it is necessary to ensure the low latency of data

transmission.

2) Data distribution. According to different application needs, there are one or more

data consumers and it requires that the same data can be transmitted to different

recipients.

3) QoS. As data packet transmission may be delayed or drop out, the transmission

mechanism should provide QoS service.

4) Security. There are a number of threats for data transmission, such as (a) device

could be compromised, (b) communication could be intercepted, altered, re-routed or

disclosed (c) denial of service attacks. So security mechanisms such as authentication

and authorization of sender and receiver, integrity and privacy of data packet should be

considered.

5) Lightweight communication protocol. Due to industrial device calculation and

communication resources are limited; the lightweight communication protocol is

needed.

Transmission Protocol

Data generated by the mass sensors and devices should be transferred to the storage and

analytics systems. General Internet protocols like HTTP and REST are often too heavy

weights for the sensor, in terms of overheads, processing and memory requirements. At

present, a variety of communication protocols have been proposed for the application of

Internet of things, such as CoAP, AMQP, MQTT and XMPP. MQTT and CoAP are

specifically designed with the above requirements in mind. Both of them use a

client-server model, run on IP networks, provide asynchronous (none blocking) mode

of operation, and have support for QoS and security. MQTT is a messaging protocol

that was introduced by IBM in 2013, which aims at connecting sensors and actuators

with remote server. It utilizes the publish/subscribe pattern to provide transition

flexibility and simplicity of implementation. MQTT is a very light protocol; its

minimum length is only two bytes and suitable for resource constrained devices that use

unreliable or low bandwidth links. It is built on top of the TCP and deliver messages

with three levels QoS including at most once delivery, at least once delivery and exactly

once delivery. As a messages system, MQTT simply consist of three components,

subscriber, publisher and broker. Device such as sensors or physical objects acts as a

publisher of information. A data processing or storage server would register as a

subscriber for specific topics in order for it to be informed by the broker when

653

Advances in Computer Science Research (ACRS), volume 54

publishers publish topics of interest. After that, the publisher transmits the information

to the interested entities (subscribers) through the broker. Fig. 2 shows the architecture

of MQTT. MQTT has strong open source support: brokers (e.g., Mosquitto), clients

(e.g., Paho) and client tools are all available in a wide variety of programming

languages that are shown in Table 2.

Producer
(Sensor)

Producer
(Controller)

MQTT Broker

Subscriber

Subscriber

Other
Producer

Figure 2. The architecture of MQTT

Table 2. Open source class library for MQTT

Broker Language

Mosquitto C, C++, Python

Apache Apollo Java, python

RabbitMQ Java, .NET, Ruby, Python, PHP, JavaScript

ActiveMQ Java, C, C++, C#, Ruby, Perl, Python, PHP

mosca JavaScript

emqttd Erlang

Mosquitto is an open source (EPL/EDL licensed) message broker that implements

the MQTT protocol versions 3.1 and 3.1.1. Discarding more complex solutions,

especially with regard to the installation and configuration, we can build a broker just

execute a command.

linux:mosquitto -c mosquitto.conf

Windows: mosquitto.exe

Mosquitto provides SSL support for encrypted network connections and

authentication. Secure messaging using SSL or TLS is supported.

The Eclipse Paho project provides open-source client implementations of MQTT and

support Java, C/C++, Python, JavaScript, etc. The Paho Python Client provides a client

class with support for both MQTT v3.1 and v3.1.1 on Python 2.7 or 3.x. It also provides

some helper functions to make publishing messages to an MQTT server very

straightforward. It is easy to write a client that connects to the broker and send/receives

data. That is all the sender need to do to load the class library and then execute the send

data command.

import paho.mqtt.publish as publish

publish.single("topic", "msg", hostname="test")

As a producer, Paho can be easily integrated with PyOPC or Modbus-tk, and send

sensor data to the remote server through MQTT protocol.

Message Architecture

MQTT does not provide any buffering mechanism and it does not scale very well for

large system. An intermediate messaging system like RabbitMQ or Apache Kafka can

overcome this problem. Add such a messaging system between the MQTT broker and

the analytics system can improve the overall system performance as well as provides

easy scalability.

654

Advances in Computer Science Research (ACRS), volume 54

Apache Kafka already has MQTT support. The MqttKafkaBridge [17] which

consumes MQTT messages and republishes them on Kafka on the same topic and

makes integration effortless.

Data Processing and Visualization

The data received from the Kafka may need further processing, like data storage, data

processing and visualization.

Data Storage

Comparing with the Internet Big Data, besides some common “4V” characters,

Industrial Big Data is a typical time series data and have the characteristics of time

series data. A series of sensor data is identified by a source name or ID (for example:

host ID) and a metric name and consists of a sequence of {timestamp, value}

measurements ordered by timestamp, where the timestamp is probably a high-precision

UNIX timestamp and the value is a floating-point number. Therefore, the database

system used in the Industrial Big Data should consider meet the requirements of both

Internet Big Data and time series data.

1) Scalability. As the rapid development of the Internet of things and machine run in

7 × 24 hour. The time series data generated by machines (sensors) will be much more

than the data generated by the human. So the database should have the ability of scale

out to meet the needs of large-scale data storage.

2) Real time. Massive streams of sensor data generate by sensors (tens of thousands

per minute or even hundreds of thousands of records per second) which must be written

to database with high speed and be queried immediately.

Obviously, the traditional relational database has been unable to meet the above

requirements. Luckily, there are some open source time series databases that are

suitable for Industrial Big Data storage.

InfluxDB [18] is an open source time series database designed for high-performance

writes and compact disk storage. It built from the ground up to handle high write and

query loads. It is written entirely in Go and compiles into a single binary with no

external dependencies that make it a great choice for working with time series data.

InfluxDB provide simple, high performing write and query HTTP(S) APIs and plug-in

support for other data ingestion protocols such as Graphite. OpenTSDB [19] is another

distributed, scalable time series database written on top of HBase. The data stored in

OpenTSDB is metric as a unit, and metric is a monitor such as a sensor monitoring

point. OpenTSDB supports data storage forever, that is, the saved data will not be

deleted automatically, and the original data will be saved (some of the monitoring

system will be stored longer before the data aggregation). OpenTSDB use AsyncHbase

instead of HTable which HBase owned and use thread safe, non-blocking,

asynchronous, multi-thread concurrent API of HBase, in the high concurrency and high

throughput, it can get better results.

Data Processing

Many industrial applications are depend on real time processing such as fault detection

and early warning. How to quickly find out the abnormal data from massive real time

data is the difficulty and challenge faced by the Industrial Big Data processing.

Apache Storm is a free and open source distributed, reliable, and fault-tolerant

real-time computation system for processing streams of large volumes of data. Storm

655

Advances in Computer Science Research (ACRS), volume 54

makes it easy to reliably process unbounded streams of data, doing for real time

processing what Hadoop did for batch processing. Storm has many use cases: real time

analytics, online machine learning, continuous computation, distributed RPC, ETL, and

more. Spout and bolt are two components that work together for streaming data

processing. Spout is a source of stream and it passes the data to a component called bolt.

Storm and Kafka naturally complement each other, and their powerful cooperation

enables real-time streaming analytics for Industrial Big Data. Storm-Kafka is an open

source extended component of Storm and provides core Storm and Trident spout

implementations for consuming data from Apache Kafka 0.8.x [20]. For both Trident

and core Storm spout implementations, it use a BrokerHost interface that tracks Kafka

broker host to partition mapping and kafka config that controls some Kafka related

parameters.

Data Preprocessing Bolt

Some reasons lead to the raw data does not meet the requirements of the data analysis.

For example, sensors crash occasionally and network disruption can lead to data loss.

Environmental interference can raise outliers. Before data analysis, the data should be

preprocessed to improve the quality of data. These preprocessing are deployed a signal

preprocessing bolt including data integrity test, format standardization, abnormal data

removal and scale transformation.

Device Monitoring and Alarm Management Bolt

In order to ensure the safety of the operation of industrial devices, the health status of

the device should be evaluated in real time. A device monitoring bolt can be designed

for it, and the same type of device is detected by a bolt. False negatives and false

positives are difficulties and challenges faced by industrial monitoring and alarm

management. Comprehensive industrial system structure model and data association

analysis can help reduce the incidence of false positives and false negatives. In the

Storm, several bolts can be developed and specially used for alarm analysis.

Writing Database Bolt

The industrial data needs to be written to the database for historical archival purposes as

well as for avoiding unnecessary repeat computations. Instead of writing data directly to

a database through an MQTT client, an alternative way is to write it through Storm.

Data are written to database with an independent bolt facilitates the isolation of data

streams and optimal management. InfluxDB-java [21] is a Java Client library which

provide the interface of the operation InfluxDB and can be integrated with Storm easily.

Visualization

Outstanding data visualization can help people to understand the meaning of data.

Industrial Big Data visualization mainly has two requirements. The first is data

visualization which is to communicate information clearly and efficiently to users via

the statistical graphics, plots, information graphics charts selected. The second is

topography structure visualization which reflects the position and connection between

the devices and the sensors.

Data Visualization

Grafana [22] is a leading open source application for visualizing large-scale

measurement data, and is commonly used for visualizing time series data including

industrial sensors, home automation, weather, and process control. It has many

656

Advances in Computer Science Research (ACRS), volume 54

outstanding characteristics including rich graphing, graph styling, various dashboards

and provide rich support for InfluxDB and OpenTSDB.

ThingSpeak [23] is a versatile open source platform and API that allows developers

and app designers to gather data from sensors and other sources, analyze and visualize it.

Freeboard is a purpose-built visualization tool for the Internet of Things. It allows you

to create a dashboard full of different widgets and immediately share it with anyone.

ECharts [24] is another free, powerful charting and visualization library offering an

easy way of adding intuitive, interactive, and highly customizable charts to your

commercial products. It is written in pure JavaScript and based on zrender, which is a

whole new lightweight canvas library.

Topology Visualization

HTML5 introduces elements and attributes that reflect typical usage on modern

websites. In addition to specifying markup, HTML5 specifies scripting application

programming interfaces (APIs) that can be used with JavaScript. There are also new

APIs such as canvas, editable content, drag-and-drop, web messaging and geo location,

etc. So it is an ideal visualization tool of topology structure for complex industrial

system.

Gephi [25] is the leading visualization and exploration software for all kinds of

graphs and networks. Gephi is open source and free, and is widely used in link analysis,

social network analysis and biological network analysis.

Conclusions

How to mine the valuable Industrial Big Data and utilizing it is the key to the successful

implementation of the industry 4.0 and industrial Internet. However, industrial data

platform and tool is the precondition and means of analyzing and using Industrial Big

Data. This paper analyzes the characteristics of Industrial Big Data and features of the

current Internet Big Data tools and platforms. On this basis, an industry big data

platform based on open source software is put forward. It has advantages of open source,

reliability, flexibility and meets the requirements of Industrial Big Data acquisition,

transmission, processing, storage and visualization. For future work, we will build a

prototype system based on the proposed scheme.

Acknowledgement

This work is supported in part by open project of Key Laboratory of Space Launching

Site Reliability Technology, NSFC Grant. No. 61425027 and special fund of

Suzhou-Tsinghua innovation Leading Action.

References

[1] M. Herman, T. Pentek, and B. Otto, “Design Principles for Industrie 4.0,” Dortm.

TU, 2015.

[2] J. Lee, B. Bagheri, and H.-A. Kao, “Recent Advances and Trends of Cyber-Physical

Systems and Big Data Analytics in Industrial Informatics,” in Int. Conference on

Industrial Informatics (INDIN) 2014.

657

Advances in Computer Science Research (ACRS), volume 54

[3] E. A. Lee, “Cyber physical systems: Design challenges,” in Object Oriented

Real-Time Distributed Computing (ISORC), 2008 11th IEEE International Symposium

on, 2008(363-369).

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet

of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE

Commun. Surv. Tutor., vol. 17, no. 4, (2015)2347-2376.

[5] P. C. Evans and M. Annunziata, “Industrial internet: Pushing the boundaries of

minds and machines,” Gen. Electr., p.21, 2012.

[6] G. I. Platforms, The Rise of Industrial Big Data. Whitepaper, 2012.

[7] J. Kelly, The industrial internet and big data analytics: Opportunities and challenges.

2013.

[8] Information on

http://www.computerweekly.com/opinion/Big-data-to-unlock-value-from-the-Industri

al-Internet-of-Things

[9] H.-A. Kao, W. Jin, D. Siegel, and J. Lee, “A Cyber Physical Interface for

Automation Systems—Methodology and Examples,” Machines, vol. 3, no. 2, (2015)

93-106.

[10] J. Lee, H.-A. Kao, and S. Yang, “Service Innovation and Smart Analytics for

Industry 4.0 and Big Data Environment,” Procedia CIRP, vol. 16, (2014)3-8.

[11] P. Gölzer, P. Cato, and M. Amberg, “Data Processing Requirements of Industry

4.0-Use Cases for Big Data Applications,” Data Process., 2015.

[12] X. Liu, N. Iftikhar, and X. Xie, “Survey of Real-time Processing Systems for Big

Data,” in Proceedings of the 18th International Database Engineering & Applications

Symposium, New York, NY, USA, (2014)356-361.

[13] D. Singh and C. K. Reddy, “A survey on platforms for big data analytics,” J. Big

Data, vol. 2, no. 1, (2014)1-20.

[14] Information on https://www.predix.io/

[15] Information on http://www.imscenter.net/

[16] Information on http://pyopc.sourceforge.net

[17] Information on https://github.com/jacklund/mqttKafkaBridge

[18] Information on https://influxdata.com/

[19] Information on http://opentsdb.net/

[20] Information on https://github.com/apache/storm/tree/master/external/storm-kafka.

[21] Information on https://github.com/influxdata/influxdb-java.

[22] Information on http://grafana.org/

[23] Information on https://thingspeak.com/

[24] Information on http://echarts.baidu.com/

[25] Information on https://gephi.org/

658

Advances in Computer Science Research (ACRS), volume 54

