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Abstract. Deep integration of industrial system and information technology triggered 

the fourth industrial revolution-Industry 4.0 which based on cyber physical system and 

Industrial Big Data. Although many researchers have discussed the basic concept of 

industry 4.0 and Industrial Big Data, as we known no literatures about how to design 

and develop an Industrial Big Data platform. Business solutions are generally not open 

to the public, so little is known about how to achieve it. Open source big data tools have 

widely used in the Internet field, but it is not clear how these tools are used in the 

industrial field. We focus on how to use open source big data tools to build a big data 

platform for industrial systems and a systematically designed framework is proposed 

including data acquisition, transmission, processing, storage and visualization. 

Introduction 

The information technology as key drivers of productivity, has been gradually 

penetrating and changing our society in every way since the birth of the Internet. In 

recent years, Internet is gradually integrated with traditional manufacturing and 

industrial control to achieve intelligent manufacturing and individual character 

manufacturing. This triggered the birth of industry 4.0 [1,2] which refers to the fourth 

industrial revolution that was first announced by Germany as one of the key initiatives 

of its high-tech strategy in 2011 and aim to meet the challenges of the production 

process complexity and uncertainty and eventually realize intelligent factory. Industry 

4.0 can be defined as a data driven intelligent manufacturing which draws together 

Cyber-Physical Systems [3], the Internet of Things [4]. In order to provide useful 

insight to the factory management and gain correct content, data has to be processed 

with advanced tools (analytics and algorithms) to generate meaningful information. In 

2013, GE first proposed Industrial Internet which is the result of the integration of the 

global industrial system and advanced computing, analysis, induction and Internet [5]. 

Industrial Big Data generally refers to a large amount of diversified time series 

generated at a high speed by industrial devices [6], and is the core of both industry 4.0 

and industrial Internet. The term emerged along with the concept of industrial Internet 

and Industry 4.0, and diverges from Big Data, which is more popular in information 

technology. Industrial Big Data created by industrial devices might hold more potential 

business values [7]. A research conducted by Accenture and General Electric forecasted 

that the values created by Industrial Internet of Things and Industrial Big Data could be 

worth $500 billion by 2020 [8].   
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Industrial Big Data has captured the interest of the research community due to its 

widespread application value. In [9], authors proposed a unified 5-level architecture as 

a guideline for implementation of CPS which is architecture for Industry 4.0 based 

manufacturing system. The service innovation and smart analytics for the big data 

environment are discussed in [10]. From the IT-perspective, the requirements of 

Industry 4.0 are analyzed in [11] and it shows how the requirements can be matched to 

the capabilities of Big Data software solutions. Big data software and process of content 

analysis were proposed, the specific software tools and platforms, however have not 

been discussed in depth. [12] presented a survey of the open source technologies that 

support big data processing in a real-time/near real-time fashion, including their system 

architectures and platforms. In [13], authors provided a systematic evaluation of various 

big data platforms based on characteristics that are pertinent to big data analytics in 

order to aid the users with better understanding about the suitability of these platforms 

for different problem scenarios. At present, the literatures are concerned with the 

architecture and framework, however as it has no explanations to the realization of 

these architecture, and no one knows how these architectures are implemented. Some 

business solutions for Industrial Big Data have been presented. Since GE released the 

industrial internet, the industrial Internet platform Predix [14] is presented and allows 

developers to connect with the user, and it can be used to develop customized data 

analysis and solutions in accordance with the needs of users on the platform. IMS and 

NI have co-developed the Watchdog Agent [15] based on LabView. The user can solve 

the problem of industrial application based on this platform. However, these systems 

and platforms are provided by the Business Companies and unable to understand the 

technical details. 

In software field, open source technology develops rapidly and benefited from 

extensive technical support provided by technical experts and organization. The 

non-profit Apache Software Foundation (ASF) is a group of developers that have 

created and developed many famous open source projects, such as the Apache Web 

server and the Axis Web services framework. Open source Big Data tools have played a 

central role in Internet field, and have become the foundation and core of all big data 

platform. Due to the maturity and efficiency of the open source big data tools, we 

believe they are also applicable to sensor data, and used to build big data platforms for 

Industrial system. 

The major contributions of this paper is that a real time data acquisition scheme 

based on publish/subscribe pattern and message architecture for large-scale sensor 

nodes is proposed. Then on the base of these, an Industrial Big Data platform is brought 

forward base on open source software, and its system architecture is shown in Fig. 1. 

Compared with the traditional industrial monitoring system, it has advantages in data 

transmission, storage, processing and visualization which are shown in Table 1. 

650

Advances in Computer Science Research (ACRS), volume 54



OPC Server Modbus Server

Actuators Sensors Actuators Sensors 

PyOPC modbus-tk

MQTT Client

(Paho)

MQTT Borker

(Mosquit to)

MQTT Kafka Bridge

Messaging system

(Kafka)

Data 

Acquisition

Data

Transmission

Stream Data Processing

(Storm)

Time series Database

(InfluxDB)

Data mining

(Spark) Data 

Processing

Echarts Grafana HTML5
Data 

Visualization 

 

Figure 1. Architecture of Industrial Big Data platform based on the open source software. 

Table 1.  Comparison between our platform and the existing monitoring platform 

Feature 
Existing industrial 

monitoring system 
Our industry big data platform 

Data acquisition mode pull data publish-subscribe 

QoS No 

QoS 0: At most once delivery 

QoS 1: At least once delivery 

QoS 2: Exactly once delivery 

Acquisition and processing synchronization asynchronous 

datagram structure Byte array JSON 

storage data type numerical values numerical value, text, image 

scalability of storage Scale up Scale out 

reliability difficult Distributed fault-tolerant 

Data mining No 
Integrated mainstream machine learning 

algorithm 

Visualization  2D 2D/3D, Map, hierarchical display 

The remainder of the paper is organized as follows. In section 2 data acquisition is 

described. Data transmission program based on publish/subscribe models proposed in 

section 3. In section 4 the others parts of platform are discussed which are 

pre-processing module, data storage module, data mining analysis module and data 

visualization. Section 5 concludes with discussion and implication to future work. 

Data Acquisition 

Data Acquisition Interface 

For some technology and business reasons, devices produced by different 

manufacturers have different data interface. Among them the most common are OPC, 

Modbus and DNP3. Although these data interfaces are detailed in the open 

specification, it is not easy to develop the software that supports these data interfaces, 

especially in the case of ensuring security and reliable.  
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There are several OPC frameworks are available that introduce simple building of 

client and server applications. However, most of these frameworks are not freely 

available or are based on Microsoft's .Net framework and are therefore platform 

dependent. Due to these limitations, the PyOPC framework [16] was developed, which 

fully implements the OPC XML-DA standard, and provides the features such as open 

source, Multi-platform capable (Microsoft Windows, Linux, Mac OS X and others), 

extensible and reusable, enabling developers to build OPC XML-DA based 

applications in an easy way. In literally less than 4 lines of code we have the foundation 

for a complete read data from an OPC server. 

//import the OpenOPC module 

1. import OpenOPC   

//create OpenOPC instance () 

2. opc = OpenOPC.client() 

//connect to OPC Server 

3. opc.connect('opc server name')  

//reading a single item 

4. opc.read('Tag name') 

The Modbus.org site offers links to third-party sites for Modbus users' and 

developers' convenience. The developer’s main purpose in making these tools available 

is to make the development of testing tools as easy as possible. There are several open 

source library for Modbus, including pymodbus, MinimalModbus and Modbus-tk. 

They are all based on the python language which is flexible and easy to learn. 

Data Structure 

Sensors data is a typical time series data, which have onto many points, one for each 

discrete sample of the metric. In order to distinguish and describe the measurement 

information of different sensors, the following information should be considered 

carefully. 

a) Measurement. It is used to describe a sensor’s measurement object or physical 

process, such as a room. 

b) Tags. Tags are an optional part of data structure and they are useful for storing 

commonly-queried metadata. 

c) Fields. The key-value pair data structure that records metadata and the actual data 

value. Field keys are strings and they store metadata. Field values are the actual data; 

they can be strings, floats, integers, or Booleans. 

d) Time. The date and time associated with a point. The consistence of the data 

acquisition time is important for data analysis. 

In order to describe the collected data, we define a data structure for sensor data 

based on JSON (JavaScript Object Notation) which is a lightweight data-interchange 

format. JSON is easy for humans to read and write and easy for machines to parse and 

generate simultaneously. It is completely language independent but uses conventions 

that are familiar to programmers of the C-family of languages, including C, C++, C#, 

Java, JavaScript, Perl, Python, and many others. These properties make JSON ideal 

data-interchange language. 

The measurement data of a temperature sensor T1 can be described as follows and 

this data structure is compatible with time series database InfluxDB that will be 

discussed in Section 4.1. This means the data can be writing to InfluxDB directly. 
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[ 

    { 

"measurement": "room temperature", 

"time": "2016-10-10T23:00:00Z”, 

"tags": { “sensor id”: “IoT://city/building1/floor1/room2/T1”}, 

"fields": {"value": 0.64} 

    } 

] 

Data Transmission 

As the characteristics of the industrial system itself, industrial data transmission needs 

to meet several requirements. 

1) Real time. In industrial field, data transmission delay may cause hidden problems 

cannot be found in time, so it is necessary to ensure the low latency of data 

transmission. 

2) Data distribution. According to different application needs, there are one or more 

data consumers and it requires that the same data can be transmitted to different 

recipients. 

3) QoS. As data packet transmission may be delayed or drop out, the transmission 

mechanism should provide QoS service. 

4) Security. There are a number of threats for data transmission, such as (a) device 

could be compromised, (b) communication could be intercepted, altered, re-routed or 

disclosed (c) denial of service attacks. So security mechanisms such as authentication 

and authorization of sender and receiver, integrity and privacy of data packet should be 

considered. 

5) Lightweight communication protocol. Due to industrial device calculation and 

communication resources are limited; the lightweight communication protocol is 

needed. 

Transmission Protocol 

Data generated by the mass sensors and devices should be transferred to the storage and 

analytics systems. General Internet protocols like HTTP and REST are often too heavy 

weights for the sensor, in terms of overheads, processing and memory requirements. At 

present, a variety of communication protocols have been proposed for the application of 

Internet of things, such as CoAP, AMQP, MQTT and XMPP. MQTT and CoAP are 

specifically designed with the above requirements in mind. Both of them use a 

client-server model, run on IP networks, provide asynchronous (none blocking) mode 

of operation, and have support for QoS and security. MQTT is a messaging protocol 

that was introduced by IBM in 2013, which aims at connecting sensors and actuators 

with remote server. It utilizes the publish/subscribe pattern to provide transition 

flexibility and simplicity of implementation. MQTT is a very light protocol; its 

minimum length is only two bytes and suitable for resource constrained devices that use 

unreliable or low bandwidth links. It is built on top of the TCP and deliver messages 

with three levels QoS including at most once delivery, at least once delivery and exactly 

once delivery. As a messages system, MQTT simply consist of three components, 

subscriber, publisher and broker. Device such as sensors or physical objects acts as a 

publisher of information. A data processing or storage server would register as a 

subscriber for specific topics in order for it to be informed by the broker when 
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publishers publish topics of interest. After that, the publisher transmits the information 

to the interested entities (subscribers) through the broker. Fig. 2 shows the architecture 

of MQTT. MQTT has strong open source support: brokers (e.g., Mosquitto), clients 

(e.g., Paho) and client tools are all available in a wide variety of programming 

languages that are shown in Table 2. 
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Figure 2. The architecture of MQTT 

Table 2.  Open source class library for MQTT 

Broker Language 

Mosquitto C, C++, Python 

Apache Apollo Java, python 

RabbitMQ Java, .NET, Ruby, Python, PHP, JavaScript 

ActiveMQ Java, C, C++, C#, Ruby, Perl, Python, PHP 

mosca JavaScript 

emqttd Erlang 

Mosquitto is an open source (EPL/EDL licensed) message broker that implements 

the MQTT protocol versions 3.1 and 3.1.1. Discarding more complex solutions, 

especially with regard to the installation and configuration, we can build a broker just 

execute a command. 

linux:mosquitto -c mosquitto.conf 

Windows: mosquitto.exe 

Mosquitto provides SSL support for encrypted network connections and 

authentication. Secure messaging using SSL or TLS is supported. 

The Eclipse Paho project provides open-source client implementations of MQTT and 

support Java, C/C++, Python, JavaScript, etc. The Paho Python Client provides a client 

class with support for both MQTT v3.1 and v3.1.1 on Python 2.7 or 3.x. It also provides 

some helper functions to make publishing messages to an MQTT server very 

straightforward. It is easy to write a client that connects to the broker and send/receives 

data. That is all the sender need to do to load the class library and then execute the send 

data command. 

import paho.mqtt.publish as publish 

publish.single("topic", "msg", hostname="test") 

As a producer, Paho can be easily integrated with PyOPC or Modbus-tk, and send 

sensor data to the remote server through MQTT protocol. 

Message Architecture 

MQTT does not provide any buffering mechanism and it does not scale very well for 

large system. An intermediate messaging system like RabbitMQ or Apache Kafka can 

overcome this problem. Add such a messaging system between the MQTT broker and 

the analytics system can improve the overall system performance as well as provides 

easy scalability.  

654

Advances in Computer Science Research (ACRS), volume 54



Apache Kafka already has MQTT support. The MqttKafkaBridge [17] which 

consumes MQTT messages and republishes them on Kafka on the same topic and 

makes integration effortless. 

Data Processing and Visualization 

The data received from the Kafka may need further processing, like data storage, data 

processing and visualization. 

Data Storage 

Comparing with the Internet Big Data, besides some common “4V” characters, 

Industrial Big Data is a typical time series data and have the characteristics of time 

series data. A series of sensor data is identified by a source name or ID (for example: 

host ID) and a metric name and consists of a sequence of {timestamp, value} 

measurements ordered by timestamp, where the timestamp is probably a high-precision 

UNIX timestamp and the value is a floating-point number. Therefore, the database 

system used in the Industrial Big Data should consider meet the requirements of both 

Internet Big Data and time series data. 

1) Scalability. As the rapid development of the Internet of things and machine run in 

7 × 24 hour. The time series data generated by machines (sensors) will be much more 

than the data generated by the human. So the database should have the ability of scale 

out to meet the needs of large-scale data storage. 

2) Real time. Massive streams of sensor data generate by sensors (tens of thousands 

per minute or even hundreds of thousands of records per second) which must be written 

to database with high speed and be queried immediately. 

Obviously, the traditional relational database has been unable to meet the above 

requirements. Luckily, there are some open source time series databases that are 

suitable for Industrial Big Data storage.  

InfluxDB [18] is an open source time series database designed for high-performance 

writes and compact disk storage. It built from the ground up to handle high write and 

query loads. It is written entirely in Go and compiles into a single binary with no 

external dependencies that make it a great choice for working with time series data. 

InfluxDB provide simple, high performing write and query HTTP(S) APIs and plug-in 

support for other data ingestion protocols such as Graphite. OpenTSDB [19] is another 

distributed, scalable time series database written on top of HBase. The data stored in 

OpenTSDB is metric as a unit, and metric is a monitor such as a sensor monitoring 

point. OpenTSDB supports data storage forever, that is, the saved data will not be 

deleted automatically, and the original data will be saved (some of the monitoring 

system will be stored longer before the data aggregation). OpenTSDB use AsyncHbase 

instead of HTable which HBase owned and use thread safe, non-blocking, 

asynchronous, multi-thread concurrent API of HBase, in the high concurrency and high 

throughput, it can get better results. 

Data Processing 

Many industrial applications are depend on real time processing such as fault detection 

and early warning. How to quickly find out the abnormal data from massive real time 

data is the difficulty and challenge faced by the Industrial Big Data processing. 

Apache Storm is a free and open source distributed, reliable, and fault-tolerant 

real-time computation system for processing streams of large volumes of data. Storm 
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makes it easy to reliably process unbounded streams of data, doing for real time 

processing what Hadoop did for batch processing. Storm has many use cases: real time 

analytics, online machine learning, continuous computation, distributed RPC, ETL, and 

more. Spout and bolt are two components that work together for streaming data 

processing. Spout is a source of stream and it passes the data to a component called bolt.  

Storm and Kafka naturally complement each other, and their powerful cooperation 

enables real-time streaming analytics for Industrial Big Data. Storm-Kafka is an open 

source extended component of Storm and provides core Storm and Trident spout 

implementations for consuming data from Apache Kafka 0.8.x [20]. For both Trident 

and core Storm spout implementations, it use a BrokerHost interface that tracks Kafka 

broker host to partition mapping and kafka config that controls some Kafka related 

parameters. 

Data Preprocessing Bolt 

Some reasons lead to the raw data does not meet the requirements of the data analysis. 

For example, sensors crash occasionally and network disruption can lead to data loss. 

Environmental interference can raise outliers. Before data analysis, the data should be 

preprocessed to improve the quality of data. These preprocessing are deployed a signal 

preprocessing bolt including data integrity test, format standardization, abnormal data 

removal and scale transformation. 

Device Monitoring and Alarm Management Bolt 

In order to ensure the safety of the operation of industrial devices, the health status of 

the device should be evaluated in real time. A device monitoring bolt can be designed 

for it, and the same type of device is detected by a bolt. False negatives and false 

positives are difficulties and challenges faced by industrial monitoring and alarm 

management. Comprehensive industrial system structure model and data association 

analysis can help reduce the incidence of false positives and false negatives. In the 

Storm, several bolts can be developed and specially used for alarm analysis. 

Writing Database Bolt 

The industrial data needs to be written to the database for historical archival purposes as 

well as for avoiding unnecessary repeat computations. Instead of writing data directly to 

a database through an MQTT client, an alternative way is to write it through Storm. 

Data are written to database with an independent bolt facilitates the isolation of data 

streams and optimal management. InfluxDB-java [21] is a Java Client library which 

provide the interface of the operation InfluxDB and can be integrated with Storm easily. 

Visualization 

Outstanding data visualization can help people to understand the meaning of data. 

Industrial Big Data visualization mainly has two requirements. The first is data 

visualization which is to communicate information clearly and efficiently to users via 

the statistical graphics, plots, information graphics charts selected. The second is 

topography structure visualization which reflects the position and connection between 

the devices and the sensors. 

Data Visualization 

Grafana [22] is a leading open source application for visualizing large-scale 

measurement data, and is commonly used for visualizing time series data including 

industrial sensors, home automation, weather, and process control. It has many 
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outstanding characteristics including rich graphing, graph styling, various dashboards 

and provide rich support for InfluxDB and OpenTSDB. 

ThingSpeak [23] is a versatile open source platform and API that allows developers 

and app designers to gather data from sensors and other sources, analyze and visualize it. 

Freeboard is a purpose-built visualization tool for the Internet of Things. It allows you 

to create a dashboard full of different widgets and immediately share it with anyone.  

ECharts [24] is another free, powerful charting and visualization library offering an 

easy way of adding intuitive, interactive, and highly customizable charts to your 

commercial products. It is written in pure JavaScript and based on zrender, which is a 

whole new lightweight canvas library. 

Topology Visualization  

HTML5 introduces elements and attributes that reflect typical usage on modern 

websites. In addition to specifying markup, HTML5 specifies scripting application 

programming interfaces (APIs) that can be used with JavaScript. There are also new 

APIs such as canvas, editable content, drag-and-drop, web messaging and geo location, 

etc. So it is an ideal visualization tool of topology structure for complex industrial 

system. 

Gephi [25] is the leading visualization and exploration software for all kinds of 

graphs and networks. Gephi is open source and free, and is widely used in link analysis, 

social network analysis and biological network analysis. 

Conclusions 

How to mine the valuable Industrial Big Data and utilizing it is the key to the successful 

implementation of the industry 4.0 and industrial Internet. However, industrial data 

platform and tool is the precondition and means of analyzing and using Industrial Big 

Data. This paper analyzes the characteristics of Industrial Big Data and features of the 

current Internet Big Data tools and platforms. On this basis, an industry big data 

platform based on open source software is put forward. It has advantages of open source, 

reliability, flexibility and meets the requirements of Industrial Big Data acquisition, 

transmission, processing, storage and visualization. For future work, we will build a 

prototype system based on the proposed scheme. 
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