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Abstract. In this paper, an improved matrix perturbation method for modified 

structures is presented. First we construct an iterative format on the basis of the matrix 

perturbation theory. By introducing a pair of initial eigensolution, we can obtain the 

natural vibration mode of the modified structure, and then use the Rayleigh quotient 

to compute the corresponding natural frequency. In this way, the computation 

accuracy can be greatly improved. Finally, a numerical example is included to 

demonstrate the validity of the proposed method. 

Introduction 

Structural dynamic reanalysis play an important role in structural design and 

optimization. Many scholars have paid their attentions to this subject. 

The traditional method is the Taylor series expansion method, and later 

approximation method using reduced basis vectors was proposed. In the papers of 

Noor1and Nair et al.2, the basis vector is the Taylor series expansion of the eigenpairs 

with respect to the structural parameters, and in the papers of Aktas and Moses3and 

Kirsch4, the basis vector is the binomial expansion by solving a static problem. 

However, the choice of the basis vector is still a research issue. Kirsch5,6,7introduced 

the combined approximation algorithm to the vibration analysis process, and made the 

equivalent treatment for the modal equations and the static equilibrium equations, 

then constructed the reduced basis vector in the Krylov subspace, finally, gave the 

error evaluation and solving process. He et al.8made the modal reanalysis research for 

structural large topological modifications with added degrees of freedom. Rong et al.9, 

Ma et al.10, Yang et al.11and Chen et al.12proposed the extended combined 

approximation method, and improved the calculation accuracy using the Rayleigh 

quotient. Zhang et al.13presented the modified combined approximation method 

based on the inverse iteration and combined approximation algorithm, and improved 

the calculation accuracy for structural large modifications. Liu et al.14made the 

695

Advances in Computer Science Research (ACRS), volume 54
International Conference on Computer Networks and Communication Technology (CNCT2016)



research on the eigenvalue repeated analysis problems. Chen et al.15,16made the 

research on the structural dynamic responds repeated analysis problems by 

introducing the Epsilon algorithm and combining with the Newmann series 

expansion.  

Though many algorithms above are involved, the matrix perturbation method is the 

classical approach. Yang et al.17proposed a method based on the Pade approximation 

to improve the perturbation theory. Chen et al.18improved the calculation accuracy of 

the perturbation method by combining the matrix perturbation method with the 

Rayleigh quotient, but it isn’t usually applicable to the case of large parameter 

modifications, as noted in the paper of Chen et al.19. So it is necessary to improve the 

perturbation method in the calculation accuracy and the range of application. 

In this paper, we present an improved matrix perturbation method. By combining 

the iteration algorithm with the Rayleigh quotient, we can obtain the eigensolution of 

the modified structure, and the computational accuracy can be greatly improved. 

Numerical example is used to illustrate the validity of the proposed method. 

Theoretical Background 

Consider the following general structural vibration eigenvalue problem 

[ ]{ } [ ]{ }.i i iK u M u
                                               (1) 

{ } [ ]{ } ,         , 1, 2,...T

i j iju M u i j n 
.                                  (2) 

where ][K  and ][M  are the structural stiffness and mass matrices, respectively, 

2

ii w  is the ith eigenvalue, iw  is the ith natural frequency, }{ iu  is the 

eigenvector corresponding to i , n  is the total degrees of freedom, and ij  is the 

Kronecker sign. It is assumed that the eigenvalue is distinct, and Eq. (1) will be 

referred to as the original eigenvalue problem. 

After the structure is modified, the stiffness matrix ][K  and the mass matrix ][M  

are also changed, and the amounts of change are ][ K  and ][ M , respectively. The 

corresponding eigenvalue problem of the modified structure is 

[ ]{ } [ ]{ }.i i iK u M u
                                               (3) 

.,...2,1,        ,}]{[}{ njiuMu ijj

T

i  
                                  (4) 

where 
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][][][ KKK  .                                                 (5) 

].[][][ MMM                                                  (6) 

Then the ith eigenvalue i  and the corresponding eigenvector }{ iu  can be expressed as 

,iii  
 

}.{}{}{ iii uuu 
                                    (6) 

The First-order Perturbation Method 

From Eqs. (6), the standard equations of the first-order perturbation method can be 

written as 

,11 iii  
 

}.{}{}{ 11 iii uuu 
                                   (7) 

where  

},]){[]([}{1 ii

T

ii uMKu  
 

}.{}{
1

1

1 j

n

j

iji ucu 




                    (8) 

In the above formula, coefficients 
1

ijc are given as follows 

1 { } ([ ] [ ]){ }/ ( ),T

ij j i i i jc u K M u      
 .ij                            (9) 

,2/}]{[}{1

i

T

iii uMuc 
 .ij                                       (10) 

The second-order Perturbation Method 

Similarly, the standard equations of the second-order perturbation method can be 

written as 

iii 22  
, 

}{}{}{ 22 iii uuu 
 .                               (11) 

where 

}]{[}{}]{[}{

}]{[}{}]{[}{

111

1112

i

T

iii

T

ii

i

T

iii

T

iii

uMuuMu

uMuuKu









.                     (12) 

}{}{}{
1

2

12 j

n

j

ijii ucuu 




.                                         (13) 
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In the above formula, coefficients
2

ijc are given as follows 

)/(})]{[}{}]{[}{

}]{[}{}]{[}({

111

11

2

jii

T

jii

T

ji

i

T

jii

T

jij

uMuuMu

uMuuKuc









, ij  .            (14) 

2/})]{[}{}]{[}{}]{[}({ 1111

2

i

T

ii

T

ii

T

iii uMuuMuuMuc 
 ij  .  (15) 

William B.B. Method Mentioned by William20  

Use the inner product of eigenvector with respect to the modified structure mass 

matrixM to replace the inner product with respect to the original structure mass 

matrixM , we can obtain the William.B.B method. 

Similarly, the standard equations of the William.B.B method can be written as 

iii 33  
, 

}{}{}{ 33 iii uuu 
.                                 (16) 

where 

})]{[}/({}]){[]([}{3 i

T

iii

T

ii uMuuMKu  
.                      (17) 

}{}{
1

3

3 j

n

j

iji ucu 




.                                               (18) 

In the above formula, coefficients 
3

ijc are given as follows 

})]{[}){/((}]){[]([}{3

i

T

ijiii

T

jij uMuuMKuc  
, ij  .          (19) 

})]{[}{2/(}]{[}{3

i

T

ii

T

iii uMuuMuc 
, ij  .                        (20) 

The Perturbation Method Combining with the Rayleigh Quotient Mentioned by 

Chen Et Al.21 

Similarly, the standard equations can be written as 

iii 44  
, 

}{}{}{ 44 iii uuu 
.                                (21) 

Consider the effects of the high-frequency modes and use the first-order 

perturbation method results, then have 

})]{[}/({}]){[]([}{ 11114 i

T

iii

T

ii uMuuMKu  
.                      (22) 
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}{}{
1

4

4 j

n

j

iji ucu 




.                                               (23) 

In the above formula, coefficients
4

ijc are given as follows: 

)/(}]){[][]([}{ 11

4

jiiii

T

jij uMMKuc  
,  ij  .             (24) 

2/})]{[}{}]{[}({ 1111

4

i

T

ii

T

iii uMuuMuc 
, ij  .                  (25) 

The Proposed Method 

From the previous four methods, we know that we first calculate the eigenvalues of 

the modified structure, and then calculate the corresponding eigenvectors. The 

following we first construct an iteration format on the basis of the matrix perturbation 

theory to compute the natural vibration mode of the modified structure, and then use 

the Rayleigh quotient to compute the corresponding natural frequency.  

The eigenvectors of modified structure are expressed as 

}{}{}{ 1

i

1   k

ni

k

ni uuu
.                                          (26) 

}{}{
1

)1(1

j

n

j

kn

ij

k

ni ucu 


 

.                                           (27) 

Substituting Eqs. (5)-(6) into Eq. (3) and rearranging them yields 

 
}){}])({[]([}){}])({[]([

}]){[]([

iiiiii

ii

uuMMuuMK

uMK









.         (28) 

Let 
,{ } { }k k

i ni i niu u      
on Eq. (28) right-hand side, and we get 

 
}]{[}]){[]([}]){[]([ k

ni

k

ni

k

niiii uMuMKuMK  
.            (29) 

Premultiplying Eq. (29) by
{ }Tju results in 

{ } ([ ] [ ]){ }

{ } ([ ] [ ]){ } { } [ ]{ }

T

j i i

T k k T k

j i ni ni j ni

u K M u

u K M u u M u



 

   

   
.                         (30) 

In Eq. (30), let
1{ } { }k

i niu u   
. Substituting Eq. (27) into Eq. (30) and noting 

that
{ }ju is M-normalized, we have the following iterative formula 
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)/(}){][]([}{)1(

ji

k

ni

k

nii

T

j

kn

ij uMMKuc  

  ij  .            (31) 

For the case of j i , the coefficient 
( 1)n k

iic


 can be obtained by the 

M -normalized condition 

1}){}]({[}){}({  ii

T

ii uuMuu
.                                 (32) 

Expanding Eq. (32) and rearranging them yields 

}]{[}{}){}]({[}){}({}]{[}{2 i

T

iii

T

iii

T

i uMuuuMuuuMu 
   (33) 

Similarly, noting Eqs. (2) and (27), we can obtain 

2/})]{}[{}]{[}({)1( k

ni

k

ni

k

ni

Tk

ni

kn

ii uMuuMuc 

.                     (34) 

  Based on the obtained 
( 1)n k

iic


 and 
( 1)n k

ijc


, the eigenvectors 
1{ }k

niu


 can be 

obtained from Eqs. (26) and (27).  

Then we use the Rayleigh quotient and get the eigenvalues 

})]{[}/({})]{[}({ 11111   k

ni

Tk

ni

k

ni

Tk

ni

k

ni uMuuKu
.                         (35) 

and further get 

})]{[}/({}]){[]([}{ 11111   k

ni

Tk

ni

k

nii

Tk

ni

k

ni uMuuMKu 
.                 (36) 

Throughout the iterative process, we first select the iteration-based initial values 

0

ni
, 

0{ }niu  and 
0{ }niu . After obtaining the 

1k

ni 
, 

1{ }k

niu


 and 
1{ }k

niu


, we 

regard them as the new iteration-based and substitute them into Eqs. (31) and (34), 

and make the repeated iteration of the loop equation until the results converge to the 

required accuracy. 

Numerical Example 

In this section, we will use a numerical example to demonstrate the validity of the 

proposed method.  

We consider the following truss with 8 joints which is shown in Fig. 1. The cross 

section of all members is 
23102.1 mA  , the modulus of elasticity is PaE 11101.2  , 

and the density is 
33 /1085.7 mkg . We will adopt the lumped mass in the finite 

element computation. We assume that the cross section of the bar ① is increased by 

20% and 60% , respectively.  
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To compare the accuracies, we adopt the first-order perturbation method, the 

second-order perturbation method, the William.B.B method, the perturbation method 

combining with the Rayleigh quotient and the proposed method respectively to 

compute the eigenvalues and eigenvectors of the modified structure. In the proposed 

method, we choose the results of first-order perturbation method as the initial iteration 

base, and make iteration one time, which makes the cost of computing minimum. For 

convenience, we denote the above five methods as method 1-method 5 sequentially in 

the following Figures. 

 
Fig. 1 The truss with 8 joints 

The error of eigenvalue is calculated by 

EiIiEiitr  /)( 
.                                            (37) 

Ei
 is the exact eigenvalue of the modified structure, Ii

 is the approximate 

eigenvalue computed by the previous several methods. The errors are denoted by tr1, 

tr2, tr3, tr4 and trn1, respectively. 

The error of eigenvector is calculated by 

})){*}({/}){*}({/}{*}({ Ii

T

IiEi

T

EiIi

T

Eii uusqrtuusqrtuuabsur 
            (38) 

Eiu  is the exact eigenvector of the modified structure, Iiu  is the approximate 

eigenvector computed by the previous several methods. The errors are denoted by ur1, 

ur2, ur3, ur4 and urn1, respectively. 

The error results of the first five eigensolutions are listed in Tables 1-4. We use the 

first-order perturbation solution as the initial iteration base, and make iteration one 

time in the proposed method, at this time Eqs. (31) and (34) are degenerated into Eqs. 

(24) and (25), respectively, so Eq. (26) is identical to Eq. (21), as we have seen in 

Tables 3-4, the values of urn1 and ur4 are the same, i.e. the eigenvector accuracy of 

the proposed method is consistent with that obtained by the perturbation method 

combining with the Rayleigh quotient, but more accurate than the other three methods, 

as we have seen in Figs. 4-5. The eigenvalue accuracy of the proposed method is 

much higher than the other four methods, as shown in Tables 1-2 and Figs. 2-3. We 

also know when a large amount of structure modification, such as modification of 

60%, as shown in Tables 2 and 4, Figs. 3 and 5, the proposed method also has high 

accuracy, and the validity of the proposed method is demonstrated. 
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Table 1 The eigenvalue accuracies comparison (cross section is increased by 20%) 

i tr1 tr2 tr3 tr4 trn1 

1 0.0016 0.0003 0.0015 5.57e-5 1.91e-6 
2 0.0004 0.0001 0.0004 4.32e-5 3.84e-6 
3 0.0040 0.0003 0.0037 1.54e-5 1.37e-6 
4 0.0003 4.4e-5 0.0002 3.04e-6 2.96e-8 
5 7.81e-5 4.75e-7 1.08e-5 1.93e-7 1.64e-10 

Table 2 The eigenvalue accuracies comparison (cross section is increased by 60%) 

i tr1 tr2 tr3 tr4 trn1 

1 0.0107 0.0061 0.0102 0.0034 0.0011 
2 0.0024 0.0027 0.0026 0.0024 0.0020 
3 0.0275 0.0075 0.0257 0.0014 0.0005 
4 0.0031 0.0009 0.0022 0.0002 2.01e-5 
5 0.0007 6.48e-6 0.0001 1.42e-5 1.08e-7 

Table 3 The eigenvector accuracies comparison (cross section is increased by 20%) 

i ur1 ur2 ur3 ur4 urn1 

1 0.999998 0.999999 0.999998 1.000000 1.000000 
2 0.999964 0.999997 0.999967 0.999997 0.999997 
3 0.999961 0.999997 0.999964 0.999997 0.999997 
4 0.999993 1.000000 0.999995 1.000000 1.000000 
5 1.000000 1.000000 1.000000 1.000000 1.000000 

Table 4 The eigenvector accuracies comparison (cross section is increased by 60%) 

i ur1 ur2 ur3 ur4 urn1 

1 0.999885 0.999964 0.999899 0.999965 0.999965 
2 0.998633 0.998883 0.998781 0.998879 0.998879 
3 0.998357 0.998924 0.998543 0.998937 0.998937 
4 0.999511 0.999992 0.999646 0.999992 0.999992 
5 0.999973 1.000000 0.999991 1.000000 1.000000 
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Fig. 2 The eigenvalue accuracies comparison (cross section is increased by 20%) 
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Fig. 3 The eigenvalue accuracies comparison (cross section is increased by 60%) 
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      Fig.4 The eigenvector accuracies comparison (cross section is increased by 20%)  
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Fig. 5 The eigenvector accuracies comparison (cross section is increased by 60%) 

Conclusions 

An improved matrix perturbation method for modified structures has been proposed. 

By constructing an iterative format and combining with the Rayleigh quotient, we can 

obtain the eigensolution of the modified structure, and the calculation accuracy can be 

greatly improved. A numerical example has demonstrated the validity of the proposed 

method. 
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