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Abstract. Compressive sensing has been used to acquire the information in 

high-frame-rate video using low-frame-rate compressive measurements. Under the 

framework of coded aperture compressive temporal imaging, we propose a video 

reconstruction algorithm using Gaussian scale mixture model from temporal 

compressive measurements. Experimental results demonstrate that our proposed 

algorithm outperforms state-of-the-art algorithms in both peak signal-to-noise ratio and 

visual quality. 

Introduction 

Measuring high-speed video is a challenge to camera design. Recently, compressive 

sensing (CS) [1-3] has been used to acquire the information in high-frame-rate video 

using low-frame-rate compressive measurements. A number of inverse algorithms have 

been proposed for compressive video reconstruction lately. Park and Wakin [4] 

described a coarse-to-fine inverse algorithm which interchanged between temporal 

motion estimation and spatial video reconstruction in the wavelet domain. Yang et al. 

[5,6] utilized a Gaussian mixture model to represent spatiotemporal video patches, and 

the video reconstruction can be efficiently calculated based on analytic expressions. In 

this paper, we extend Gaussian scale mixture (GSM) [7] model to compressive video 

reconstruction. While doing CS video reconstruction, the video’s pixel volume is 

partitioned into a set of spatiotemporal patches. Since the dimension of each video 

patch is much larger than that of the corresponding compressive measurement, all 

pixels within a patch are assumed to be drawn from a GSM model.  

Temporal Compressive Video Measurements 

Because of modulating high-speed video at low power and cost, the coded aperture 

compressive temporal imaging (CACTI) [8-10] is utilized to obtain temporal 

compressive video measurements. Let x  and y  denote the number of pixels in the 

horizontal and vertical axes of the video frame. F is a parameter that may be set 

depending on what is happening in the scene. R x y F  
Χ describes the discretized 

reconstructed video, and R x y 
Y represent the temporal compressive video 

measurements. The CACATI camera sums F  coded frames to a two-dimensional (2D) 

temporal compressive measurement. More formally 
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        Y H H H X X X .                                               (1) 

where 
,i jY is the component  ,i j of measurements Y , H  denotes the binary mask 

with components  , , 0,1i j k H , which is designed by randomly choosing 1/ 0 values at 

each pixel, with a 0.5 probability of 1. 
, ,i j kX  is connected with the same pixels  ,i j , 

and temporal bin k . The symbol   represents Hadamard product, and T denotes 

transpose of a matrix. Thus, each pixel in Y  is comprised of a weighted sum of the 

corresponding pixel values in the F  frames of X , where the weights are binary. In this 

paper, our objective is to recover F  coded frames from each compressive 

measurement. 

Video Reconstruction Using GSM Model 

We divide Y  into a total of  M  2D patches, where each square patch constitutes P P  

pixels. Let 
2

R p

my   be the vectorized thm  patch. 
2

R P F

mx   represents the 

corresponding vectorized spatiotemporal patches to be recovered. Thus, each 

compressive measurement can be expressed as 

1,2,...,m m m my x m M   Φ .                                                                                         (2) 

where  
2 2

0,1
P P F

m


Φ  is measuring matrix projecting mx  onto my , and 

2

R P

m  denotes zero-mean Gaussian measurement noise with variance 2

 . For each 

m , our goal is to recover mx  from the patch my . To solve this problem, we assume that 

all pixels within mx  are drawn from a GSM model. 

GSM Model  

A vector  2R N

mx N P F   is a GSM [7] model if and only if it can be expressed in 

the form 1 2

mx G , where   is an independent positive scalar random variable and 

G  is a Gaussian random vector, with covariance matrix  2 2 2

1 2=diag , ,..., N  Σ . The 

probability density function (pdf) of mx  conditioned on random variable   and 

covariance matrix Σ  is denoted by 

     
1 -1T22

1
, = 2 exp

2

N

m m mp x x x   
  

 
 

Σ Σ Σ  .                                                     (3) 

where  represents determinant of a matrix. From Eq. 3, we can obtain the 

maximum likelihood estimate of random variable  : 

  1 1T

m m mx N x x   Σ .                                                                                                                    (4) 

Reconstruction Algorithm Using GSM Model 

From Eq. 2, we have the Gaussian likelihood model of compressive measurement my . 

More formally 
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   
2

22 2 2

2 2

1
, 2 exp

2

p

m m m m mp y x y x 



 


  
    

 

Φ .                                          (5) 

If the noise variance 2

  , the value of   and covariance matrix Σ  have been 

estimated, given the compressive measurement my  and measuring matrix 
mΦ , the 

posterior pdf of mx  is given by 

 
   

 

2

2

2

, ,
, , ,

, ,

m m m

m m

m

p x p y x
p x y

p y







 
 

 


Σ
Σ

Σ
.                                                               (6) 

Substituting Eq. 3 and Eq. 5 into Eq. 6, we can obtain a multivariate Gaussian 

distribution, with covariance Θ  and mean   given by 

 
-1

2 T= m m
 Θ Φ Φ Γ ,   2 T= m my  

ΓΦ .                                                                                 (7) 

where      
1 1 1

2 2 2

1 2=diag , ,..., N  
   

  
Γ . Thus, the reconstructed vector mx  is 

chosen to be equal to  . Therefore, the problem only needs to estimate the unknown 

model parameters  ,Σ  and 2

 .Noting that the covariance Θ  can be rewritten as its 

equivalent form 

 
-1

1 2 T 1= m m   Θ Φ Φ Σ .                                                                                                     (8) 

So we can estimate the unknown model parameters 2

  and  2

1

N

i i
 


 by maximizing 

the following marginal log-likelihood function: 

     

 

2 2 2 2

1 1

2 1

, log , ,

1
log 2 log

2

N N

i m ii i

T

m m

p y

p y y

     



 

 



  
  

     Π Π

.                                                 (9) 

where 1 2 T

m m  Π Ι Φ ΣΦ .  

Next, we can decompose matrix Π  as follows: 

1 2 2 T 2 T 2 T

1,
i i i i

N

m m i m m i i m m

i
  

 

    



 

    Π Ι Φ Φ Φ Φ Π Φ Φ .                                   (10) 

where iΠ is Π  with the contribution of thi  basis vector removed, and 
imΦ denotes 

the thi column of 
mΦ .Using matrix determinant lemma and 

Sherman-Morrison-Woodbury identity, we have 

2 T 11
i ii i m i m 

  Π Π Φ Π Φ  ,   

1 T 1

1 1

2 T 1

i i

i i

i m m i

i

i m i m

 

  

  



 


Π Φ Φ Π
Π Π

Φ Π Φ
.                                   (11) 

The fast update algorithm [11, 12] is utilized to increase monotonically the 

log-likelihood function, which can be rewritten as 
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2 2 2 2 2

2 1,
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2

1
log log ,

2

N
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N
i
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i i

N y y

Q
S

S


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  
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

 

 

   

  

      

 
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Π Π

 .              (12) 

 where 
T 1

i ii m i mS 

Φ Π Φ  and 
T 1

ii m i mQ y

Φ Π . 

 It can be seen that   2 2

1
,

N

i i  


  has a unique maximum with respect to 2

i
 : 

2
2

22

2

, if ,

, if .

i
i i

i ii

i i

S
Q S

Q S

Q S

 




 

 

                                                                                 (13) 

The GSM-based video reconstruction algorithm is summarized as follows: 

Step 1: set  2 310 mvariance y
  . 

Step 2: initialize a single basis vector 
1i

mΦ such that 

 

2

1 2 2
T 2

1,2,..., /
arg max i

i i

m

i N
m m m

i
y 




Φ

Φ Φ

, and set  1i  . 

Step 3: set 1

1

1 1

2

2

2 2
T 2/

i

i i

m

i

m m my 





 
 

 
 

Φ

Φ Φ

, and all other  
1

2

1,

N

i i i i
 

 
are set to infinity. 

Step 4: using Eq. 7 and Eq. 4 respectively, compute Θ ,   and  . 

Step 5: compute 2

i i iQ S   . 

Step 6: if 0i   and 2

i
   , re-estimate 2

i
 . 

Step 7: if 0i   and 2 =i
  , add 

imΦ in the set   and update 2

i
 . 

Step 8: if 0i   and 2

i
   , delete 

imΦ  from the set   and set 2 =i
  . 

Step 9: update Θ ,   and  . 

Step10: update 
 

2

2

1 2

m my

N card


 




  






  

Φ

Θ
, where  card  is the 

cardinality of a set. 

Step11: update Γ  according to the scaling 2

i . 

Step12: if converged terminate, otherwise go to step 5. 

Experimental Results 

The proposed GSM-based inverse algorithm reconstructs 8 temporal frames per single 

compressive video measurement, which is divided into a set of overlapping patches of 

size 8 8 . We use PSNR to assess the quality of every reconstructed frame, and finally 

the average value over all reconstructed video frames is taken as the evaluation criterion 

for video reconstruction. The experiment is done on an Intel i5-4590 CPU running at 

3.30 GHz with 4GB RAM. 

Fig. 1 shows reconstructed frames 89 and 90 using Yang et al.’s method [5] and our 
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proposed GSM-based method from the last compressive measurements of traffic 

dataset. When the proposed GSM-based method is used, the reconstructed frames not 

only have higher PSNR than that of Yang et al.’s method, but also have better visual 

quality. Furthermore, we also have that the average PSNR over all reconstructed frames 

of Yang et al.’s method is 21.93dB, while that of our proposed algorithm is 22.41dB. 

(a)

(c)(b) (d)

(e) (f) (g)  
Fig. 1. Reconstruction results of the simulated traffic measurements. (a) Raw measurement. (b) Original 

frame 89. (c) Reconstructed frame 89 by Yang et al.’s method, PSNR = 21.83 dB. (d) Reconstructed frame 

89 by the proposed GSM-based method, PSNR = 22.57 dB. (e) Original frame 90. (f) Reconstructed 

frame 90 by Yang et al.’s method, PSNR = 22.27 dB.  (g) Reconstructed frame 90 by the proposed 

GSM-based method, PSNR = 23.08 dB. 

Conclusions 

In this paper, we have proposed the video reconstruction algorithm using GSM model 

from temporal compressive measurements. The GSM model is used to represent 

spatiotemporal patches, and a fast update algorithm is utilized to increase 

monotonically the log-likelihood function. Experimental results demonstrate that our 

proposed algorithm outperforms state-of-the-art algorithms in both peak signal-to-noise 

ratio and visual quality. 
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